
Grothendieck toposes as
unifying ‘bridges’ in Mathematics

Mémoire pour l’obtention de l’habilitation à diriger des recherches*

Olivia Caramello

*Successfully defended on 14 December 2016 in front of a Jury composed by Alain Connes
(Collège de France) - President, Thierry Coquand (University of Gothenburg), Jamshid Derakhshan
(University of Oxford), Ivan Fesenko (University of Nottingham), Anatole Khelif (Universitè de
Paris 7), Frédéric Patras (Universitè de Nice - Sophia Antipolis), Enrico Vitale (Universitè Catholique
de Louvain) and Boban Velickovic (Universitè de Paris 7).

1



Contents

1 Introduction 2

2 General theory 5
2.1 The ‘bridge-building’ technique . . . . . . . . . . . . . . . . . . 6

2.1.1 Decks of ‘bridges’: Morita-equivalences . . . . . . . . . . 7
2.1.2 Arches of ‘bridges’: Site characterizations . . . . . . . . . 11
2.1.3 The flexibility of Logic: a two-level view . . . . . . . . . 13
2.1.4 The duality between real and imaginary . . . . . . . . . . 18
2.1.5 A theory of ‘structural translations’ . . . . . . . . . . . . 20

2.2 Theories, Sites, Toposes . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Universal models and classifying toposes . . . . . . . . . . . . . 30

3 Theory and applications of toposes as ‘bridges’ 35
3.1 Characterization of topos-theoretic invariants . . . . . . . . . . . 35
3.2 De Morgan and Boolean toposes . . . . . . . . . . . . . . . . . . 39
3.3 Atomic two-valued toposes . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Fraïssé’s construction from a topos-theoretic persective . . 40
3.3.2 Topological Galois Theory . . . . . . . . . . . . . . . . . 45
3.3.3 Motivic toposes . . . . . . . . . . . . . . . . . . . . . . . 50

4 Dualities, bi-interpretations and Morita-equivalences 53
4.1 Dualities, equivalences and adjunctions for preordered structures

and topological spaces . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.1 The topos-theoretic construction of Stone-type dualities and

adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2 A general method for building reflections . . . . . . . . . 67
4.1.3 Priestley-type dualities for partially ordered structures . . 68
4.1.4 Gelfand spectra and Wallman compactifications . . . . . . 72

4.2 Duality between equations and solutions . . . . . . . . . . . . . . 77
4.2.1 General affine adjunctions . . . . . . . . . . . . . . . . . 78
4.2.2 Finite presentability in the setting of theories of presheaf type 81

4.3 Lattice-ordered groups and MV-algebras . . . . . . . . . . . . . . 84
4.3.1 Mundici’s and Di Nola-Lettieri’s equivalences from a topos-

theoretic viewpoint . . . . . . . . . . . . . . . . . . . . . 85
4.3.2 New Morita-equivalences for local MV-algebras in varieties 91
4.3.3 Cyclic theories . . . . . . . . . . . . . . . . . . . . . . . 95

1 Introduction

Since the beginning of her Ph.D. studies, the author’s research has focused on
investigating the prospective role of Grothendieck toposes as unifying concepts in
Mathematics and Logic.

2



U

f∗ g ∗

h ∗

M
�

f ∗(U) . . . N
�

g∗ (U
)

P
�

h
∗ (U

)

Figure 1: Classifying topos

Specifically, we have built on the following two fundamental facts:

(1) Any first-order (geometric) mathematical theory admits a (unique up to equiv-
alence) classifying topos which contains a universal model of the theory. It is
indeed possible to associate to any theory its set-theoretic models and, more
generally, its models in any Grothendieck topos; the existence of the classify-
ing topos means that any model of the theory can be obtained, uniquely up to
isomorphism, as a pullback of the universal model along a (unique) morphism
of toposes.

(2) Conversely, any Grothendieck topos can be regarded as the classifying topos of
a first-order mathematical theory, and in fact of (infinitely) many such theories,
which can possibly be completely different from each other. Two mathematical
theories having the same classifying topos (up to equivalence) are said to be
Morita-equivalent.

The idea of regarding Grothendieck toposes from the point of view of the struc-
tures that they classify dates back to A. Grothendieck and his student M. Hakim,
who characterized in her book Topos annelés et schémas relatifs [48] four toposes
arising in algebraic geometry, notably including the Zariski topos, as the classifiers
of certain special kinds of rings. Later, Lawvere’s work on the Functorial Seman-
tics of Algebraic Theories [57] implicitly showed that all finite algebraic theories
are classified by presheaf toposes. The introduction of geometric logic, that is, the
logic that is preserved under inverse images of geometric functors, is due to the
Montréal school of categorical logic and topos theory active in the seventies, more
specifically to G. Reyes, A. Joyal and M. Makkai. Its importance is evidenced by
the fact that every geometric theory admits a classifying topos and that, conversely,
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every Grothendieck topos is the classifying topos of some geometric theory. After
the publication, in 1977, of the monograph First-order categorical logic by Makkai
and Reyes [62], the theory of classifying toposes, in spite of its promising begin-
nings, stood essentially undeveloped; very few papers on the subject appeared in
the following years and, as a result, most mathematicians remained unaware of the
existence and potential usefulness of this fundamental notion.

Fact (1) shows that first-order mathematical theories are most naturally investi-
gated by adopting the point of view of classifying toposes rather than that provided
by their set-based models. Indeed, the collection of set-based models of a geo-
metric theory does not in general yield a faithful constructive representation of
the theory (there are examples of non-contradictory infinitary geometric theories
without any set-based models) and even for finitary theories one has to appeal to
non-constructive principles such as the axiom of choice to ensure that the notion
of validity of sequents in all the models of the theory coincides with the notion of
provability in the theory (Gödel’s completeness theorem); on the other hand, the
universal model of a geometric theory lying in its classifying topos realizes by it-
self a constructive integration of the syntax and semantics of the theory since the
sequents which are valid in it are precisely (and constructively) the ones which are
provable in the theory.

As to fact (2), Grothendieck himself had stressed that completely different sites
can give rise to equivalent toposes, but the induced notion of Morita-equivalence
of mathematical theories had never been investigated in a systematic way.

Facts (1) and (2) show that a Grothendieck topos can be thought of as a math-
ematical object which condenses in itself the semantics of a mathematical theory,
representing the body of properties of the theory which do not depend on its lin-
guistic presentation.

This raises the natural question of whether Grothendieck toposes could effec-
tively serve as sorts of unifying ‘bridges’ for transferring concepts and results be-
tween mathematical theories which have a common ‘semantical core’ but a differ-
ent linguistic presentation. The results obtained in the author’s Ph.D. thesis, as well
as those of later papers, have provided substantial technical evidence for a positive
answer to this question.

In fact, the general techniques resulting from this new view of ‘toposes as
bridges’ originally introduced in [17], besides leading to the solution to long-
standing problems in Categorical Logic (cf. sections 2.2, 2.3 and 3.2), have gener-
ated many non-trivial applications in distinct mathematical fields, including Model
Theory (cf. sections 3.3.1 and 2.3), Proof Theory (cf. section 2.2), Topology (cf.
sections 3.1 and 4.1), Algebraic Geometry (cf. sections 2.1.3 and 3.3.3), Algebra
(cf. sections 3.3.2, 4.1, 4.2 and 4.3) and Functional Analysis (cf. section 4.1.4),
and the potential of this theory has just started to be explored.

In this document, we shall explain the general principles underlying this new
view of toposes as unifying ‘bridges’ and a few selected results already obtained
by implementing the resulting techniques in different mathematical contexts.
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2 General theory

Many important dualities and equivalences in Mathematics can be naturally in-
terpreted in terms of equivalences between the classifying toposes of different
theories; on the other hand, Topos Theory itself is a primary source of Morita-
equivalences. In fact, the notion of Morita-equivalence formalizes in many situa-
tions the feeling of ‘looking at the same thing in different ways’, which explains
why it is ubiquitous in Mathematics.

Grothendieck toposes can serve as ‘bridges’ for transferring properties between
Morita-equivalent theories in the following sense. The existence of different pre-
sentations for the ‘semantical core’ of a given mathematical theory translates into
the existence of different representations (technically speaking, sites) for its classi-
fying topos. Topos-theoretic invariants (i.e., properties or constructions on toposes
which are stable under categorical equivalence), appropriately characterized as
properties of the sites of definitions of the topos, can then be used to transfer prop-
erties between the two representations of the classifying topos and hence between
the two theories.

For example, adopting this viewpoint, Deligne’s theorem asserting that every
coherent topos has enough points can be seen to be equivalent to Gödel’s com-
pleteness theorem in Logic. Other examples involving sites and theories of various
nature can be found below.

This method creates unifying ‘bridges’ in Mathematics in the sense that prop-
erties (resp. constructions) arising in the context of mathematical theories which
have a common ‘semantical core’ but a different ‘linguistic presentation’ (techni-
cally speaking, Morita-equivalent theories) come to be seen as different manifesta-
tions of a unique property (resp. construction) lying at the topos-theoretic level.

The way through which concrete results are generated by an application of
this technique is inherently ‘upside-down’ with respect to the more traditional ap-
proaches in which one starts with simple ingredients and proceeds to combine them
to build more complicated structures. Indeed, this method takes as primitive ingre-
dients rich and sophisticated mathematical entities, namely Morita-equivalences
and topos-theoretic invariants, and extracts from them concrete information rele-
vant for classical mathematics (the fact that these ‘primitive ingredients’ are intrin-
sically complex does not nonetheless imply that it is difficult to obtain such objects
from the current mathematical practice; quite the contrary in fact).

An important aspect of the ‘bridge-building’ technique is, besides its level of
generality (indeed, it can be applied to first-order mathematical theories of es-
sentially any kind), the fact that it is amenable to computations, due to the very
well-behaved (although highly non-trivial) nature of the representation theory of
Grothendieck toposes in terms of sites. In fact, this technique allows one to gen-
erate insights in different mathematical fields in a ‘semi-automatic way’, that is
without making any arbitrary, ‘non-canonical’ choice. I should hasten to point
out that not all of the results generated in this way are ‘interesting mathematical
theorems’; many of them can be rather ‘weird’ according to usual mathematical
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standards, even though they might well be quite deep.

2.1 The ‘bridge-building’ technique

This section is based on [17] and section 2.2. of [8].
Recall that the classifying topos ET of a geometric theory T (also denoted by

Set[T]) can always be built as the topos of sheaves Sh(CT, JT) on the geomet-
ric syntactic site (CT, JT): the syntactic category CT has as objects the geometric
formulae-in-context {~x . φ} over Σ (up to ‘renaming’ equivalence) and as arrows
{~x . φ} → {~y . ψ} (where the contexts ~x and ~y are supposed to be disjoint without
loss of generality) the T-provable-equivalence classes [θ] of geometric formulae
θ(~x, ~y) which are T-provably functional i.e. such that the sequents

(φ `~x (∃~y)θ),
(θ `~x,~y φ ∧ ψ), and

((θ ∧ θ[~z/~y]) `~x,~y,~z (~y = ~z))

are provable in T. The syntactic topology JT is the canonical topology on CT,
i.e. the topology whose covering sieves are those which contain small covering
families.

The ‘bridge-building’ technique allows one to construct topos-theoretic ‘brid-
ges’ connecting distinct mathematical theories with each other.

Specifically, if T and T′ are two Morita-equivalent theories (that is, geometric
theories classified by the same topos), their common classifying topos can be used
as a ‘bridge’ for transferring information between them:

ET ' ET′

��
T

22

T′

The transfer of information between T and T′ takes place by expressing topos-
theoretic invariants (that is, properties or constructions on toposes which are stable
under categorical equivalence) defined on their common classifying topos directly
in terms of the theories T and T′. This is done by associating to each of the two
theories a site of definition for its classifying topos (for example, the geometric
syntactic site) and then considering topos-theoretic invariants on the classifying
topos from the points of view of the two sites of definition. More precisely, suppose
that (C, J) and (D,K) are two sites of definition for the same topos, and that I is a
topos-theoretic invariant. Then one can seek site characterizations for I, that is, in
the case I is a property (the case of I being a ‘construction’ admits an analogous
treatment), logical equivalences of the kind ‘the topos E satisfies I if and only if
(C, J) satisfies a property P(C,J) (written in the language of the site (C, J))’ and,
similarly for (D,K), logical equivalences of the kind ‘the topos Sh(D,K) satisfies
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I if and only if (D,K) satisfies a property Q(D,K)’:

Invariant I across
the Morita-equivalence

Sh(C, J) ' Sh(D,K) site characterization
f or I

(
C, J)

Property P(C,J)

site characterization
f or I

(
D,K)

Property Q(D,K)

Clearly, such characterizations immediately lead to a logical equivalence be-
tween the properties P(C,J) and Q(D,K), which can thus be seen as different mani-
festations of a unique property, namely I, in the context of the two different sites
(C, J) and (D,K).

In fact, one does not necessarily need ‘if-and-only-if’ site characterizations in
order to build ‘bridges’: in order to establish an implication between a property
P(C,J) of a site (C, J) and a property Q(D,K) of another site of definition (D,K)
of the same topos, it suffices to find an invariant I such that P(C,J) implies I on
Sh(C, J) and I on Sh(D,K) implies Q(D,K).

The ‘bridge’ technique allows one to interpret and study many dualities and
equivalences arising in different fields of mathematics by means of the investi-
gation of how topos-theoretic invariants characterize in terms of sites. In other
words, the representation theory of Grothendieck toposes becomes a sort of ‘meta-
theory of mathematical duality’, which makes it possible to effectively compare
distinct mathematical theories with each other and transfer knowledge between
them. In the following sections we discuss more in detail the subject of Morita-
equivalences, which play in our context the role of ‘decks’ of our ‘bridges’, and of
site characterizations for topos-theoretic invariants, which constitute their ‘arches’.

Incidentally, it should be noted that this method could be generalized to the
case of ‘bridges’ whose deck is given by some kind of relationship between toposes
which is not necessarily an equivalence, in the presence of properties or construc-
tions of toposes which are invariant with respect to such a relation. Nonetheless,
the advantage of focusing on Morita-equivalences is twofold; on one hand, it is
convenient because, due to the fact that every property expressed in categorical
language is automatically invariant with respect to categorical equivalence, we dis-
pose of an unlimited number of invariants readily available to consider, whilst on
the other hand, it realizes a unification of ‘concrete’ properties of different theories
by interpreting them as different manifestations of a unique property lying at the
topos-theoretic level.

2.1.1 Decks of ‘bridges’: Morita-equivalences

Let us first recall from [54] the following classical definition.

Definition 2.1. Two geometric theories T and T′ are said to be Morita-equivalent
if they have equivalent classifying toposes, equivalently if they have equivalent
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categories of models in every Grothendieck topos E , naturally in E , that is for
each Grothendieck topos E there is an equivalence of categories

τE : T-mod(E )→ T′-mod(E )

such that for any geometric morphism f : F → E the following diagram com-
mutes (up to isomorphism):

T-mod(F ) T′-mod(F )

T-mod(E ) T′-mod(E )

τF

f ∗ f ∗

τE

Note that ‘to be Morita-equivalent to each other’ defines an equivalence rela-
tion of the collection of all geometric theories.

Given the level of technical sophistication of this definition, it is reasonable to
wonder if Morita-equivalences naturally arise in Mathematics and, in case, if there
are systematic ways for ‘generating’ them. The following remarks are meant to
show that the answer to both questions is positive.

• If two geometric theories T and T′ have equivalent categories of models in
the category Set then, provided that the given categorical equivalence is es-
tablished by only using constructive logic (that is, by avoiding in particular
the law of excluded middle and the axiom of choice) and geometric con-
structions (that is, by only using set-theoretic constructions which involve
finite limits and small colimits, equivalently which admit a syntactic for-
mulation involving only equalities, finite conjunctions, (possibly) infinitary
disjunctions and existential quantifications), it is reasonable to expect the
original equivalence to ‘lift’ to a Morita-equivalence between T and T′. In-
deed, a Grothendieck topos behaves logically as a ‘generalized universe of
sets’ in which one can perform most of the classical set-theoretic arguments
and constructions, with the only significant exception of those requiring non-
constructive principles. So we can naturally expect to be able to generalize
the original equivalence between the categories of set-based models of the
two theories to the case of models in arbitrary Grothendieck toposes; more-
over, the fact that the constructions involved in the definition of the equiv-
alence are geometric ensures that the above-mentioned naturality condition
for Morita-equivalences is satisfied (since geometric constructions are pre-
served by inverse image functors of geometric morphisms). As examples of
‘lifting’ of naturally arising categorical equivalences to Morita-equivalences
we mention the Morita-equivalence between MV-algebras and abelian `-
groups with strong unit (cf. [25]) and that between abelian `-groups and
perfect MV-algebras (cf. [26]). We shall review these equivalences in sec-
tion 4.3.1.
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• Two cartesian (in particular, finitary algebraic) theories T and T′ have equiv-
alent categories of models in Set if and only if they are Morita-equivalent (or,
equivalently, if and only if their cartesian syntactic categories are equivalent).

• If two geometric (resp. regular, coherent) theories have equivalent geometric
(resp. regular, coherent) syntactic categories (i.e., they are bi-interpretable)
then they are Morita-equivalent. This follows at once from the fact that the
‘logical’ topologies in the syntactic sites are defined intrinsically in terms of
the categorical structure present on the relevant syntactic categories. Any-
way, as it can be naturally expected, the most interesting Morita-equivalences
do not arise from bi-interpretations.

In particular, if two finitary first-order theories are bi-interpretable (in the
sense of classical Model Theory) then their Morleyizations are Morita-equiva-
lent (recall that the Morleyization of a finitary first-order theory T is coherent
theory canonically associated to it whose set-based models can be identified
with those of T).

• Two associative rings with unit are Morita-equivalent (in the classical, ring-
theoretic, sense) if and only if the algebraic theories axiomatizing the (left)
modules over them are Morita-equivalent (in the topos-theoretic sense). In-
deed, by the first remark above, these theories are Morita-equivalent if and
only if their categories of set-based models are equivalent, that is if and only
if the categories of (left) modules over the two rings are equivalent. Specif-
ically, for each ring R the theory axiomatizing its (left) R-modules can be
defined as the theory obtained from the algebraic theory of abelian groups
by adding one unary function symbol for each element of the ring and writ-
ing down the obvious equational axioms which express the conditions in the
definition of R-module.

• Other notions of Morita-equivalence for various kinds of algebraic or geo-
metric structures considered in the literature can be reformulated as equiv-
alences between different representations of the same topos, and hence as
Morita-equivalences between different geometric theories. For instance:

- Two topological groups are Morita-equivalent (in the sense of [65])
if and only if their toposes of continuous actions are equivalent. A
natural analogue of this notion for topological and localic groupoids
has been studied by several authors and a summary of the main results
in contained in section C5.3 of [54].

- Two small categories are Morita-equivalent (in the sense of [41]) if and
only if the corresponding presheaf toposes are equivalent, that is if and
only if their Cauchy completions (also called Karoubian completions)
are equivalent (cf. [7]).
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- Two inverse semigroups are Morita-equivalent (in the sense of [73] or,
equivalently, of [43]) if and only if their classifying toposes (as defined
in [44]) are equivalent (cf. [43]).

• Categorical dualities or equivalences between ‘concrete’ categories can often
be seen as arising from the process of ‘functorializing’ Morita-equivalences
which express structural relationships between each pair of objects corre-
sponding to each other under the given duality or equivalence (cf. for ex-
ample [18], [21] and [22]). In fact, the theory of geometric morphisms
of toposes provides various natural ways of ‘functorializing’ bunches of
Morita-equivalences (cf. section 4.1).

• Different sites of definition for a given topos can be interpreted logically
as Morita-equivalences between different theories; in fact, the converse also
holds, in the sense that any Morita-equivalence gives canonically rise to two
different sites of definition of the common classifying topos. The represen-
tation theory of Grothendieck toposes in terms of sites and, more generally,
any technique that one may employ for obtaining a different site of definition
or representation for a given topos (such as, for instance, the Comparison
Lemma of [2]) thus constitutes a tool for generating Morita-equivalences.

• The usual notions of spectra for mathematical structures can be naturally
interpreted in terms of classifying toposes, and the resulting sheaf repre-
sentations as arising from Morita-equivalences between an ‘algebraic’ and
a ‘topological’ representation of such toposes. More specifically, Cole’s
general theory of spectra [33] (cf. also section 6.5 of [53] for a succinct
overview of this theory) is based on the construction of suitable classifying
toposes. Coste introduced in [37] alternative representations of such classi-
fying toposes, identifying in particular simple sets of conditions under which
they can be represented as toposes of sheaves on a topological space. He then
derived from the equivalence between two of these representations, one of
essentially algebraic nature and the other of topological nature, a criterion for
the canonical homomorphism from the given structure to the global sections
of the associated structure sheaf to be an isomorphism.

• The notion of Morita-equivalences materializes in many situations the in-
tuitive feeling of ‘looking at the same thing in different ways’, meaning,
for instance, describing the same structure(s) in different languages or con-
structing a given object in different ways. Concrete examples of this general
remark can be found for instance in [18] and [22], where the different con-
structions of the Zariski spectrum of a ring, of the Gelfand spectrum of a
C∗-algebra, and of the Stone-Cech compactification of a topological space
are interpreted as Morita-equivalences between different theories (cf. sec-
tions 4.1.1 and 4.1.4 below).
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• Different ways of looking at a given mathematical theory can often be for-
malized as Morita-equivalences. Indeed, different ways of describing the
structures axiomatized by a given theory can often give rise to a theory writ-
ten in a different language whose models (in any Grothendieck topos) can
be identified, in a natural way, with those of the former theory and which is
therefore Morita-equivalent to it.

• A geometric theory alone generates an infinite number of Morita-equiva-
lences, via its ‘internal dynamics’. In fact, any way of looking at a geometric
theory as an extension of a geometric theory written over its signature pro-
vides a different representation of its classifying topos, as a subtopos of the
classifying topos of the latter theory (cf. Theorem 2.5 below).

• Different separating sets of objects for a given topos give rise to different
sites of definition for it; indeed, for any separating set of objects C of a
Grothendieck topos, we have an equivalence E ' Sh(C, JE|C), where JE|C
is the Grothendieck topology on C induced by the canonical topology JE
on E. In particular, for any topological space X and any basis B for it, we
have an equivalence Sh(X) ' Sh(B, JSh(X)|B) (cf. sections 4.1.1 and 4.1.4
for examples of dualities arising from Morita-equivalences of this form in
which the induced topologies can be characterized intrinsically by means of
topos-theoretic invariants).

2.1.2 Arches of ‘bridges’: Site characterizations

As we remarked above, the ‘arches’ of topos-theoretic ‘bridges’ should be pro-
vided by site characterizations for topos-theoretic invariants, that is results con-
necting invariant properties (resp. constructions) on toposes and properties (resp.
constructions) of their sites of definition (written in their respective languages).

It thus becomes crucial to investigate the behaviour of topos-theoretic invari-
ants with respect to sites. As a matter of fact, such behaviour is often very natural,
in the sense that topos-theoretic invariants generally admit natural site characteriza-
tions. For instance, ‘if and only if’ characterizations for a wide class of geometric
invariants of toposes, notably including the property of a topos to be atomic (resp.
locally connected, localic, equivalent to a presheaf topos, compact, two-valued)
were obtained in [19] (cf. section 3.1 below).

On the other hand, it was shown in [23] that a wide class of logically-inspired
invariants of topos, obtained by interpreting first-order formulae written in the lan-
guage of Heyting algebras, admit elementary ‘if and only if’ site characterizations.
Moreover, as we shall see in section 3.1, several notable invariants of subtoposes
admit natural site chacterizations as well as explicit logical descriptions in terms
of the theories classified by them. Topos-theoretic invariants relevant in Algebraic
Geometry and Homotopy Theory, such as for example the cohomology and ho-
motopy groups of toposes, also admit, at least in many important cases, natural
characterizations in terms of sites.
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It should be noted that, whilst it is often possible to obtain, by using topos-
theoretic methods, site characterizations for topos-theoretic invariants holding for
large classes of sites, such criteria can be highly non-trivial as far as their math-
ematical depth is concerned (since the representation theory of toposes is by all
means a non-trivial subject). Therefore, when combined with specific Morita-
equivalences to form ‘bridges’, they can lead to deep results on the relevant the-
ories, especially when the given Morita-equivalence is a non-trivial one. These
insights can actually be quite surprising, when observed from a concrete point of
view (that is, from the point of view of the two theories related by the Morita-
equivalence), since a given topos-theoretic invariant may manifest itself in very
different ways in the context of different sites (cf. section 3.1 below).

The ‘centrality’ of topos-theoretic invariants in Mathematics is well illustrated
by the fact that, in spite of their apparent remoteness from the more ‘concrete’
objects of study in mathematics, once translated at the level of sites or theories, they
often specialize to construction of natural mathematical or logical interest. Besides
homotopy and cohomology groups of toposes, whose ‘concrete’ instantiations in
the context of topological spaces and schemes have been of central importance
in Topology and Algebraic Geometry throughout the last decades, a great deal of
other invariants, including those which might seem at first sight too abstract to be
connected to any problem of natural mathematical interest, can be profitably used
to shed light on classical theories. For example, even an abstract logically-inspired
construction such as the DeMorganization of a topos, introduced in [11] as the
largest dense subtopos of a given topos satisfying De Morgan’s law, was shown
in [12] to yield, when applied to a specific topos such as the classifying topos of
the coherent theory of fields, the classifying topos of a very natural mathematical
theory, namely the theory of fields of finite characteristic which are algebraic over
their prime fields. The author’s papers contain several other examples, some of
which will be presented below.

It should be noted that the arches of our ‘bridges’ need not necessarily be ‘sym-
metric’, that is arising from the instantiation in the context of two given sites of a
unique site characterization holding for both of them. As an example, take the
property of a topos to be coherent: this property does not admit an ‘elementary’ ‘if
and only if’ site characterization holding for all sites, but it admits such a site char-
acterization holding for all trivial sites (i.e. sites whose underlying Grothendieck
topology is trivial) and an implicative characterization of the kind ‘if a theory is
coherent, then its classifying topos is coherent’. These characterizations can for
instance be combined to obtain a ‘bridge’ yielding a result on coherent theories
classified by a presheaf topos.

The level of mathematical ‘depth’ of the results obtained by applying the ‘brid-
ge’ technique can vary enormously, depending on the complexity of the site char-
acterizations and of the given Morita-equivalence. Still, as we shall see at various
points of this text, even very simple invariants applied to easily established Morita-
equivalences can yield surprising insights which would be hardly attainable, or not
even imaginable, otherwise.
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Lastly, it is worth noting that sites are by no means the only mathematical ob-
jects that one can use for representing toposes. For instance, Grothendieck toposes
can be represented by using groupoids (either topological or localic) or quantales.
It clearly makes sense to apply the ‘bridge’ technique, described above for sites,
also in the case of these representations, replacing the site characterizations for the
given invariant with appropriate characterizations of it in terms of the mathematical
objects used for representing the relevant topos.

2.1.3 The flexibility of Logic: a two-level view

Logical theories are, in themselves, non-structured objects. Any formal expression
(independently of any consideration of truth or falsity) is an object of study of
Logic. It is therefore very easy to generate logical objects, in particular logical
theories: every family of axioms defines a theory.

So the mathematical ontology of logic is much larger than that of any other
field of mathematics. Nonetheless, the theory of classifying toposes allows one
to structurate any logical context in a maximal way: the classifying topos ET of
a geometric theory T is a topological object which embodies exactly the semantic
context of T and nothing else.

There is therefore a duality between

• the non-structured level of syntax: the theories T,

• the (categorically) structured level of semantics universally represented by
classifying toposes ET.

Modifying an algebraic structure is in general delicate. On the contrary, modi-
fying a logical theory by adding, removing or altering the axioms or some elements
of its language, is very easy.

So, there is a correspondence between logical notions and operations on the
one hand, and notions and operations on toposes on the other hand. This allows
one to exploit the flexibility of logic to fabricate structures satisfying a desired set
of properties.

For instance, as argued in [19] and [21], many structures presented by gener-
ators and relations can be built by using classifying toposes or relevant syntactic
categories embedding in them. In fact, we can informally regard the sorts and sym-
bols in the signature of the theory as defining the ‘generators’ and the axioms of the
theory as providing the ‘relations’. This intuition is actually made precise in [18],
where it is shown that any model of an ‘infinitary ordered Horn theory’ presented
by generators and relations can be built as the syntactic category of a S-theory (a
generalization of the notion of first-order theory introduced in [18], which involves
generalized connectives specified by a set S).

In [18] and [21] we built, following this approach, various kinds of preordered
structures presented by generators and relations, e.g. the free frame on a complete
join semilattice (this was a question posed by A. Döring), free Boolean algebras on
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distributive lattices, coherent posets, meet-semilattices or disjunctively distributive
lattices (as we shall see in section 4.1.3, these constructions play a crucial role in
the construction of Priestley-type dualities for this kind of structures). Indeed, for
these kind of structures theS-theories associated with them belongs to fragments of
geometric logic, so that the ‘bridge’ technique can be exploited in connection with
the existence of multiple representations of the correspoding classifying toposes
for finding concrete descriptions for poset structures presented by generators and
relations, a notoriously difficult problem which frequently arises in practice. See
section 4.1.1 below for some illustrations of this point.

More recently, in [3], we showed that Nori’s category of effective homological
motives can be constructed as the effectivization of the regular syntactic category
of a regular theory obtained by taking the set of regular sequents over a language
associated to Nori’s diagram which are satisfied by Betti homology. Actually, we
generalized Nori motives by constructing an abelian R-linear category associated
with any representation T : D → AR of a diagram D in the category AR of R-
modules (or more generally, in any abelian R-linear category AR) which satisfies a
universal property implying Nori’s one.

The first step in this construction consists in associating to the representation T
the so-called regular theory Th(T ) of T . The language LD of this theory consists in
sorts associated to the objects of the diagram, function symbols associated to the
arrows of the diagram as well as to the R-linear structure operations (addition and
multiplication by elements of R) and constants corresponding to the zero elements
of such module structures. The axioms of the theory consists of all the regular
sequences written over LD which are satisfied by the representation T .

The second step consists in associating to the regular theory of T its regular
syntactic category. This syntactic category is regular, as it is associated to a regular
theory, and it is additive and R-linear by construction, but it is not abelian as it lacks
quotients.

The third step consists in replacing this syntactic regular category by its effec-
tivization, a construction which formally adds quotients of equivalence relations in
a way which admits a fully explicit description. The resulting category, call it CTT ,
is abelian, R-linear and our representation T factors as the composite of an exact
and faithful functor FT : CTT → R-mod with the representation T̃ : D→ CTT cor-
responding to the ‘tautological’ model of T in CTT . This category notably satisfies
the universal ‘Nori-type’ factorisation property:

Theorem 2.2 (Theorem 2.5 [3]). Let R be a ring, D a diagram and T : D →
R-mod a representation. Then the category CTT is abelian and R-linear and, to-
gether with the representation T̃ and the functor FT defined above, satisfies the
following universal property: T = FT ◦ T̃ and this factorisation is universal in the
sense that for any factorisation T = F ◦ S , where F : A → R-mod is an exact
and faithful functor defined on an R-linear abelian category A and S : D → A
is a representation of D in A, there exists a unique exact (and faithful) functor
FS : CT → A such that the following diagram commutes:
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CT

D R-mod

A

T

S F
FT

FS

T̃

If R is Noetherian and T takes values in the category R-modf of finite-type
R-modules then FT takes values in R-modf as well.

The generality of this construction allows one to associate an R-linear abelian
category of “mixed motives” to any homology or cohomology functor with co-
efficients in a field or a ring which contains R. For instance, each of the usual
cohomology or homology theories, such as Betti, `-adic, p-adic, De Rham, gives
rise in this way to aQ-linear abelian category of mixed motives. The question thus
naturally arises as to under which conditions these categories are equivalent to each
other. The following result provides an answer to it:

Theorem 2.3. (i) Given two representations T : D → R-mod and T ′ : D′ →
R′-mod (or more generally, any pair of representations of diagrams in effec-
tive regular categories), the categories CTT and CTT ′ are equivalent if and
only if the theories Th(T ) and Th(T ′) are Morita-equivalent.

(ii) Let R be a ring, D a diagram and T,T ′ : D → R-mod representations of
D. Then we have an equivalence of categories ξ : CTT → CTT ′ making the
diagram

CTT

CTT ′D

T̃

T̃ ′

ξ

commute if and only if Th(T ) = Th(T ′), equivalently if and only if for any
tuples

〈s1, . . . , sk〉 : d1, . . . , dn, e1, . . . , em → c1, . . . , ck

and
〈s′1, . . . , s

′
k′〉 : d1, . . . , dn, a1, . . . , al → c′1, . . . , c

′
k′

of R-linear combinations of edges in D,

pT
~d,~e

(Ker(T (〈s1, . . . , sk〉)) ⊆ pT
~d,~a

(Ker(T (〈s′1, . . . , s
′
k′〉))
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as subobjects of T (d1) × · · · × T (dn) in R-mod if and only if

pT ′
~d,~e

(Ker(T ′(〈s1, . . . , sk〉)) ⊆ pT ′
~d,~a

(Ker(T ′(〈s′1, . . . , s
′
k′〉))

as subobjects of T ′(d1)× · · · ×T ′(dn) in R-mod (where the pT
~d,~e

, pT
~d,~a

, pT ′
~d,~e

and

pT ′
~d,~a

are the natural projection functors associated to forgetting the second
family of components).

This theorem has the following implications for motives:

Corollary 2.4 (cf. Corollary 3.6 [3]). Let K be an arbitrary base field and R = Q
as above. Let D be a diagram built starting from the category of finite-type schemes
over K (for instance, Nori’s diagram).

(i) Let T be a representation of D in the category of vector spaces over Q which
is induced by a cohomological functor with coefficients of characteristic 0
(Betti if K ⊆ C, De Rham if car (K) = 0, `-adic if ` , car (K), p-adic if
p = car (K), . . .).

Then T factors canonically and universally through the Q-abelian category
CTT and the Q-linear exact and faithful functor CTT → Q-vect.

(ii) Consider a family {T } of representations

T : D→ Q-vect

defined by “good” cohomological functors such as the above-mentioned ones.
Then the following conditions are equivalent:

• The cohomological functors T ∈ {T } factor through a category of mo-
tives in the usual sense, that is, there exists a Q-linear abelian category
M, endowed with a representation D → M, such that each T ∈ {T }
factors as the composite of D→M with an exact and faithful functor

M→ Q-vect .

• The categories CTT associated with the different T ∈ {T }, endowed with
the representation T̃ : D→ CTT , are equivalent.

• The regular theories TT of the representations T ∈ {T } are identical.

The above-mentioned corollary can be interpreted as follows: if (mixed) mo-
tives actually exist then they have a logical nature. Indeed, what the different co-
homological functors must have in common with each other in order for a category
of (mixed) motives (in Grothendieck’s sense) to exist is their associated regular
theories. If this is the case, the category of motives can be built from any of these
cohomological functors (independently from all the others).
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Note that the vanishing conditions of the spaces associated by T to a given
object of D or, more generally, the vanishing conditions of the subspaces defined
as the kernels of the homomorphisms associated by T to a linear combination of
composites of edges in D, for instance the subspaces Ker(T (P(u))) associated with
an endomorphism u and a polynomial P with coefficients in Q, are expressible in
regular logic over LD. On the other hand, regular logic is not strong enough for
saying anything on the dimensions of the spaces and subspaces over their natural
coefficient fields which vary. In fact, for investigating the problem of the “indepen-
dence from `” we have developed another framework based of full first-order logic
and atomic two-valued toposes (see section 3.3.3 below).

It is interesting to compare our construction of Nori-type categories via syntac-
tic categories with the Tannakian formalism on which the classical Nori construc-
tion is based. Nori’s original construction of a universal R-linear abelian category
associated with a representation T : D → R-modf of a diagram D in the category
of finite-type R-modules over a Noetherian ring R consists in taking the (filtered)
colimit

CT = colimF ⊆ D finite End(T |F)-modfin

over all the finite subdiagrams of D, with the canonical representation of D in it
given by:

d ; T (d)

and
( f : d → d′) ; T ( f ) : T (d)→ T (d′) .

If R is a field, this category is easily seen to be equivalent to the category
Comodfin(End∨(T ) of finite-dimensional comodules over the coalgebra End∨(T )
(recall that this coalgebra is defined in such a way that its dual can be identified
with the endomorphism algebra End(T ), but the dual of End(T ) does not necessar-
ily coincide with End∨(T ) unless the diagram D is finite). The canonical represen-
tation iD : D → Comodfin(End∨(T )) is given by the assignment d ; T (d), where
T (d) is endowed with the canonical structure of comodule over End∨(T ).

We thus obtain an equivalence of categories

χ : CTT → Comodfin(End∨(T ))

compatible with the canonical representations T̃ of D in the category CTT and iD

of D in the category Comodfin(End∨(T )):

CTT

Comodfin(End∨(T ))D

T̃

iD

χ
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This equivalence allows one in particular to get a very explicit concrete de-
scription of the objects and arrows of the category Comodfin(End∨(T )) in terms of
the objects and arrows coming from the diagram D under the representation iD. In-
deed, in [3] we obtain the following result: every object A of Comodfin(End∨(T ))
fits in an exact sequence

0→ K′ � K → A→ 0,

where K and K′ sit in a diagram of the form

Ker(iD(~t)) iD(a1) × · · · × iD(an) × iD(b1) × · · · × iD(bm) iD(d1) × · · · × iD(dr)

K′

K = Ker(iD(~s)) iD(a1) × · · · × iD(an) iD(c1) × · · · × iD(ck)

iD(~t)iD(~t)

iD(~s)

π

where all the objects ai, b j, cm, dl are in D and all the terms in ~s and in ~t are over
LD.

This improves a result of Arapura (Lemma 2.2.5 [1]) that every object of the
category Comodfin(End∨(T )) is a subquotient of a finite direct sum of objects of
the form iD(d) (for d ∈ D).

Another key feature of our logical approach to motives is that, unlike the Tan-
nakian approach which is intrinsically based on the linear nature of the objects
under consideration and on the finite dimensionality assumptions, it naturally gen-
eralizes to non-abelian settings: indeed, the R-linear abelian structure on our cat-
egory CTT is a byproduct of the fact that the signature of the theory CTT and its
axioms formalize the notion of R-linear structure on each sort; with a different
‘non-linear’ choice of the signature and the axioms of the theory, abelianity and
R-linearity are no longer ensured but the resulting category still satisfies the same
kind of universal property. Our logical approach via syntactic categories thus uni-
fies the linear with the non-linear, allowing one to pass from one to the other by
simply varying the choice of the signature and of the axioms of the theory.

2.1.4 The duality between real and imaginary

There is a precise logical sense in which sites (or mathematical theories viewed
as presentations) can be regarded as ‘real’ objects and the toposes naturally asso-
ciated to them as ‘imaginary’ objects; indeed, the topos of sheaves Sh(C, J) on a
site (C, J) is a mathematical universe which naturally completes C in a maximal
way: unlike C, Sh(C, J) always possesses arbitrary set-indexed limits and colimits,
exponentials and even a subobject classifier: the finite limits which exist in C are
preserved by the canonical functor C → Sh(C, J), and every J-covering family is
sent by this functor to an epimorphic family. Every object of the topos Sh(C, J)
is a ‘definable’ coproduct of objects coming from C, that is, an imaginary in the
model-theoretic sense. As when passing from the real line to the complex plane
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by means of the addition of the imaginary i one gains a much better understanding
of the symmetries of the solutions of polynomial equations even with real coef-
ficients, so passing from a site to the associated topos allows one to benefit from
the rich invariant theory for toposes and the possibility of effectively computing on
them, features which are unavailable in the context of sites.

In practice, the application of the technique of ‘toposes as bridges’ often pro-
ceeds as follows:

(1) One starts with an equivalence, a duality or an elementary correspondence
in the ‘real’ world of concrete mathematical theories (or of sites) and their set-based
models.

(2) One lifts this equivalence or correspondence to a Morita-equivalence in the
‘imaginary’ world of toposes

E � E′,

which usually means that the original equivalence or correspondence can be
deduced from E � E′ by means of the choice of a certain invariant, for instance
that of the points of the toposes.

(3) One considers other topos-theoretic invariants and calculates or expresses
them in terms of sites of theories of presentations of E and E′, thus obtaining other
equivalences, dualities or concrete correspondences. It turns out that these results
are usually surprising and, in general, cannot be directly deduced from the original
concrete equivalence or relation from which one had started. As an illustration
of this last remark, take the syntactic criterion for a theory T to be of presheaf
type (Theorem 3.3 below); this implies that the classifying topos Sh(CT, JT) of
T is equivalent to the topos [f.p.T-mod(Set),Set], which in turn implies, by an
application of the ‘bridge’ technique, the definability theorem for T (Theorem 2.15
below).

We can schematically represent this way of applying the ‘bridge’ technique in
the form of an ascent followed by a descent between two levels, the ‘real’ one of
concrete mathematics and the ‘imaginary’ one of toposes:
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Morita equivalence
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(often quite
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concrete results
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direct
deduction
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lifting
choice of invariants

for computation

Starting from a topos or a Morita-equivalence, the calculation or expression in
terms of sites or theories of presentation of topos-theoretic invariants is often tech-
nically non-trivial but feasible. On the contrary, trying to go in the other direction
from a very sophisticated concrete mathematical result to a Morita-equivalence
which could generate it is in general very difficult, if not impossible.

In other, more metaphorical, words, this methodology generates a ‘rain’ of
results falling in a territory surrounding a given problem whose essential aspects
have been encoded by means of suitable topos-theoretic invariants. It is difficult
to predict exactly where the single drops will fall, but, as the rain will eventually
cover more and more of the wet space, so the application of this methodology is
liable to bring a lot of concrete insights on aspects related to the original problem
which could eventually lead to its solution.

2.1.5 A theory of ‘structural translations’

The view underlying the methodology ‘toposes as bridges’ described above con-
sists in regarding a topos as an object which, together with all its different rep-
resentations, embodies a great amount of relationships existing between the dif-
ferent theories classified by it. Any topos-theoretic invariant behaves like a ‘pair
of glasses’ which allows one to discern certain information which is ‘hidden’ in
a given Morita-equivalence. Toposes can thus act as ‘universal translators’ across
different mathematical theories which share the same classifying topos (or which
have classifying toposes which are related to each other to the extent that suitable
invariants can be transferred from one to the other).

From a technical point of view, the main reason for the effectiveness of the
‘bridge’ technique is two-fold: on one hand, as we have argued in section 2.1.2,
topos-theoretic invariants usually manifest themselves in significantly different ways
in the context of different sites; on the other, due to the very well-behaved nature
of the representation theory of Grothendieck toposes in terms of sites, the site char-
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acterizations formally expressing such relationships are essentially canonical and
can often be derived by means of rather mechanical ‘calculations’.

Unlike the traditional, ‘dictionary-oriented’ method of translation based on a
‘renaming’, according to a given ‘dictionary’, of the primitive constituents of the
information as expressed in a given language, the ‘invariant-oriented’ translations
realized by topos-theoretic ‘bridges’ consist in ‘structural unravelings’ of appropri-
ate invariants across different representations of the toposes involved, rather than
through the use of an explicit description of the Morita-equivalence serving as
‘dictionary’. In fact, for the transfer of ‘global’ properties of toposes, it is only
the existence of a Morita-equivalence that really matters, rather than its explicit
description, since, by its very definition, a topos-theoretic invariant is stable un-
der any categorical equivalence. If one wants to establish more ‘specific’ results,
one can use invariant properties of objects of toposes rather than properties of the
whole topos, in which case an explicit description of the Morita-equivalence is of
course needed, but for investigating most of the ‘global’ properties of theories this
is not at all necessary.

We have already hinted above to the fact that there is an strong element of au-
tomatism implicit in the ‘bridge’ technique. In fact, in order to obtain insights on
the Morita-equivalence under consideration, in many cases one can just readily ap-
ply to it general characterizations connecting properties of sites and topos-theoretic
invariants. Still, the results generated in this way are in general non-trivial; in
some cases they can be rather ‘weird’ according to the usual mathematical stan-
dards (although they might still be quite deep) but, with a careful choice of Morita-
equivalences and invariants, one can easily get interesting and natural mathematical
results. In fact, a lot of information that is not visible with the usual ‘glasses’ is
revealed by the application of this machinery.

The range of applicability of the ‘bridge’ technique is very broad within math-
ematics, by the very generality of the notion of topos (and of that of geometric
theory). Through this method, results are generated transversally to the various
mathematical fields, in a ‘uniform’ way which is determined by the form of the
toposes involved and by the invariants considered on them. Notice that this way
of doing mathematics is inherently ‘upside-down’: instead of starting with sim-
ple ingredients and combining them to build more complicated structures, one
assumes as primitive ingredients rich and sophisticated (meta-)mathematical en-
tities, namely Morita-equivalences and topos-theoretic invariants, and proceeds to
extracting from them ‘concrete’ information relevant for classical mathematics.

2.2 Theories, Sites, Toposes

The research monograph Theories, Sites, Toposes: relating and studying mathe-
matical theories through topos-theoretic ‘bridges’ [8] (to appear for Oxford Uni-
versity Press) introduces a set of methods and techniques for studying mathe-
matical theories and relating them to each other through the use of Grothendieck
toposes. The theoretical development is complemented by a number of examples
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and applications in different mathematical areas which illustrate the wide-ranging
impact and benefits of a topos-theoretic outlook on Mathematics.

The contents of the different chapters can be briefly summarized as follows.
In Chapter 1 we provide the topos-theoretic background necessary for under-

standing the contents of the book. The presentation is self-contained and only
assumes a basic familiarity with the language of category theory. We start by
reviewing the basic theory of Grothendieck toposes, including the fundamental
equivalence between geometric morphisms and flat functors. We then present first-
order logic and its interpretation in categories having ‘enough’ structure. Lastly,
we discuss the key concept of syntactic category of a first-order theory, which is
used in Chapter 2 for constructing classifying toposes of geometric theories.

Chapter 2 consists of two parts. In the first part we review the fundamental
notion of classifying topos of a geometric theory and discuss the appropriate kinds
of interpretations between theories which induce morphisms between the associate
classifying toposes; the theoretical presentation is accompanied by a few concrete
examples of classifying toposes of theories naturally arising in Mathematics. We
also establish a characterization theorem for universal models of geometric theo-
ries inside classifying toposes. In the second part we explain the general unifying
technique ‘toposes as bridges’. This technique, which allows to extract ‘concrete’
information from the existence of different representations for the classifying topos
of a geometric theory, is systematically exploited in the course of the book to es-
tablish theoretical results as well as applications. The ‘decks’ of topos-theoretic
‘bridges’ are normally given by Morita-equivalences, while the ‘arches’ are given
by site characterizations of topos-theoretic invariants.

In Chapter 3 we establish a duality theorem providing, for each geometric the-
ory, a natural bijection between its geometric theory extensions (also called ‘quo-
tients’) and the subtoposes of its classifying topos:

Theorem 2.5. LetT be a geometric theory over a signature Σ. Then the assignment
sending a quotient of T to its classifying topos defines a bijection between the
quotients of T (up to syntactic equivalence) and the subtoposes of the classifying
topos Set[T] of T.

We provide two different proofs of this theorem, one relying on the theory
of classifying toposes and the other, of purely syntactic nature, based on a proof-
theoretic interpretation of the notion of Grothendieck topology. More specifically,
we establish a proof-theoretic equivalence between the classical system of geo-
metric logic over a geometric theory T and a new proof system for sieves in the
geometric syntactic category CT of T whose inference rules are given by the pull-
back stability and transitivity rules for Grothendieck topologies. This equivalence
is interesting since the latter proof system turns out to be computationally better-
behaved than the former; indeed, checking that a sieve belongs to the Grothendieck
topology generated by a given family of sieves is often technically easier than prov-
ing that a geometric sequent is provable in a given theory. This equivalence of de-
duction systems can therefore be used for shedding light on axiomatization prob-
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lems for geometric theories. We use it in particular for proving a deduction theorem
for geometric logic, which we obtain by means of a calculation on Grothendieck
topologies.

In Chapter 4, by using the duality theorem established in Chapter 3, we transfer
many ideas and concepts of elementary topos theory to geometric logic. Specif-
ically, we analyze notions such as the coHeyting algebra structure on the lat-
tice of subtoposes of a given topos, open, closed, quasi-closed subtoposes, the
dense-closed factorization of a geometric inclusion, coherent subtoposes, subto-
poses with enough points, the surjection-inclusion factorization of a geometric
morphism, skeletal inclusions, atoms in the lattice of subtoposes of a given topos,
the Booleanization and DeMorganization of a topos. We also obtain explicit de-
scriptions of the Heyting operation between Grothendieck topologies on a given
category and of the Grothendieck topology generated by a given collection of
sieves, and we establish a number of results about the problem of ‘relativizing’
a local operator with respect to a given subtopos.

It turns out that the logical notions arising by translating across this duality
notable concepts and constructions in topos theory are of natural mathematical in-
terest. For instance, the collection of (syntactic equivalence classes of) quotients of
a given geometric theory has the structure of a lattice (in fact, a Heyting algebra)
with respect to a natural notion of ordering of theories, while open (respectively,
closed) subtoposes correspond via the duality to quotients obtained by adding se-
quents of the form (> `[] φ) (respectively, (φ `[] ⊥)), where φ is a geometric
sentence over the signature of the theory. Also, the surjection-inclusion factoriza-
tion of a geometric morphism has a natural semantic interpretation (in terms of the
geometric theory Th(M) of a given model M, i.e. of the theory consisting of all the
geometric sequents which are satisfied in M):
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Theorem 2.6. Let T be a geometric theory over a signature Σ and f : F → E
be a geometric morphism into the classifying topos E for T, corresponding to a
T-model M in F via the universal property of the classifying topos of T. Then the
topos E′ in the surjection-inclusion factorization F � E′ ↪→ E of f classifies the
quotient Th(M) of T via Theorem 2.5.

Subtoposes obtained by topos-theoretic constructions such as the Booleaniza-
tion or DeMorganization of a topos have natural logical counterparts as well (cf.
section 3.3.1), which often specialize, in the case of important mathematical theo-
ries, to ‘quotients’ of genuine mathematical interest; for example, the Booleaniza-
tion of the theory of linear orders is the theory of dense linear orders without end-
points (cf. section 3.3.1), the DeMorganization of the (coherent) theory of fields is
the geometric theory of fields of finite characteristic in which every element is al-
gebraic over the prime field (cf. [12]), the Booleanization of the (coherent) theory
of fields is the theory of algebraically closed fields of finite characteristic in which
every element is algebraic over the prime field (cf. [12]).

Chapter 5 is devoted to flat functors in relation to classifying toposes. In the
first section we establish some general results about colimits of internal diagrams
in toposes, in the second we develop a general theory of extensions of flat func-
tors along geometric morphisms of toposes, and in the third we discuss, following
[9], a way of representing flat functors by using a suitable internalized version of
the Yoneda lemma. These general results will be instrumental for establishing in
Chapter 6 the main characterization theorem for theories of presheaf type.

Theories of presheaf type occupy a central role in Topos Theory for a number
of reasons:

• Every small category C can be seen, up to Cauchy-completion, as the cate-
gory of finitely presentable models of a theory of presheaf type (namely, the
theory of flat functors on Cop).

• As every Grothendieck topos is a subtopos of some presheaf topos, so every
geometric theory is a quotient of some theory of presheaf type (cf. Theorem
2.5).

• Every finitary algebraic theory (and more generally, any cartesian theory) is
of presheaf type.

• The class of theories of presheaf type contains, besides all cartesian theories,
many other interesting mathematical theories pertaining to different fields of
mathematics (for instance, the coherent theory of linear orders or the geo-
metric theory of algebraic extensions of a given field, cf. Chapter 9).

• The ‘bridge technique’ of Chapter 2 can be fruitfully applied in the context of
theories of presheaf type due to the fact that the classifying topos of any such
theory admits (at least) two quite different representations, one of semantic
nature (namely, set-valued functors on the category of finitely presentable
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models of the theory) and one of syntactic nature (namely, sheaves on the
syntactic site of the theory).

The subject of theories of presheaf type has a long history, starting with the
book [48] by Hakim, which first introduced the point of view of classifying toposes
in the context of the theory of commutative rings with unit and its quotients. The
subsequent pionereeing work [57] by Lawvere led to the discovery that any fini-
tary algebraic theory is of presheaf type, classified by the topos of presheaves on
the opposite of its category of finitely presentable models (cf. [55]). This result
was later generalized to cartesian (or essentially algebraic) theories as well as to
universal Horn theories (cf. [6]). At the same time, new examples of non-cartesian
theories of presheaf type were discovered (cf. for instance [5] for a long, but by no
means exhaustive, list of examples), and partial results in connection to the prob-
lem of characterizing the class of theories of presheaf type emerged; for instance,
[52], [5] and [74] contain different sets of sufficient conditions for a theory to be
of presheaf type.

In Chapter 6 we carry out a systematic investigation of the class of theories
of presheaf type (i.e., classified by a presheaf topos). After establishing a number
of general results about them, notably including a definability theorem (cf. Theo-
rem 2.15 below), we prove a fully constructive characterization theorem providing
necessary and sufficient conditions for a theory to be of presheaf type, expressed
in terms of the models of the theory in arbitrary Grothendieck toposes. This the-
orem, whose general statement is quite abstract, admits several ramifications and
simpler corollaries which can be effectively applied in practice to test whether a
given theory is classified by a presheaf topos as well as for generating new exam-
ples of theories of presheaf type. It also subsumes all the above-mentioned results
previously obtained on this topic.

In Chapter 7 we introduce the concept of expansion of a geometric theory and
develop some basic theory about it. An expansion of a geometric theory T over
a signature Σ is a geometric theory obtained from T by adding sorts, relation or
function symbols to Σ and geometric axioms over the resulting extended signature.
For any expansion T′ of a geometric theory T, there is a canonical induced mor-
phism of classifying toposes pT

′

T : Set[T′] → Set[T]. We prove in particular the
following

Theorem 2.7. (i) Let p : E → Set[T] be a geometric morphism to the classify-
ing topos of a geometric theory T. Then p is, up to isomorphism, of the form
pT
′

T for some geometric expansion T′ of T.

(ii) The hyperconnected-localic factorization of the geometric morphism pT
′

T :
Set[T′] → Set[T] is given by pT

′′

T ◦ pT
′

T′′ , where T′′ is the intermediate ex-
pansion of T obtained by adding to the signature Σ of T no new sorts and a
relation symbol for each (T′-provable class of) geometric formula over the
signature of T′ in a context only involving the sorts of Σ, and all the sequents
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over this extended signature which are provable in T′ (where T′ is identified
with its expansion with these additional definable relation symbols).

This shows that an important geometric topos-theoretic construction such as
the hyperconnected-localic factorization has a very natural logical counterpart.

We then investigate the preservation, by ‘faithful interpretations’ of theories,
of each of the conditions in the characterization theorem for theories of presheaf
type established in Chapter 6, obtaining results of the form ‘under appropriate con-
ditions, a geometric theory in which a theory of presheaf type faithfully interprets
is again of presheaf type’. In this context, we also investigate the possibility of
expanding a given geometric theory T to a theory of presheaf type classified by the
topos [f.p.T-mod(Set),Set]; these techniques are applied in particular in [29] (cf.
section 3.3.3 below). In passing, we establish the following criterion for a theory
to be of presheaf type:

Theorem 2.8. Let T be a geometric theory over a signature Σ. Then T is of
presheaf type if and only if the following conditions are satisfied:

(i) Every finitely presentable model is presented by a geometric formula over Σ.

(ii) Every property of finite tuples of elements of a finitely presentable T-model
which is preserved by T-model homomorphisms is definable (in finitely pre-
sentable T-models) by a geometric formula over Σ.

(iii) The finitely presentable T-models are jointly conservative for T.

In Chapter 8 we study the quotients of a given theory of presheaf type by means
of Grothendieck topologies that can be naturally attached to them, establishing a
‘semantic’ representation for the classifying topos of such a quotient as a subtopos
of the classifying topos of the given theory of presheaf type. More specifically, we
prove the following

Theorem 2.9. Let T′ be a quotient of a theory of presheaf type T. Then the subto-
pos of the classifying topos of T corresponding to T′ via the duality of Theorem
2.5 can be identified with the subtopos

Sh(f.p.T-mod(Set)op, J) ' [f.p.T-mod(Set),Set],

where the Grothendieck topology J is defined as follows. If T′ is obtained from T
by adding axioms σ of the form (φ `~x ∨

i∈I
(∃~yi)θi), where, for any i ∈ I, [θi] : {~yi .

ψ} → {~x . φ} is an arrow in CT and φ(~x), ψ(~yi) are formulae presenting respectively
T-models M{~x.φ} and M{~yi.ψi} (note that, by Theorems 2.5 and 3.3, every quotient of
T has an axiomatization of this kind) then J is generated by the sieves S σ on M{~x.φ}
in the category f.p.T-mod(Set) generated by the arrows si defined as follows: for
each i ∈ I, [[θi]]M{~yi .ψi}

is the graph of a morphism [[~yi . ψi]]M{~yi .ψi}
→ [[~x . φ]]M{~yi .ψi}

;
then the image of the generators of M{~yi.ψi} via this morphism is an element of
[[~x . φ]]M{~yi .ψi}

and this in turn determines, by definition of M{~x.φ}, a unique arrow
si : M{~x.φ} → M{~yi.ψi} in T-mod(Set).
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We also show that the models of T′ can be characterized among the models of
T as those which satisfy a key property of J-homogeneity; this is a notion which
specializes, if J is the atomic topology, to the notion of (weakly) homogeneous
model in classical Model Theory (cf. section 3.3.1 below).

Theorem 2.9 is also useful for proof-theoretic purposes since it allows one to
reformulate conditions of provability of geometric sequents over the signature of
T in a quotient of T in terms of the condition that the sieves corresponding to them
belong to the Grothendieck topology associated with the given quotient. It turns
out that calculations are generally much easier with Grothendieck topologies than
with Hilbert-style axiomatizations; as an illustration of this remark, we compute in
a section of Chapter 8 an explicit axiomatization for the meet of two quotients of
the theory of commutative rings with unit (in the sense of Chapter 4): the theory of
local rings and that of integral domains.

Always in this chapter, we identify a number of sufficient conditions for the
quotient of a theory of presheaf type to be again of presheaf type, including a
finality property of the category of models of the quotient with respect to the cate-
gory of models of the theory, and a rigidity property of the Grothendieck topology
associated with the quotient. Among these results, we mention in particular the
following

Theorem 2.10. Let T be a theory of presheaf type and A a full subcategory of
f.p.T-mod(Set). Then the theory TA of T consisting of all the geometric sequents
over the signature of T which are valid in all models in A is of presheaf type
classified by the topos [A,Set]; in particular, every finitely presentable TA-model
is a retract of a model inA.

This theorem arises from the following ‘bridge’:

[f.p.T-mod(Set),Set] ' Sh(CT, JT)

��

[A,Set]
?�

OO

' Sh(CTA , JTA)
?�

OO

A� _

��

T
��

66

f.p.T-mod(Set) TA

This result turns out to be very useful for identifying new theories are of
presheaf type; moreover, under some natural assumptions that are frequently veri-
fied in practice, it is shown in Chapter 8 that one can give an explicit axiomatization
of the theory TA. More specifically, the following result holds:

Theorem 2.11. Let T be a theory of presheaf type and K a full subcategory of
the category set-based T-models such that every T-model in K is both finitely
presentable and finitely generated (with respect to the same generators). Then the
following sequents, where we denote by P the set of (representatives of) geometric
formulae over Σ which present a T-model in K , added to the axioms of T, yield an
axiomatization of the theory TK of Theorem 2.10:
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(i) the sequent
(> `[]

∨
φ(~x)∈P

(∃~x)φ(~x));

(ii) for any formulae φ(~x) and ψ(~y) in P, where ~x = (xA1
1 , . . . , xAn

n ) and ~y =

(yB1
1 , . . . , yBm

m ), the sequent

(φ(~x)∧ψ(~y) `~x,~y
∨

χ(~z)∈P,tA1
1 (~z),...,tAn

n (~z)

sB1
1 (~z),...,sBm

m (~z)

(∃~z)(χ(~z) ∧
∧

i∈{1,...,n},
j∈{1,...,m}

(xi = ti(~z) ∧ y j = s j(~z)))),

where the disjunction is taken over all the formulae χ(~z) in P and all the
tuples of terms tA1

1 (~z), . . . , tAn
n (~z) and sB1

1 (~z), . . . , sBm
m (~z) such that

(tA1
1 ( ~ξχ), . . . , tAn

n ( ~ξχ)) ∈ [[~x . φ]]M{~z.χ}

and
(sB1

1 ( ~ξχ), . . . , sBm
m ( ~ξχ)) ∈ [[~y . ψ]]M{~z.χ} ;

(iii) for any formulae φ(~x) and ψ(~y) in P, where ~x = (xA1
1 , . . . , xAn

n ) and ~y =

(yB1
1 , . . . , yBm

m ), and any terms tA1
1 (~y), sA1

1 (~y), . . . , tAn
n (~y), sAn

n (~y), the sequent

(
∧

i∈{1,...,n}

(ti(~y) = si(~y)) ∧ φ(t1/x1, . . . , tn/xn) ∧ φ(s1/x1, . . . , sn/xn) ∧ ψ(~y)

`~y

∨
χ(~z)∈P,uB1

1 (~z),...,uBm
m (~z)

((∃~z)(χ(~z) ∧
∧

j∈{1,...,m}

(y j = u j(~z))),

where the disjunction is taken over all the formulae χ(~z) in P and all the
sequences of terms uB1

1 (~z), . . . , uBm
m (~z) such that (uB1

1 ( ~ξχ), . . . , uBm
m ( ~ξχ)) ∈ [[~y .

ψ]]M{~z.χ} and ti(u1( ~ξχ), . . . , um( ~ξχ)) = si(u1( ~ξχ), . . . , um( ~ξχ)) in M{~z.χ} for all
i ∈ {1, . . . , n};

(iv) for any sort A over Σ, the sequent

(> `xA

∨
χ(~z)∈P,tA(~z)

(∃~z)(χ(~z) ∧ x = t(~z))),

where the the disjunction is taken over all the formulae χ(~z) in P and all the
terms tA(~z);

(v) for any sort A over Σ, any formulae φ(~x) and ψ(~y) inP, where ~x = (xA1
1 , . . . , xAn

n )
and ~y = (yB1

1 , . . . , yBm
m ), and any terms tA(~x) and sA(~y), the sequent

28



(φ(~x) ∧ ψ(~y) ∧ t(~x) = s(~y) `~x,~y
∨

χ(~z)∈P,pA1
1 (~z),...,pAn

n (~z)

qB1
1 (~z),...,qBm

m (~z)

(∃~z)(χ(~z)∧

∧
∧

i∈{1,...,n},
j∈{1,...,m}

(xi = pi(~z) ∧ y j = q j(~z))),

where the disjunction is taken over all the formulae χ(~z) in P and all the
tuples of terms pA1

1 (~z), . . . , pAn
n (~z) and qB1

1 (~z), . . . , qBm
m (~z) such that

(pA1
1 ( ~ξχ), . . . , pAn

n ( ~ξχ)) ∈ [[~x . φ]]M{~z.χ} ,

(qB1
1 ( ~ξχ), . . . , qBm

m ( ~ξχ)) ∈ [[~y . ψ]]M{~z.χ}

and
t(p1( ~ξχ), . . . , pn( ~ξχ)) = s(q1( ~ξχ), . . . , qm( ~ξχ))

in M{~z.χ}.

As we shall see in section 4.3.3, these results have been applied in [24] to
describe geometric theories classified by Connes’ cyclic topos (cf. [34]), Connes-
Consani’s epicyclic topos (cf. [35]) and Connes-Consani’s arithmetic topos (cf.
[36]). They have also been applied in [27] to obtain a simple axiomatization for
the geometric theory of finite MV-chains (cf. section 4.3.2 below).

Another result from Chapter 8, which we apply in [27] (cf. section 4.3.2 be-
low), reads as follows. Recall that a Grothendieck topology on a small category
C is said to be rigid if every object of C has a J-covering sieve generated by J-
irreducible objects (i.e., by objects not admitting any non-trivial J-covering sieves).

Theorem 2.12. Let T′ be a quotient of a theory of presheaf type T corresponding
to a Grothendieck topology J on the category f.p.T-mod(Set)op under the duality
of Theorem 2.5. Suppose that T′ is itself of presheaf type. Then every finitely
presentable T′-model is finitely presentable also as a T-model if and only if the
topology J is rigid.

This theorem arises from the following ‘bridge’:

included in f.p.T-mod(Set)

f.p.T′-mod(Set)

[f.p.T′-mod(Set),Set] ' Sh(f.p.T-mod(Set)op, J) ↪→ [f.p.T-mod(Set),Set]
essential geometric inclusion

J
rigid
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Chapter 8 also contains a number of results on classifying toposes of quotients
with enough set-based models, and establish, for any such quotient, a characteri-
zation of the Grothendieck topology corresponding to it in terms of its category of
set-based models. We also discuss coherent quotients and the Grothendieck topolo-
gies which correspond to them when considered as quotients of a cartesian theory,
namely the finite-type ones, and show that the lattice operations on Grothendieck
topologies naturally restrict to the collection of finite-type ones.

In Chapter 9 we discuss some classical, as well as new, examples of theories of
presheaf type from the perspective of the theory developed in the previous chapters.
We revisit in particular well-known examples of theories of presheaf type, such as
the theory of intervals and the geometric theory of finite sets, and introduce new
ones, including the theory of algebraic extensions of a given field, the theory of lo-
cally finite groups, the theory of vector spaces with linear independence predicates
and the theory of lattice-ordered abelian groups with strong unit.

In Chapter 10 we describe some applications of the theory developed in the pre-
vious chapters in a variety of different mathematical contexts. The main methodol-
ogy that we use to generate such applications is the ‘bridge technique’. We discuss
in particular restrictions of Morita-equivalences to quotients of the two theories
involved, give a solution to a problem of Lawvere concerning the boundary op-
erator on subtoposes, establish syntax-semantics ‘bridges’ for quotients of theo-
ries of presheaf type, present topos-theoretic interpretations and generalizations of
Fraïssé’s theorem in Model Theory on countably categorical theories and of topo-
logical Galois theory (cf. sections 3.3.1 and 3.3.2), develop a notion of maximal
spectrum of a commutative ring with unit (cf. section 4.1.4) and investigate com-
pactness conditions for geometric theories allowing one to identify theories lying
in smaller fragments of geometric logic.

2.3 Universal models and classifying toposes

It is natural to wonder what are the key features which characterize universal mod-
els of geometric theories inside their classifying toposes among all the models of
the theory.

As classifying toposes, universal models appear in different guises, so it is
important to dispose of effective criteria for identifying them and hence to use
them for establishing results about the given geometric theory. For example, if T is
a theory of presheaf type then one can explicitly describe a universal model lying
in its classifying topos [f.p.T-mod(Set),Set], as follows.

Theorem 2.13 (Theorem 3.1 [14]). Let T be a theory of presheaf type over a
signature Σ. Then the Σ-structure NT in [f.p.T-mod(Set),Set] which assigns to
a sort A the functor NTA given by (NTA)(M) = MA, to a function symbol f :
A1 · · · An→ B the morphism NTA1× · · ·×NTAn → NTB given by (NT f )(M) = M f
and to a relation symbol R � A1 · · · An the subobject NTR � NTA1 × · · · × NTAn

given by (NTR)(M) = MR (for any M ∈ f.p.T-mod(Set)) is a universal model for
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T; moreover, for any geometric formula φ(~x) over Σ, the interpretation [[~x . φ]]NT

of φ(~x) in NT is given by [[~x . φ]]NT(M) = [[~x . φ]]M for any M ∈ f.p.T-mod(Set).
In particular, the finitely presentable T-models are jointly conservative for T.

As shown by the following theorem, universal models of geometric theories
enjoy a strong form of logical completeness.

Theorem 2.14 (Theorem 2.2 [14]). Let T be a geometric theory over a signature
Σ and U a universal model of T in a Grothendieck topos E. Then

(i) For any subobject S � UA1×· · ·×UAn in E, there exists a geometric formula
φ(~x) = φ(xA1

1 , . . . , xAn
n ) over Σ such that S = [[~x . φ]]U .

(ii) For any arrow f : [[~x . φ]]U → [[~y . ψ]]U in E, where φ(~x) and ψ(~y) are
geometric formulae over Σ, there exists a geometric formula θ(~x, ~y) over Σ

such that the sequents (φ `~x (∃y)θ), (θ `~x,~y φ∧ψ) and (θ∧θ[~y′/~y] `~x,~y,~y′ ~y = ~y′)
are provable in T and [[~x, ~y . θ]]U is the graph of f .

Combined with Theorem 2.13, this theorem gives the following definability
theorem for theories of presheaf type.

Theorem 2.15 (Corollary 3.2 [14]). Let T be a theory of presheaf type and suppose
that we are given, for every finitely presentable set-based model M of T, a subset
RM of Mn in such a way that every T-model homomorphism h : M → N maps RM

into RN . Then there exists a geometric formula-in-context φ(x1, . . . , xn) such that
RM = [[~x . φ]]M for each finitely presentable T-model M.

Indeed, the theorem arises from the following ‘bridge’:

S ubob ject o f UA1×···×UAn

[f.p.T-mod(Set),Set] ' Sh(CT, JT)

f.p.T-mod(Set)op

Functorial (covariant) assignment
M→RM⊆MA1×···×MAn

(
CT, JT)

Geometric f ormula
φ(xA1

1 ,...,xAn
n )

(where U is ‘the’ universal model of T in its classifying topos).
Notice that this theorem, which applies in particular to every finitary alge-

braic theory, is by no means straightforward, not even for one particular theory
of presheaf type. Whilst our method of proof based on the double representation,
semantic and syntactic, of the classifying topos of a theory of presheaf type is very
simple and natural, it seems impossible to give a proof without using toposes.

In [14] we also show that associated sheaf functors preserve universal mod-
els, from which it follows that a universal model LT′ of a quotient T′ of a the-
ory of presheaf type T with associated Grothendieck topology J on the category
f.p.T-mod(Set)op is the image under the associated sheaf functor

[f.p.T-mod(Set),Set]→ Sh(f.p.T-mod(Set)op, J)
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of the universal model NT of Theorem 2.13. Such an explicit description is par-
ticularly useful in the case where J is subcanonical and for each sort A over the
signature of T, the formula {xA . >} presents a T-model PA. Indeed, under these
hypotheses the representable Homf.p.T-mod(Set)(PA,−) is a J-sheaf and hence it co-
incides with LT′A. Since the inclusion

Sh(f.p.T-mod(Set)op, J) ↪→ [f.p.T-mod(Set),Set]

preserves finite limits, it follows that every cartesian sequent over the signature of
T which is provable in T′ is provable in T. So we have the following

Proposition 2.16. Let T be a theory of presheaf type such that for any sort A over
its signature the free model on the sort A exists (for instance, a cartesian theory).
If the Grothendieck topology J on f.p.T-mod(Set)op associated with a quotient T′
of T is subcanonical then the cartesianizations of T and T′ coincide.

This result, which is purely constructive, was applied in [27] to prove that
the theory of a Komori variety V is the cartesianization (i.e., the set of cartesian
sequents which are provable in the theory) of the theory of local MV-algebras in V
(cf. Proposition 5.6 [27]). Such a property normally arises when there is a sheaf
representation of models of T as global sections of sheaves of models of T′ (in the
sense that all the stalks are models of T′). What is remarkable about our result
is, besides its constructive nature, the fact that it does not require the existence of
any ‘concrete’ representation of models of T in terms of models of T′; it lies at
an higher level of abstraction. This is another illustration of the fact that the deep
relations between different theories naturally live inside the ‘imaginary’ entities
attached to them such as their classifying toposes and cannot often be contemplated
concretely.

The paper [14] also contains many other results and a discussion of how to use
universal models to investigate issues of definability by geometric formulae and of
satisfiability of the law of excluded middle and De Morgan’s law on Grothendieck
toposes. These latter laws involve the operation of Heyting negation ¬ in a topos
(recall that the Heyting negation ¬m of a subobject m : a → b is the biggest sub-
object of b which is disjoint from m); indeed, the first amounts to the requirement
that for any subobject m, m ∨ ¬m = 1 while the second to the weaker condition
¬m ∨ ¬¬m = 1.

As an illustration of the significance of this operation in toposes, consider the
two properties of an element of a commutative ring with unit φ1 to be invertible
and φ2 to be nilpotent. We prove in [14] (Proposition 7.1) that these properties are
orthogonal to each other in the classifying topos of the theory Tn of non-trivial
commutative rings with unit, in the sense that ¬φ1 = φ2 and ¬φ2 = φ1 in the uni-
versal model of Tn in its classifying topos. This fact, besides being conceptually
pleasing as it formalizes the vague intuition of orthogonality that one might have
regarding these properties in relation to one another, has various technical implica-
tions. To give an example, we recall the following
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Proposition 2.17 (Proposition 6.6. [14]). Let T be a theory of presheaf type
with universal model NT in [f.p.T-mod(Set),Set] as in Theorem 2.13 and J a
Grothendieck topology on the category f.p.T-mod(Set)op such that every J-covering
sieve is non-empty. Then for any geometric formula φ(xA1

1 , . . . , xAn
n ) with the prop-

erty that there exists a subobject E of NTA1×· · ·×NTAn such that [[~x . φ]]NT = ¬E,
we have that for any M ∈ f.p.T-mod(Set) and ~a ∈ MA1 × · · · × MAn, if { f : M →
N in f.p.T-mod(Set) | f (~a) ∈ [[~x . φ]]N} ∈ J(M) then ~a ∈ [[~x . φ]]M.

This proposition can be applied for instance to the big Zariski site, taking
T to be the theory of non-trivial commutative rings with unit and J to be the
Grothendieck topology on the opposite of the category of non-trivial finitely gen-
erated rings induced by the Zariski topology, for establishing the locality of prop-
erties φ satisfying the hypotheses of the proposition, i.e. the property that if φ is
satisfied by the images of an element a under the localization maps A → A[si

−1]
for a set of elements s1, . . . , sn such that (s1, . . . , sn) = 1 then it is satisfied by a.

For example, by observing that the properties φ1 and φ2 are orthogonal to each
other and hence that each of them satisfies the hypothesis of the proposition, one
recovers at once the following well-known algebraic results: for any set {s1, . . . , sn}

of non-nilpotent elements of A which is not contained in any proper ideal of A, for
any a ∈ A, a is invertible (resp. nilpotent) in A if and only if for each i = 1, . . . , n,
the image of a in A[si

−1] is invertible (resp. nilpotent). These algebraic facts
can of course also be proved ‘concretely’ by using algebraic manipulation, but
our proposition is conceptually transparent and, because of its generality, it can be
applied to treat a great variety of other problems which might otherwise seem to
be unrelated to each other.

Another formal consequence of the orthogonality between φ1 and φ2 is the fact
that the property of an element of a (finitely generated) commutative ring with unit
to be neither invertible nor nilpotent is not definable by a geometric formula over
the signature of this theory.

Let us now turn to the problem of intrinsically characterizing the pairs (E,U)
such that E is the classifying topos of a theory T and U is a universal model of T
in E.

Given a geometric theory T, one can give conditions on a pair (E,M) consisting
of a Grothendieck topos E and a model M of T in E for E to be a classifying topos
for E and M to be a universal T-model in it.

Theorem 2.18. [8] Let T be a geometric theory, E a Grothendieck topos and M a
model of T in E. Then E is a classifying topos for T and M is a universal model
for T if and only if the following conditions are satisfied:

(i) The family F of objects which can be built from the interpretations in M of
the sorts, function symbols and relation symbols over the signature of T by
using geometric logic constructions (i.e. the objects given by the domains
of the interpretations in M of geometric formulae over the signature of T) is
separating for E.

33



(ii) The model M is conservative for T; that is, for any geometric sequent σ over
the signature of T, σ is valid in M if and only if it is provable in T.

(iii) Any arrow k in E between objects A and B in the family F of point (i) is
definable; that is, if A (resp. B) is equal to the interpretation of a geometric
formula φ(~x) (resp. ψ(~y)) over the signature of T, there exists a T-provably
functional formula θ from φ(~x) to ψ(~x) such that the interpretation of θ in M
is equal to the graph of k.

As it can be expected, Theorem 2.18 can be applied in a variety of different
situations. For instance, in [8], it was used in combination with Theorem 2.13 to
derive the following criterion for a theory to be of presheaf type:

Theorem 2.19. Let T be a geometric theory over a signature Σ. Then T is of
presheaf type if and only if the following conditions are satisfied:

(i) Every finitely presentable model is presented by a geometric formula over Σ.

(ii) Every property of finite tuples of elements of a finitely presentable T-model
which is preserved by T-model homomorphisms is definable (in finitely pre-
sentable T-models) by a geometric formula over Σ.

(iii) The finitely presentable T-models are jointly conservative for T.

The following characterization theorem for geometric logic provides necessary
and sufficient conditions for a class of structures inside Grothendieck toposes to be
the class of models of a geometric theory.

Theorem 2.20 (cf. Theorem 2 [16]). Let Σ be a first-order signature and S a
collection of Σ-structures in Grothendieck toposes closed under isomorphisms of
structures. Then S is the collection of all models in Grothendieck toposes of a
geometric theory over Σ if and only if it satisfies the following two conditions:

(i) for any geometric morphism f : F → E, if M ∈ Σ-str(E) is in S then f ∗(M)
is in S;

(ii) for any (set-indexed) jointly surjective family { fi : Ei → E | i ∈ I} of geometric
morphisms and any Σ-structure M in E, if f ∗i (M) is in S for every i ∈ I then
M is in S.

If S is the class of models of an infinitary first-order theory T then condition
(ii) of the theorem can be replaced by the following simpler condition: for any
surjective geometric morphism f : F → E and any Σ-structure M in E, if f ∗(M) is
in S then M is in S. This proves a conjecture of I. Moerdijk.
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3 Theory and applications of toposes as ‘bridges’

3.1 Characterization of topos-theoretic invariants

One of the main parts of the ‘bridge’ technique described in section 2.1 consists in
the characterization of topos-theoretic invariants in terms of sites of definition for
toposes. In [15], [19] and [23] we have analyzed the behaviour of different kinds
of notable invariants in terms of sites, obtaining natural site characterizations for
them. It turns out that both topologically inspired invariants (such as the property of
a topos to be atomic, locally connected, connected and locally connected, compact,
equivalent to a presheaf topos) and logically inspired ones (such as the property of
a topos to be Boolean, to satisfy De Morgan’s law or other intermediate logics)
admit natural site characterizations of the kind ‘A topos Sh(C, J) satisfies the given
invariant I if and only if the site (C, J) satisfies a given property P(C,J) (expressible
without any reference to sheaves)’, holding for all sites (C, J) or for large classes
of them. Such characterizations are technically elaborated but, as shown in these
papers, the calculations leading to them are feasible in practice and, in some cases,
even ‘automatic’, in the sense that one can design general methodologies work-
ing for large classes of invariants which can be implemented for carrying them
out. More specifically, we showed in [23] that the property of satisfaction of any
first-order sentence in the theory of Heyting algebra yields, when applied to the in-
ternal Heyting algebra to the topos given by its subobject classifier Ω, an invariant
admitting site characterizations of the above kind holding for any site. Such char-
acterizations can be obtained by mechanically applying the well-known explicit
formulae describing the internal Heyting structure on the subobject classifier Ω of
a topos Sh(C, J) in terms of the site (C, J). Examples of these characterizations are
the following (recall that a J-closed sieve is a sieve S such that for any arrow f , if
f ∗(S ) is J-covering then f ∈ S ):

• To be Boolean ((∀x)(x ∨ ¬x = 1)). Let

Ra = { f : b→ a | ∅ ∈ J(b)} .

for each object a of C. Then the topos Sh(C, J) is Boolean if and only if for
each J-closed sieve S on an object a of C, the sieve

{ f : b→ a | f ∈ S or f ∗(S ) = Rb}

is J-covering (cf. [11]).

• To be De Morgan ((∀x)(¬x ∨ ¬¬x = 1)). Using the above notation, the
topos Sh(C, J) is De Morgan if and only if for each J-closed sieve S on an
object a of C, the sieve

{ f : b→ a | f ∗(S ) = Rb or ∀ g : c→ b, g∗( f ∗(S )) = Rc ⇒ g ∈ Rb}

is J-covering (cf. [11]).
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• To satisfy Gödel-Dummett’s logic ((∀x)(∀y)((x⇒y∨ y⇒ x) = 1)). A topos
Sh(C, J) satisfies Gödel-Dummett’s logic if and only if for every J-closed
sieves S and R on an object c of C, the sieve

{ f : b→ a | f ∗(S ) ⊆ f ∗(R) or f ∗(R) ⊆ f ∗(S )}

is J-covering (cf. [23]).

Another important logically inspired topos-theoretic invariant admitting a natu-
ral site characterization is the property of a topos to be two-valued, which amounts
to the validity of the formula (∀x)(x = 0 ∨ x = 1) in the ‘external’ Heyting algebra
of the subterminal objects in the topos. A topos Sh(C, J) is two-valued if and only
if the only J-closed ideals on C are ob(C) and the set of objects of C which are
J-covered by the empty sieve (recall that a J-closed ideal on C is a subset I of the
set ob(C) of objects of C such that for any arrow f : a→ b, if b ∈ I then a ∈ I, and
for any J-covering sieve S on an object c, if dom( f ) ∈ I for all f ∈ S then c ∈ I).

Very interestingly, for different sites of definition (C, J) and (D,K) of a given
topos, the ‘concrete’ properties P(C,J) and P(D,K) can be completely different, de-
spite being manifestations of a unique abstract property, namely I, in the context of
different sites. This gives rise to a veritable mathematical morphogenesis, which
may be exploited for investigating concrete problems since, given a property of the
form P(C,J), one can investigate it by means of the logically equivalent, but com-
pletely different-looking, property P(D,K). For instance, in the case of the topos of
sheaves Sh(X) on a topological space X, the above-mentioned criteria specialize to
the following ones:

Sh(X) is two-valued (resp. Boolean, De Morgan, satisfies Gödel-Dummett’s
logic) if and only if X has exactly two open sets (resp., every open set of X is closed,
the closure of every open set of X is open - i.e. X is extremally disconnected -, the
closure of every open set of X is extremally disconnected).

On the other hand, in the case of the topos of presheaves [Cop,Set] on a cate-
gory C they yield the following results:

[Cop,Set] is two-valued (resp. is Boolean, De Morgan, satisfies Gödel-Dum-
mett’s logic) if and only if C is strongly connected - i.e. for any two objects a and b
there exist arrows a→ b and b→ a - (resp. a groupoid, satisfies the amalgamation
property, satisfies the property that for any two arrows with common codomain,
the former factors through the latter or vice versa).

The above criteria can for instance be used, in connection with a Morita-
equivalence of the form Sh(X) ' [Cop,Set], for translating properties of X into
properties of C and conversely. A simple example of a Morita-equivance of this
form is provided by the Alexandrov space AP associated with a preorder P (i.e.,
the topological space whose open sets are precisely the upper sets of P). In this
case, we have an equivalence

[P,Set] ' Sh(AP)
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(cf. section 4.1 below) and an application of the ‘bridge’ technique yields at once
the following results: for any preorder P, P is discrete (resp. satisfies the amal-
gamation property, the property that for any elements a, b, c such that a ≤ c and
b ≤ c, either a ≤ b or b ≤ a) if and only if the space AP has the trivial topology
(resp. is extremally disconnected, every open set of it is extremally disconnected).

As another illustration of the mathematical morphogenesis realized by the cal-
culation of topos-theoretic invariants in terms of different sites of definition, take
the property of a topos to be two-valued. As we shall see in section 3.3.1, the
general criterion obtained above specializes, in the case of an atomic site (Cop, Jat)
(where Jat is the atomic topology), to the property of C to be non-empty and to
satisfy the joint embedding property, and in the case of the syntactic site (CT, JT)
of a geometric theory T to the property of T to be (geometrically) complete, i.e.
to the property that every geometric sentence over its signature is provably true or
provably false in the theory, but not both. In the presence of Morita-equivalences
of the form Sh(Cop, Jat) ' Sh(CT, JT), we thus obtain the following equivalence:
the category C is non-empty and satisfies the joint embedding property if and only
if the theory T is (geometrically) complete. Notice that the property of (geometric)
completeness is in general a rather hard property to verify, while the joint embed-
ding property is often more tractable.

We have already mentioned that it is possible to design general methodologies
for obtaining site characterizations for topos-theoretic invariants. In [15], a general
metatheorem applicable to a wide class of ‘geometric’ invariants of toposes was
proved, and applied therein to derive such characterizations (for the properties to
be localic, atomic, coherent, locally connected, compact, equivalent to a presheaf
topos, etc.). As an example of such characterizations, we report the one for the
invariant property of a topos to be atomic:

Theorem 3.1 (Theorem 4.4 [15]). Let (C, J) be a site. Let ( f ) denote the sieve on
cod( f ) generated by an arrow f in C, i.e. the set of arrows with codomain cod( f )
which factor through f . Then the topos Sh(C, J) is atomic if and only if for any
object a of C there exists a J-covering sieve on a generated by arrows f : b → a
such that:

• ∅ < J(b),

• for any arrow g : b′ → a such that g∗(( f )) ∈ J(b′), we have ∅ ∈ J(b′) or
f ∗((g)) ∈ J(b).

Once again, we can contemplate the phenomenon of ‘differentiation from the
unity’ consisting in the fact that a topos-theoretic invariant property often manifests
itself in completely different ways in the context of different sites. Indeed, all the
atomic sites satisfy the condition of the theorem, and on the other hand, in the case
of the classifying topos Sh(CT, JT) of a geometric theory T, the criterion of the
theorem tells that this topos is atomic if and only the theory T is atomic in the
model-theoretic sense, i.e. every geometric formula-in-context over the signature
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of the theory is T-provably equivalent to a disjunction of geometric formulae in
the same context which are T-complete (recall that a formula-in-context φ(~x) is
T-complete if the sequent (φ `~x ⊥) is not provable in T, and for every geometric
formula χ in the same context either (χ ∧ φ `~x ⊥) or (φ `~x χ) is provable in
T). We shall survey an application of the ‘bridge’ technique involving these site
characterizations in section 3.3.1 below.

Another important topos-theoretic invariant is the property of a topos to be
equivalent to a presheaf topos. In [15] a general criterion for a geometric theory
to be classified by a presheaf topos was established. To describe it, we need to
introduce the following

Definition 3.2. Let T be a geometric theory over a signature Σ. A geometric
formula-in-context {~x . φ} is said to be T-irreducible if for any family {θi | i ∈ I} of
T-provably functional geometric formulae {~xi, ~x . θi} from {~xi . φi} to {~x . φ} such
that (φ `~x∨

i∈I
(∃~xi)θi) is provable in T, there exist i ∈ I and a T-provably functional

geometric formula {~x, ~xi . θ
′} from {~x . φ} to {~xi . φi} such that the composite ar-

row [θi] ◦ [θ′] in CT is equal to the identity on {~x . φ} (equivalently, the bi-sequent
(φ(~x) ∧ ~x = ~x′ a`~x, ~x′ (∃~xi)(θ′(~x′, ~xi) ∧ θi(~xi, ~x))) is provable in T).

This notion is motivated by the fact that a Grothendieck topos is equivalent to
a presheaf topos if and only if it has a separating set of irreducible objects (recall
that an object of a Grothendieck topos is said to be irreducible if every epimorphic
family on it in the topos contains a split epimorphism), and a geometric formula-in-
context {~x . φ} is T-irreducible if and only if its image under the Yoneda embedding
CT ↪→ Sh(CT, JT) is an irreducible object of the topos Sh(CT, JT).

Theorem 3.3 (Corollary 3.15 [15]). Let T be a geometric theory over a signature
Σ. Then T is of presheaf type if and only if there exists a collection F of geometric
formulae-in-context over Σ satisfying the following properties:

(i) for any geometric formula {~y . ψ} over Σ, there exist objects {~xi . φi} in F (for
i ∈ I) and T-provably functional geometric formulae {~xi, ~y . θi} from {~xi . φi}

to {~y . ψ} such that (ψ `~y∨
i∈I

(∃~xi)θi) is provable in T;

(ii) every formula {~x . φ} in F is T-irreducible.

In fact, it is shown in [15] that for any theory of presheaf type T, T-irreducible
formulae are precisely the syntactic counterparts of the finitely presentable T-
models, in the sense that the full subcategory of the syntactic category CT of T
on the T-irreducible formulae is dually equivalent to the category of finitely pre-
sentable T-models (cf. Theorem 4.10 in section 4.2.2 below).

Other results of [15] include syntactic characterizations of the geometric theo-
ries classified by a locally connected (resp., connected and locally connected, com-
pact) topos, as well as criteria for a geometric theory over a given signature to be
cartesian (respectively regular, coherent). This paper also contains various results
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about quotients of theories of presheaf type, obtained by transferring the above-
mentioned topos-theoretic invariants across the two different representations

Sh(f.p.T-mod(Set)op, J) ' Sh(CT, JT)

of the classifying topos of such a theory.

3.2 De Morgan and Boolean toposes

Paper [11] solves the long-standing question of characterizing the class of geo-
metric theories classified by a De Morgan (resp. Boolean) topos, by providing
complete syntactic characterizations for both these classes of theories.

To achieve these characterizations, we first establish general site characteriza-
tions for the property of a Grothendieck topos to be De Morgan (resp. Boolean)
- those which we recalled in section 3.1 - and then refine these criteria to yield
simplified descriptions in several cases of interest, including those of syntactic cat-
egories of increasing level of complexity.

In the process, we introduce a new (invariant) construction which yields a uni-
versal way of making a given topos De Morgan. More specifically, every topos
is shown to have a largest dense subtopos satisfying De Morgan’s law; we call
this topos its DeMorganization. This construction represents a natural analogue
of the well-known procedure for making a topos Boolean, namely the Booleaniza-
tion sh¬¬(E) of a topos E, which in fact, as shown in [11], can be characterized
as the largest (in fact, unique) dense subtopos satisfying the law of excluded mid-
dle. This construction, as well as that of the Booleanization, admits natural site
characterizations. For instance, in [11] it is shown that

• The DeMorganization of a presheaf topos [Cop,Set] coincides with the topos
Sh(C,M), where M is the De Morgan topology on C, i.e. the Grothendieck
topology on C generated by the sieves of the form

MR := { f : d → c | f ∗(R) = ∅ or f ∗(R) is stably non-empty }

for a sieve R in C (recall that a sieve S on an object c is said to be stably
non-empty if for any arrow g : a→ c, g∗(S ) , ∅);

• The DeMorganization of a topos Sh(L) of sheaves on a locale L coincides
with the topos of sheaves Sh(Lm) on the sublocale Lm of L given by the
quotient of L by the filter generated by the family {¬u ∨ ¬¬u | u ∈ L}.

• The DeMorganization of the classifying topos of a geometric theory T cor-
responds under the duality of Theorem 2.5 to the DeMorganization of T i.e.
to the quotient of T obtained from T by adding all the geometric sequents of
the form

(> `~x ∨
ψ(~x)∈I(φ(~x),φ′(~x))

ψ)
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for any two geometric formulae φ(~x) and φ′(~x) such that (φ ∧ φ′ `~x ⊥) is
provable in T, where I(φ(~x),φ′(~x)) is the collection of geometric formulae ψ(~x)
such that either (ψ ∧ φ `~x ⊥) or (ψ ∧ φ′ `~x ⊥) is provable in T.

The Booleanization of a geometric theory T, i.e. the quotient of T which cor-
responds under the duality of Theorem 2.5 to the Booleanization of its classifying
topos, can instead be described, as shown in [11], as the theory obtained from T by
adding the sequent

(> `~y ψ)

for any T-stably consistent geometric formula-in-context ψ(~y) (i.e. geometric for-
mula-in-context ψ(~y) such that for any geometric formula χ(~y) in the same context
such that (χ `~y ⊥) is not provable in T, (χ ∧ ψ `~y ⊥) is not provable in T).

Of course, in the case of specific theories of natural mathematical interest, it
is often possible to establish more natural and ‘economical’ axiomatizations for
the DeMorganization or Booleanization of a geometric theory, by exploiting the
specific features of the theory under consideration. For instance, in [12] the De-
Morganization of the coherent theory of fields is identified as the geometric theory
of fields of finite characteristic which are algebraic over their prime fields, while
its Booleanization is the theory of fields of finite characteristic which are algebraic
over their prime fields and algebraically closed. These surprising results provide
by themselves a clear indication of the ‘centrality’ of topos-theoretic invariants in
mathematics, including those which might appear too abstract to be of any ‘con-
crete’ relevance.

The notions of Booleanization and DeMorganization of a topos have been
generalized in [23] to a wide class of intermediate logics including, for instance,
Smetanich’s logic and Gödel-Dummett’s logic. As in the case of the Booleaniza-
tion and DeMorganization, these invariant constructions admit natural definitions
in terms of sites, which can be fruitfully exploited in connection with the ‘bridge’
technique.

3.3 Atomic two-valued toposes

A very important class of toposes is formed by the atomic two-valued ones. As we
shall see, these toposes naturally arise in different contexts, including the theory of
countably categorical theories (cf. [13]), Fraïssé’s construction in Model Theory
(cf. [10]) and topological Galois theory (cf. [28]). We shall also briefly review an
approach to the independence from ` questions for `-adic cohomology based on
atomic two-valued toposes, which we introduced in [29].

3.3.1 Fraïssé’s construction from a topos-theoretic persective

In this section, which is based on [10], we present a topos-theoretic interpreta-
tion and substantial generalization of the well-known result (Theorem 7.4.1(a) in
[49]) providing the link between Fraïssé’s construction and countably categorical
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theories. The three concepts involved in the classical Fraïssé’s construction (i.e.
amalgamation and joint embedding properties, homogeneous structures, and atom-
icity and completeness of the resulting theory) are seen to correspond precisely to
three different ways (resp. of geometric, semantic and syntactic nature) of look-
ing at the same classifying topos, and the technical relationships between them are
shown to arise precisely from the expression of topos-theoretic invariant properties
of this classifying topos in terms of different sites of definition for it, according to
the philosophy ‘toposes as bridges’.

The context in which we formulate our topos-theoretic interpretation of Fraïssé’s
theorem is that of theories of presheaf type, which we reviewed in sections 2.2 and
3.1. Recall that this is a very extensive class of geometric theories notably in-
cluding all the cartesian theories and many other interesting mathematical theories
pertaining to different fields of mathematics.

In order to present our main result, we have to recall the following notions,
which are natural categorical generalisations of the concepts involved in the clas-
sical Fraïssé’s construction.

Definition 3.4. A category C is said to satisfy the amalgamation property (AP) if
for every objects a, b, c ∈ C and arrows f : a → b, g : a → c in C there exists an
object d ∈ C and arrows f ′ : b→ d, g′ : c→ d in C such that f ′ ◦ f = g′ ◦ g:

a

g

��

f // b

f ′

��
c

g′
// d

The amalgamation property on a category is also called the left Ore condition,
and its dual the right Ore condition. If C satisfies AP then we can equip Cop with
the atomic topology Jat, that is the Grothendieck topology whose covering sieves
are exactly the non-empty ones. This point will be a fundamental ingredient of our
topos-theoretic interpretation of Fraïssé’s theorem.

Definition 3.5. A category C is said to satisfy the joint embedding property (JEP) if
for every pair of objects a, b ∈ C there exists an object c ∈ C and arrows f : a→ c,
g : b→ c in C:

a

f
��

b g
// c

Notice that if C has a weakly initial object then AP on C implies JEP on C;
however, in general the two notions are quite distinct from each other.

Definition 3.6. Let C ↪→ D be an embedding of categories.
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(a) An object u ∈ D is said to be C-homogeneous if for every objects a, b ∈ C and
arrows j : a → b in C and χ : a → u in D there exists an arrow χ̃ : b → u in
D such that χ̃ ◦ j = χ:

a

j
��

χ // u

b
χ̃

??

(b) An object u ∈ D is said to be C-ultrahomogeneous if for every objects a, b ∈ C
and arrows j : a → b in C and χ1 : a → u, χ2 : b → u in D there exists an
automorphism ǰ : u→ u such that ǰ ◦ χ1 = χ2 ◦ j:

a

j
��

χ1 // u

ǰ
��

b χ2
// u

(c) An object u ∈ D is said to be C-universal if for every a ∈ C there exists an
arrow χ : a→ u inD:

a
χ // u

Given a theory of presheaf typeT, a homogeneousT-model is a f.p.T-mod(Set)-
homogeneous object of the categoryT-mod(Set); in other words, a set-based model
M of T is homogeneous if and only if for any arrow y : c→ M in T-mod(Set) and
any arrow f : c→ d in f.p.T-mod(Set) there exists an arrow u in T-mod(Set) such
that u ◦ f = y:

c

f
��

y // M

d
u

??

The notion of homogeneous T-model is most relevant when all the T-model
homomorphisms are injective; the notion of injectivization of a geometric theory,
which we introduced in [8], thus plays an important role in this context. Recall that
the injectivization of a geometric theory T is the theory obtained from T by adding
for each sort over its signature a binary predicate and the axioms asserting that it is
provably complemented to the equality relation on that sort.

Let T be a theory of presheaf type over a signature Σ such that its category
f.p.T-mod(Set) of finitely presentable models satisfies the amalgamation property.
Then we can put on the opposite category f.p.T-mod(Set)op the atomic topology
Jat, obtaining a subtopos

Sh(f.p.T-mod(Set)op, Jat) ↪→ [f.p.T-mod(Set),Set]

of the classifying topos of T, which corresponds by the duality of Theorem 2.5 to
a unique quotient T′ of T classified by it. This quotient can be characterized as
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the theory over Σ obtained from T by adding all the sequents of the form (ψ `~y
(∃~x)θ(~x, ~y)), where φ(~x) and ψ(~y) are formulae which present a T-model and θ(~x, ~y)
is a T-provably functional formula from {~x . φ} to {~y . ψ}.

Since Sh(f.p.T-mod(Set)op, Jat) classifies the theoryT′, by the syntactic method
for constructing classifying toposes, we have a Morita-equivalence

Sh(f.p.T-mod(Set)op, Jat) ' Sh(CT′ , JT′),

which can be used for building ‘bridges’ between the two sites by considering
appropriate topos-theoretic invariants on the classifying topos of T′:

Sh(f.p.T-mod(Set)op, Jat) ' Sh(CT′ , JT′)

(f.p.T-mod(Set)op, Jat) (CT′ , JT′)

By applying this methodology, we obtain in particular the following

Theorem 3.7 (Theorem 3.8 [10]). Let T be a theory of presheaf type such that
the category f.p.T-mod(Set) is non-empty and satisfies the amalgamation and joint
embedding properties. Then (any theory Morita-equivalent to) the theory T′ of
homogeneous T-models is complete and atomic; in particular, assuming the axiom
of countable choice, any two countable homogeneous T-models in Set are isomor-
phic.

Moreover, every geometric formula which presents a T-model is T′-complete.

This theorem actually arises from a ‘triple’ bridge (recalling from [13] that,
assuming the axiom of countable choice, every geometric theory which is atomic
and complete is countably categorical, that is any two of its set-based countable
models are isomorphic):

Geometric morphism f rom E to
Sh(f.p.T-mod(Set)op, Jat) ' Sh(CT′ , JT′)

(f.p.T-mod(Set)op, Jat)
homogeneous T-model in E

(
CT′ , JT′)

T′-model in E

Atomic topos
Sh(f.p.T-mod(Set)op, Jat) ' Sh(CT′ , JT′)kk

''(f.p.T-mod(Set)op, Jat)
Atomic site i.e.

AP on f.p.T-mod(Set)

22

(
CT′ , JT′)

Atomicity o f T′

Two-valued topos
Sh(f.p.T-mod(Set)op, Jat) ' Sh(CT′ , JT′)

(f.p.T-mod(Set)op, Jat)
JEP on f.p.T-mod(Set)

(
CT′ , JT′)

Completeness o f T′
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Notice that if the category f.p.T-mod(Set) satisfies AP then each of its con-
nected components satisfies AP as well as JEP. The toposes of sheaves on such sub-
categories with respect to the atomic topology are precisely the classifying toposes
of the completions of the theory T′, i.e. of the (complete) quotients of T′ obtained
by adding an axiom of the form (> `[] φ) for a T′-complete geometric sentence φ.

Theorem 3.7 is a vast generalization of the well-known result (Theorem 7.4.1(a)
in [49]) allowing one to build countably categorical theories through Fraïssé’s
method; the classical result can be obtained as a particular case of our theorem
when the theory is the quotient of the empty theory over a finite signature corre-
sponding to a uniformly finite collection of finitely presented models of the empty
theory satisfying the hereditary property.

Among the most natural contexts of application of Theorem 3.7, we can men-
tion the following:

(a) The theory I of decidable objects (that is, the injectivization of the empty the-
ory over a one-sorted signature) is of presheaf type, and its category of finitely
presentable models is the category I of finite sets and injections between them.
The theory of homogeneous I-models is classified by the topos Sh(Iop, Jat),
also known as the Schanuel topos. Notice that the homogeneous I-models in
Set are precisely the infinite sets.

(b) The theory of decidable Boolean algebras (that is, the injectivization of the al-
gebraic theory of Boolean algebras) is of presheaf type. Its finitely presentable
models are the finite Boolean algebras, while its homogeneous set-based mod-
els are the atomless Boolean algebras. The well-known result that any two
countable atomless Boolean algebras are isomorphic thus follows from Theo-
rem 3.7 assuming the axiom of countable choice.

(c) The theory of decidable linear orders (that is, the injectivization of the coher-
ent theory of linear orders) is of presheaf type, and its category of finitely pre-
sentable models coincides with the category of finite linear orders and order-
preserving injections between them. Its homogeneous models are precisely the
dense linearly ordered objects without endpoints. Theorem 3.7 thus ensures
that the theory of dense linearly ordered objects without endpoints is atomic
and complete.

(d) As shown in [12], the (infinitary) geometric theory of fields of finite charac-
teristic which are algebraic over their prime fields is of presheaf type, and
the theory of its homogeneous models can be identified with the theory of
fields of finite characteristic which are algebraic over their prime fields and
algebraically closed; the completions of this theory are obtained precisely by
adding, in each case, the axiom fixing the characteristic of the field (i.e., the
sequent (> `[] p . 1 = 0) for a prime number p). Theorem 3.7 thus im-
plies, assuming the countable axiom of choice, the well-known fact that any
two (countable) algebraic closures of a given finite field are isomorphic, while,
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not assuming any form of the axiom of choice, it still implies a remarkable
property, namely the fact that any two algebraic closures of a given finite field
satisfy the same first-order sentences written in the language of fields; in fact,
this property is true more generally for any base field (the theory of algebraic
extensions of a base field is of presheaf type, and is easily seen to satisfy the
hypotheses of Theorem 3.7).

If the category f.p.T-mod(Set) satisfies AP then the theory T′ can be identified
with the Booleanization of the theory T defined in section 3.2.

The paper [10] also contains a number of other results on homogeneous mod-
els, obtained by applying the ‘bridge’ technique to several other topos-theoretic
invariants, including a consistency result for homogeneous models in terms of
the geometry of the category of finitely presentable models of the basic theory
of presheaf type T. The first part of [10] contains a general categorical framework,
subsuming all the previous generalizations of Fraïssé’s construction, for building
universal ultrahomogeneous objects.

Besides containing a model-theoretic characterization of the geometric theories
with enough set-based models which are classified by atomic two-valued toposes,
the paper [13] contains a number of categorical results of independent interest on
atomic toposes.

3.3.2 Topological Galois Theory

Under appropriate hypotheses which are satisfied in a great number of cases, the
atomic two-valued toposes considered in section 3.3.1 admit Galois-type represen-
tations as toposes of continuous actions of a topological group of automorphisms
of a suitable structure. As we shall see, this leads to a framework which gener-
alizes classical Galois theory and also subsumes Grothendieck’s theory of Galois
categories of [47].

The termimology used in this section is borrowed from section 3.3.1. We shall
present the theorems in the setting of theories of presheaf type T, but one can
replace in every statement the category f.p.T-mod(Set) with an arbitrary small cat-
egory C, and the category T-mod(Set) with the ind-completion of C.

Theorem 3.8 (cf. Corollary 3.7 [28]). Let T be a theory of presheaf type such that
its category f.p.T-mod(Set) of finitely presentable models satisfies AP and JEP, and
let M be a f.p.T-mod(Set)-universal and f.p.T-mod(Set)-ultrahomogeneous model
of T. Then we have an equivalence of toposes

Sh(f.p.T-mod(Set)op, Jat) ' Cont(Aut(M)),

where Aut(M) is endowed with the topology of pointwise convergence (in which
a basis of open neighbourhoods of the identity is given by the sets of the form
{ f : M � M | f (~a) = ~a} for any ~a ∈ M), which is induced by the functor

F : f.p.T-mod(Set)op → Cont(Aut(M))
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sending any model c of f.p.T-mod(Set) to the set HomT-mod(Set)(c,M) (endowed
with the obvious action by Aut(M)) and any arrow f : c → d in f.p.T-mod(Set) to
the Aut(M)-equivariant map

− ◦ f : HomT-mod(Set)(d,M)→ HomT-mod(Set)(c,M) .

Notice that there are in general be many different f.p.T-mod(Set)-universal and
f.p.T-mod(Set)-ultrahomogeneous models of T; for any two such models M and
M′, their topological automorphism groups Aut(M) and Aut(M′) are in general
non-isomorphic but Theorem 3.8 implies that they are always Morita-equivalent
(in the sense that Cont(Aut(M)) ' Cont(Aut(M′))).

Under the hypotheses of Theorem 3.8, let T′ be the theory of homogeneous
T-models (as defined in section 3.3.1). Then the model M, endowed with the
(continuous) canonical action of Aut(M), is a universal model of T′ in the topos
Cont(Aut(M)) (cf. the proof of Theorem 3.1 [28]). So for any tuple A1, . . . , An of
sorts of the signature of T, we have a ‘bridge’

S ubob ject o f UA1×···×UAn

Cont(Aut(M)) ' Sh(CT′ , JT′)

Aut(M)
Aut(M)-closed subset of

S⊆MA1×···×MAn

(
CT′ , JT′)

Geometric f ormula
φ(xA1

1 ,...,xAn
n )

(where U is ‘the’ universal model of T′ in its classifying topos), which yields the
following

Theorem 3.9. Let T′ be the theory of homogeneous T-models for a theory T sat-
isfying the hypotheses of Theorem 3.8.

(i) For any subset S ⊆ MA1 × · · · × MAn which is closed under the action
of Aut(M), there exists a (unique up to T′-provable equivalence) geomet-
ric formula φ(~x) over the signature of T (where ~x = (xA1

1 , . . . , xAn
n )) such that

S = [[~x . φ]]M.

(ii) For any Aut(M)-equivariant map f : S → T between invariant subsets S and
T as in (i) there exists a (unique up to T′-provable equivalence) T′-provably
functional geometric formula θ(~x, ~y) from φ(~x) to ψ(~y), where S = [[~x . φ]]M

and T = [[~y . ψ]]M, whose interpretation [[θ(~x, ~y)]]M coincides with the
graph of f .

Remarks 3.10. (a) It easily follows from Theorem 3.9 that for any finite tuple
A1, . . . , An of sorts of the signature of the theory T, the orbits of the action
of Aut(M) on MA1 × · · · × MAn coincide precisely with the interpretations
[[~x . φ]]M in M of T-complete formulae φ(~x), where ~x = (xA1

1 , . . . , xAn
n ), that is

they correspond exactly to the T-provable equivalence classes of T-complete
formulae in the context ~x.
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(b) If in part (ii) of Theorem 3.9 the formulae φ(~x) and ψ(~y) present respectively
T-models M{~x.φ} and M{~y.ψ} and all the arrows in f.p.T-mod(Set) are strict
monomorphisms, then the formula θ can be taken to be T-provably func-
tional, and hence to induce (by Theorem 4.10) a T-model homomorphism
z : M{~y.ψ} → M{~x.φ} such that the map [[~x, ~y . θ]]M : [[~x . φ]]M → [[~y . ψ]]M

corresponds, under the identifications HomT-mod(Set)(M{~x.φ},M) � [[~x . φ]]M

and HomT-mod(Set)(M{~y.ψ},M) � [[~y . ψ]]M, to the map HomT-mod(Set)(z,M) (cf.
Theorem 3.11 below).

Concerning the existence of models M satisfying the hypotheses of Theorem
3.8, we should remark that ultrahomogeneous structures naturally arise in a great
variety of different mathematical contexts. Their existence can be proved either
directly through an explicit construction or through abstract logical arguments. A
general method for building countable ultrahomogeneous structures is provided
by Fraïssé’s construction in Model Theory (cf. Chapter 7 of [49]), while the cat-
egorical generalization established in [10] allows to construct ultrahomogeneous
structures of arbitrary cardinality. As examples of models M satisfying the hy-
potheses of Theorem 3.8 in relation to the theories of presheaf type considered in
section 3.3.1, we mention:

• the set N of natural numbers, with respect to the theory of decidable objects;

• the ordered set (Q, <) of rational numbers, with respect to the theory L of
decidably linearly ordered objects;

• the unique countable atomless Boolean algebra, with respect to the theory of
decidable Boolean algebras;

• any Galois extension F′ of a given field F, with respect to the theory TF′
F

over the signature of the theory of fields which consists of all the geometric
sequents which are valid in every finite intermediate extension F ⊆ L ⊆ F′.

There is a natural link between ultrahomogeneity and the property of a model
of an atomic complete theory to be special, which can be exploited to construct
models satisfying the hypotheses of Theorem 3.8. Recall that a model M of an
atomic complete theory T is said to be special if every T-complete formula φ(~x) is
realized in M and for any tuples ~a and ~b of elements of M which satisfy the same
T-complete formulae there is an automorphism f : M → M of M which sends
~a to ~b. Any model M satisfying the hypotheses of Theorem 3.8 is clearly special
as a model of the theory of homogeneous T-models. Conversely, given a special
model M of an atomic complete theory S, we have, by the Comparison Lemma, an
equivalence Sh(CS, JS) ' Sh(Cat

S , Jat), where Cat
S is the full subcategory of CS on

the S-complete formulae, which shows that S is Morita-equivalent to the theory of
homogeneous T-models for some theory of presheaf type T with respect to which
the model M satisfies the hypotheses of Theorem 3.8.
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Given an arrow χ : c → M in T-mod(Set), where c is in f.p.T-mod(Set), we
denote by

Iχ := { f : M � M | f ◦ χ = χ}

the open subgroup of Aut(M) corresponding to χ.
The following theorem gives necessary and sufficient conditions for the functor

F of Theorem 3.8 to be full and faithful.

Theorem 3.11 (cf. Proposition 4.1 [28]). Under the hypotheses of Theorem 3.8,
the following conditions are equivalent:

(i) Every arrow f : d → c in f.p.T-mod(Set) is a strict monomorphism (in the
sense that for any arrow g : e → c in f.p.T-mod(Set) such that h ◦ g = k ◦ g
whenever h ◦ f = k ◦ f , g factors uniquely through f ):

d
f // c

h //
k
// u

e

OO

g

??

(ii) The functor
F : f.p.T-mod(Set)op → Cont(Aut(M))

of Theorem 3.8 is full and faithful.

(iii) For any models c, d ∈ f.p.T-mod(Set) and any arrows χ : c→ M and ξ : d →
M in T-mod(Set), Iξ ⊆ Iχ (that is, for any automorphism f of M, f ◦ ξ = ξ

implies f ◦ χ = χ) if and only if there exists a unique arrow f : c → d in
f.p.T-mod(Set) such that χ = ξ ◦ f :

c

f
��

χ // M

d
ξ

??

(iv) The Grothendieck topology Jat is subcanonical.

Let Sgr(Aut(M)) be the preorder category consisting of the subgroups of Aut(M)
and the inclusion relations between them, and f.p.T-mod(Set)op/M the category
whose objects are the arrows c → M in T-mod(Set), where c is an object of
f.p.T-mod(Set), and whose arrows (χ : c → M) → (ξ : d → M) are the arrows
f : d → c in f.p.T-mod(Set) such that χ ◦ f = ξ.

Then the functor F of Theorem 3.8 yields a functor

F̃ : f.p.T-mod(Set)op/M → Sgr(Aut(M))

sending any object χ : c → M of f.p.T-mod(Set)op/M to the subgroup Iχ of
Aut(M).
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Note that if the conditions of Theorem 3.11 are satisfied then the category
f.p.T-mod(Set)op/M is a preorder. Indeed, it is easy to see that if all the arrows
of f.p.T-mod(Set) are monic then all the arrows of T-mod(Set) are monic as well.

It is natural to wonder under which conditions the functor F̃ yields a bijection
between the objects of the category f.p.T-mod(Set)op/M and the open subgroups
of the topological group Aut(M), as in the case of classical Galois theory. The
following theorem provides an answer to this question.

Theorem 3.12 (cf. Theorem 4.17 [28]). Assuming that the equivalent conditions
of Theorem 3.11 are satisfied, the following conditions are equivalent:

(i) The functor
F : f.p.T-mod(Set)op → Cont(Aut(M))

is a categorical equivalence onto the full subcategory of Cont(Aut(M)) on
the transitive actions.

(ii) The map
F̃ : f.p.T-mod(Set)op/M → Sgr(Aut(M))

is a bijection onto the set of open subgroups of Aut(M).

(iii) The category f.p.T-mod(Set) has equalizers, for any object c of f.p.T-mod(Set)
there exist arbitrary intersections of subobjects of c in f.p.T-mod(Set), and for
any pair of arrows h, k : c → e in f.p.T-mod(Set) with equalizer m : d � c
we have that for any pair of arrows l, n : c → e′, l ◦ m = n ◦ m if and only if
there exist an arrow s : e′ → e′′ such that (s ◦ l, s ◦ n) belongs to the equiva-
lence relation on Homf.p.T-mod(Set)(c, e′′) generated by the relation consisting
of the pairs of the form (t ◦ h, t ◦ k) for an arrow t : e→ e′′.

(iv) Every atom of the topos Sh(f.p.T-mod(Set)op, Jat) come from an object c of
f.p.T-mod(Set).

Remarks 3.13. (a) If the category f.p.T-mod(Set) satisfies the hypotheses of The-
orem 3.12, it is always possible to ‘complete’ it to a category satisfying the
equivalent conditions of the theorem, and having an equivalent associated to-
pos, by means of an elementary process which constitutes a sort of completion
by imaginaries (in the sense of classical Model Theory). This process is de-
scribed in detail in [28] (cf. the proof of Theorem 4.15 therein) and applies
to a number of classical categories such as the category of Boolean algebras
and embeddings, the category of finite groups and embeddings, the category
of finite graphs and embeddings etc.

(b) For any Galois category C (in the sense of [47]), the opposite of the full sub-
category Cat of C on the atomic objects (i.e., the objects which are non-zero
and have no proper subobjects) satisfies the hypotheses of Theorem 3.12. Our
framework thus generalizes and simplifies that of Grothendieck’s Galois the-
ory by working with small atomic sites instead of larger sites such as his Galois
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categories, which in fact, as proved in [28], are finite coproduct completions
of their full subcategories on their atomic objects.

Notice that both Theorem 3.11 and Theorem 3.12 naturally arise from topos-
theoretic ‘bridges’, the former by considering the invariant notion of arrow between
two given objects, and the latter by considering the atoms of the given topos. The
paper [28] also contains many other results on these Galois-type theories, a number
of which are obtained by considering other relevant topos-theoretic invariants in
connection with the Morita-equivalence of Theorem 3.8.

3.3.3 Motivic toposes

We have seen in section 2.1.3 (cf. Corollary 2.4) how the notion of syntactic cat-
egory applies to the question of the existence of categories of (mixed) motives (in
Grothendieck’s sense) through which all the different `-adic cohomological func-
tors H•(•,Q`) factor.

In the context of Corollary 2.4 of a quiver D defined from the category of finite
type schemes over a base field K and of representations

T` : D→ Q`-vect

induced by `-adic cohomological functors (for ` , car (K)) or possibly p-adic (if
` = p = car (K)), the question of the “independence from ` ” naturally poses:

• For any object d of the diagram D, is the dimension over Q` of the vector
space T`(d) independent from `?

• More generally, for any Q-linear combination of composites

f : d → d′

of arrows of D, is the dimension over Q` of

Ker (T`( f ) : T`(d)→ T`(d′))

independent from `?

This problem is notably difficult since there is no direct canonical way of com-
paring two different `-adic cohomological functors T`: indeed, the different coef-
ficient fields Q` of these functors are different and, whilst by using the axiom of
choice one can construct certain isomorphisms between them, these isomorphisms
are neither canonical nor they preserve the natural topologies of Q`.

Still, this problem appears more tractable by adopting a logical perspective.
Indeed, complete theories within first-order logic enjoy the remarkable property
that all their models satisfy exactly the same first-order properties expressible in the
language of the theory, in spite of the fact that they might be completely different
and not concretely related to one another. It is therefore natural to imagine that the
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different `-adic cohomological functors could be models of a first-order complete
theory written over a signature related to that considered in the context of Nori’s
construction. We have encountered in section 3.3.1 a wide class of such theories,
and described their classifying toposes in both syntactic and semantic terms. These
toposes can be represented in the form Sh(f.p.S-mod(Set)op, Jat) where S is a theory
of presheaf type such that the category f.p.S-mod(Set) satisfies the amalgamation
and joint embedding properties.

As remarked in section 3.3.1, the theory of homogeneous S-models is most in-
teresting when all the arrows of the category f.p.S-mod(Set) are monic. If the the-
ory S contains a predicate which is provably complemented to the equality relation
then all the homomorphisms of set-based S-models are injective and every finitely
generated model of I is finitely presentable, the converse holding if the axioms of
S have a general specified form. The T` would then be homogeneous S-models.
If they were also f.p.S-mod(Set)-universal and the category f.p.S-mod(Set) has an
initial object, then every finitely generated S-model would be embeddable in each
T`. This motivates us to give the following

Definition 3.14 (cf. sections 5.1 and 5.2 of [29]). Given a representation

T` : D→ Q`-vect .

as above, let Σ be the “basic signature” which has:

• one sort for the coefficient field k and for each object d of D,

• function symbols for the ring structure on k and the k-linear structure on each
other sort,

• a function symbol for each arrow of D,

• a relation symbol , 0 on each sort.

Let I` be the “basic theory” over Σ having as axioms

• the sequents which ensure that k is a field of characteristic 0 and the other
sorts are k-vector spaces,

• the sequents which define the relations , 0,

• the sequents
(ϕ `~x ψ)

which are satisfied in T`, where the formulae ϕ, ψ are finite conjunctions of
equalities of terms.

Let Σ′ be the signature obtained from Σ by adding a relation symbol

RS

for each context ~x (modulo renaming of variables) and subset S of the set of terms
in the context ~x.

Let S` be the theory over Σ′ obtained from I` by adding
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• the axioms which ensure that for each relation RS , the terms in S are 0 and
the terms not in S are , 0,

• the axiom
(> `x

∨
S

RS (~x))

for each context ~x.

Proposition 3.15 (cf. sections 5.2 and 5.3 [29]). (i) For each index `, the geo-
metric theory S` associated with the representation T` : D → Q`-vect is of
presheaf type and its category C` of finitely presentable (equivalently, finitely
generated) models has an initial object and satisfies the amalgamation and
joint embedding properties.

(ii) The theory T` is obtained from S` by adding all the sequents of the form

(R~w∗(S )(~y) `~y (∃~x)(RS (~x) ∧ ~w(~x) = ~y))

for any tuple ~w of terms and any subset S such that the sequent (RS (~x) `~x ⊥)
is not provable in S`, where ~w∗(S ) = {s | s(~w(~x)) ∈ S }.

We can now reformulate our initial questions in the following more precise
way:

(i) For each index `, is the cohomological representation

T` : D→ Q`-vect

a set-based model of T`, that is, a C`-homogeneous model of the theory S`?

(ii) Are the theories S` independent from `?

A positive answer to the above two questions would imply all the expected
independence from ` properties. This is rather surprising since the notion of di-
mension is not expressible in terms of the axioms of the theories S` which are of
‘algebraic’ type . Notice also that question (i) concerns any single `-adic cohomo-
logical functor, independently from any other one. As proved in [29] (cf. Theorem
6.4), the axioms of T` imply all the usual exactness properties of cohomological
functors. Homogeneity can thus be regarded as a refinement of the exactness con-
ditions.

Finally, we note that if the two above questions have a positive answer, the
category of internal reflective vector spaces in the common classifying topos of the
theories T` provides a natural candidate for a category of motives through which
all the different `-adic cohomological functors factor via faithful exact functors.
Indeed, any point of an atomic two-valued topos is a surjection, i.e. its inverse
image functor is (exact and) faithful.
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4 Dualities, bi-interpretations and Morita-equivalences

Since Morita-equivalence represents a natural notion of equivalence of theories, it
is natural to wonder what are its relationships with the notions of duality, categori-
cal equivalence, and bi-interpretation.

As we already remarked in section 2.1, categorical dualities or equivalences be-
tween ‘concrete’ categories can often be seen as arising from the process of ‘func-
torializing’, by means of geometric morphisms of toposes, Morita-equivalences
which express structural relationships between each pair of objects corresponding
to each other under the given duality or equivalence. We shall illustrate this gen-
eral point below, by showing that the classical Stone-type dualities can be naturally
obtained by means of this methodology, which also generates many other new du-
alities or equivalences between partially ordered structures, locales and topological
spaces. Starting from geometric morphisms between classifying toposes in place of
Morita-equivalences, one obtains reflections extending the corresponding dualities
or equivalences.

Another link between the notion of categorical equivalence between ‘concrete’
categories and that of Morita-equivalence is provided by the observation, made in
section 2.1, that categorical equivalences between the categories of set-based mod-
els of two geometric theories can often be ‘lifted’ to Morita-equivalences provided
that they are established by only using constructive logic and geometric construc-
tions. As illustrations of this remark, we discuss in section 4.3.1 two examples
of Morita-equivalences obtained by ‘lifting’ classical equivalences in the context
of MV-algebras and lattice-ordered abelian groups. As it can be naturally ex-
pected, there are many advantages in lifting such a categorical equivalence to a
Morita-equivalence; indeed, many more properties and results can be established
and transferred across the two theories by using the common classifying topos as a
‘bridge’; various examples of such transfers are given in section 4.3.

Concerning the relationship between Morita-equivalences and bi-interpretations,
we have already remarked in section 2.1 that any bi-interpretation induces a Morita-
equivalence. Nonetheless, very importantly, most Morita-equivalences do not arise
from bi-interpretations; we shall give in section 4.3.1 two specific examples of nat-
urally arising Morita-equivalences which provably do not arise from bi-interpreta-
tions. Notice that, in presence of a bi-interpretation, one does not really need to
pass to the classifying topos in order to transfer syntactic results across the two
theories since the bi-interpetation provides by itself a ‘dictionary’ for translating
formulas written in the language of one theory into formulas written in the lan-
guage of the other; still, the consideration of the classifying topos can be useful for
investigating the relationships between the semantic aspects of the two theories.
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4.1 Dualities, equivalences and adjunctions for preordered structures
and topological spaces

In the following sections we briefly review the contents of papers [18], [20], [21]
and [22], which investigate the subject of preordered structures, topological spaces
and locales from a topos-theoretic perspective.

4.1.1 The topos-theoretic construction of Stone-type dualities and adjunc-
tions

The paper [18] introduces a general topos-theoretic machinery for building ‘Stone-
type’ dualities, i.e. dualities or equivalences between categories of preorders and
categories of posets, locales or topological spaces. This machinery allows one to
unify all the classical Stone-type dualities as instances of just one topos-theoretic
phenomenon, and to generate many new such dualities. We recover in particular
the following well-known dualities:

• Stone duality for distributive lattices (and in particular Boolean algebras, cf.
[71] and [72])

• Lindenbaum-Tarski duality for atomic complete Boolean algebras

• The duality between spatial frames and sober spaces

• M. A. Moshier and P. Jipsen’s topological duality for meet-semilattices (cf.
[66])

• Alexandrov equivalence between preorders and Alexandrov spaces

• Birkhoff duality for finite distributive lattices

• The duality between algebraic lattices and sup-semilattices

• The duality between completely distributive algebraic lattices and posets

At the same time, our machinery allows one to generate many new dualities,
some examples of which we shall give below.

Our methodology essentially consists in ‘functorializing’ Morita-equivalences
of the form

Sh(C, J) ' Sh(D,K),

where C is a preorder (regarded as a category), J is a (subcanonical) Grothendieck
topology J on C, C is a K-dense full subcategory of D (i.e. a full subcategory
C of D such that for any object d of D the sieve generated by the arrows from
objects of C to d is K-covering) and J is the induced Grothendieck topology K|C
on C; such equivalences are all instances of Grothendieck’s Comparison Lemma.
More specifically, we show that if the above Morita-equivalences hold for a class
of structures C (resp. D) and that each of these structures is equipped with a
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Grothendieck topology J = JC (resp. K = KD) intrinsically definable in terms of
it, then one can construct, under some hypotheses which are satisfied in a large
number of cases, dualities or equivalences between a category of structures C
(whose morphisms are maps which induce geometric morphisms between the as-
sociated toposes Sh(C, JC), either covariantly or contravariantly) and a category
of structures D (whose morphisms are maps which induce geometric morphisms
between the associated toposes Sh(D,KD), either covariantly or contravariantly).
The key point is the possibility, under those hypotheses, of recovering the struc-
tures C (resp. D) from the corresponding toposes Sh(C, JC) (resp. Sh(D,KD)) by
means of topos-theoretic invariants:

Sh(C, JC)

��

' Sh(D,KD)

��
Sh(C′, JC′) ' Sh(D′,KD′)

C D

��
C′

OO

D′

(in this bridge the first arch is contravariant and the second is covariant, but all the
variance possibilities are equally feasible).

Notice that a preorder category is simply a preordered set, and a functor be-
tween preorder categories is just an order-preserving map between the correspond-
ing preordered sets. A preorder with finite limits is precisely a meet-semilattice.
As shown in [18], for any preorder category C and any Grothendieck topology J
on C, we have an equivalence

Sh(C, J) ' Sh(IdJ(C)),

where IdJ(C) is the frame of J-ideals on C whose elements are the J-ideals on C
and where the order relation is the subset-inclusion one (recall that a J-ideal is a
subset I of the set of objects of C such that for any arrow f : a → b in C, if b ∈ I
then a ∈ I and for any J-covering sieve S on an object c of C, if dom( f ) ∈ I for all
f ∈ S then c ∈ I). Notice that localic toposes (i.e., toposes of the form Sh(L) for
a locale L) can be identified with the corresponding locales, since a localic topos E
is equivalent to the topos of sheaves on the associated locale L with respect to the
canonical topology Jcan

L on it, and conversely any locale can be recovered from the
associated topos as the frame of its subterminal objects (recall that a subterminal
object of a topos is an object such that the unique arrow from it to the terminal
object is monic).

A Grothendieck topology J on a preorder category C is subcanonical if and
only if for every J-covering sieve {ai → a | i ∈ I}, we have that a =∨

i∈I
ai in C.

To functorialize the above-mentioned Morita-equivalences, we apply the the-
ory of geometric morphisms between Grothendieck toposes induced by functors
satisfying appropriate conditions. Recall that:
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(a) Any functor F : C → C′ between categories C and C′ with finite limits
which preserves finite limits and is cover-preserving (i.e., sends J-covering
sieves to families which generate a J′-covering sieve) induces a geometric
morphism Sh(F) : Sh(C′, J′) → Sh(C, J). If the topologies J and J′ are
subcanonical then F can be identified with the restriction of the inverse image
Sh(F)∗ : Sh(C, J) → Sh(C′, J′) of Sh(F) to the representables. (The notion
of morphism of sites can be given for arbitrary, i.e. not necessarily cartesian
sites, but we do not report it here since it is more complicated and we shall not
use it.)

(b) Any functor f : C → C′ induces a geometric morphism E( f ) : [C,Set] →
[C′,Set]. If C and C′ are Cauchy-complete then f can be identified with the
restriction to the representables of the left adjoint E( f )! : [C,Set] → [C′,Set]
to the inverse image of E( f ). If C and C′ are Cauchy-complete, the geometric
morphisms [C,Set] → [C′,Set] of the form E( f ) for some functor f : C →
C′ can be intrinsically characterized as the essential ones (i.e., those whose
inverse image admits a left adjoint).

In presence of Morita-equivalences of the above form holding for all preorders
C belonging to a certain class, one can thus try to construct a Stone-type duality
for a category K whose objects are the objects in that class and whose morphisms
are the maps which induce (either via (a) or via (b)) geometric morphisms be-
tween the associated toposes; indeed, under these hypotheses we automatically
have a functor (contravariant or covariant depending on whether one chooses to
functorialize the given Morita-equivalences via (a) or (b)) from K to the category
of localic Grothendieck toposes (equivalently, to the opposite of the category of
frames). In this way we get the first arches of our ‘bridges’. Since our aim is
to eventually obtain a categorical equivalence, rather than just a functor, we need
to be able to ‘exit’ the bridges as well; in other words, we need to be able to re-
cover the structures D (resp. C) appearing in the Morita-equivalences from the
associated toposes Sh(D,K) (resp. Sh(C, J)) by means of suitable topos-theoretic
invariants. Clearly, for this to be the case, a necessary condition is that the topolo-
gies J and K be subcanonical, equivalently thatD (resp. C) embeds into Sh(D,K)
(resp. Sh(C, J)) via the Yoneda embedding. Notice that under this hypothesis, the
Yoneda embedding D → Sh(D,K) (resp. C → Sh(C, J)) sends each element of
D (resp. of C) to the associated principal ideal. Since Sh(D,K) ' Sh(IdK(D))
and Sh(C, J) ' Sh(IdJ(C)), and any frame L can be recovered from the associ-
ated topos Sh(L) of sheaves on it as the frame of its subterminal objects, we are
reduced to the problem of characterizing the principal ideals among all the ideals
in invariant terms.

Very interestingly, it turns out that if the topologies K (resp. J) can be ‘uni-
formly described through an invariant C of families of subterminals in a topos
(equivalently, of families of elements of frames)’ (in a sense to be made precise
below in Definition 4.1 and Theorem 4.2) then the principal ideals on C can be
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characterized among the elements of the frame IdJ(C) precisely as the ones which
satisfy a key condition of C-compactness (in the sense of Definition 4.1).

The idea behind the following notion of C-induced topology J on a preorder
category C is that J should be generated by sieves obtained by taking the joins, in
appropriate frames extending C (satisfying enough invariant properties P to make
them behave sufficiently like the canonical embedding C ↪→ IdJ(C)), of families
of elements satisfying C.

Definition 4.1. Let C be a frame-theoretic invariant property of families of ele-
ments of a frame (for example, ‘to be finite’, ‘to be a singleton’, ‘to be of cardinal-
ity at most k (for a given cardinal k)’, ‘to be formed by elements which are pairwise
disjoint’,‘to be directed’ etc.).

• Given a preordered structure C, a Grothendieck topology J on C is said to
be C-induced if for any Jcan

F -dense monotone embedding i : C ↪→ F into a
frame F (where Jcan

F is the canonical topology on F) possibly satisfying some
invariant property P which is known to hold for the canonical embedding
C ↪→ IdJC(C) and such that the JC-covers on C are sent by i to covers in F,
for any family A of elements in C there exists a JC-cover S on an element
c ∈ C such that the elements a ∈ A such that a ≤ c generate S if and only if
the image i(A) of the family A in F has a refinement satisfying C made of
elements of the form i(c′) (for c′ ∈ C).

• An element u of a frame F is said to be C-compact if every covering of u in
F has a refinement satisfying C.

Here are some examples of Grothendieck topologies on preordered structures.

• If P is a preorder, the trivial topology on P is the one in which the only
covering sieves are the maximal ones.

• If D is a distributive lattice, the coherent topology Jcoh
D on D is the one in

which the covering sieves are exactly those which contain finite families
whose join is the given element.

• If F is a frame, the canonical topology Jcan
F on F is the one in which the

covering sieves are exactly the families whose join is the given element.

• If D is a disjunctively distributive lattice (i.e. a meet-semilattice in which
finite joins of pairwise disjoint elements - that is, of elements whose meet
is the zero element - exist and distribute over finite meets), the disjunctive
topology Jdj

D on D is the one in which the covering sieves are exactly those
which contain finite families of pairwise disjoint elements whose join is the
given element.
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• If U is a k-frame (i.e. a meet-lattice in which joins of families of less than k
elements exist and distribute over finite meets), the k-covering topology Jk

U
on U is the one in which the covering sieves are those which contain families
of less than k elements whose join is the given element.

• If V is a preframe (i.e. a meet-semilattice in which joins of directed families
of elements exist and distribute over finite meets), the directed topology Jdir

V
on V is the one in which the covering sieves are precisely those which contain
directed families of elements whose join is the given element.

Notice that the distributivity property of the joins in the structures considered
above is crucial for the associated Grothendieck topologies to be well-defined; in-
deed, it corresponds precisely to the pullback stability property for covering sieves.
In the absence of such distributive laws, one can consider the Grothendieck topol-
ogy generated by the sieves corresponding to joins of the appropriate kind in the
given structure, but such a topology no longer admits a description in invariant
terms as required by our general theory.

It is shown in [18] that the above topologies are all C-induced for an invariant
C as in Definition 4.1; more precisely, the trivial (resp. coherent, canonical, dis-
junctive, k-covering, directed) topology is C-induced where C is the invariant ‘to
be a singleton’ (resp. ‘to be finite’, ‘to be any family’, ‘to be of cardinality at most
k’,‘to be formed by elements which are pairwise disjoint’, ‘to be directed’).

On the other hand, consider the canonical topology Jcan
P on a preorder P which

is not a frame; this is defined by stipulating that for any sieve {ai → a | i ∈ I},
S ∈ Jcan

P (a) if and only if a =∨
i∈I

ai and this join is distributive in the sense that for

any b ≤ a, b is equal to the sup of all the elements ≤ b which are ≤ ai for some
i ∈ I. The fact that the form of the distributive joins in P can vary with the elements
of P in a way which cannot be described in general invariant (whence independent
from P) terms is responsible for the fact that this topology, unlike those considered
above, is not C-induced for an invariant C.

The following theorem shows the importance of the notion of C-induced topol-
ogy for building Stone-type dualities.

Theorem 4.2 ([18]). (a) If a Grothendieck topology J on a poset C is C-induced
for some invariant C of families of elements of a frame and the invariant C
satisfies the property that for any structure C in K and for any family F of
principal J-ideals on C, F has a refinement satisfying C (if and) only if it has
a refinement satisfying C made of principal J-ideals on C, then the poset C
can be recovered from the frame IdJ(C) (resp. from the topos Sh(C, J)) as the
poset of its C-compact elements (resp. subterminals).

(b) If all the Grothendieck topologies JC associated with structures C in a certain
class K are C-induced for a given invariant C (relatively to a property P as in
Definition 4.1) then the frames of the form IdJC(C) can be intrinsically charac-
terized as the frames F with a basis BF of C-compact elements which, regarded
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as a poset with the induced order, belongs to K , and such that the embedding
BF ↪→ F satisfies property P, the property that every covering in F of an ele-
ment of BF is refined by a covering made of elements of BF which satisfies the
invariant C, and the property that the JBF -covering sieves are sent by the em-
bedding BF ↪→ F into covering families in F (where JBF is the Grothendieck
topology with which BF comes equipped as a structure in K).

Applying Theorem 4.2 in connection with the general theorems on geometric
morphisms of toposes recalled above, one can easily generate a great number of
Stone-type dualities following the methodology outlined above.

For obtaining dualities with categories of topological spaces rather than lo-
cales/frames, one can use the following construction, which provides a canonical
way for endowing a given set of points of a topos with a natural topology. Recall
that, given a point p of a topos E, the image under p∗ of a subterminal object of E
is a subterminal object of 1Set = {∗}, in other words it is either the singleton or the
emptyset.

Definition 4.3. Let ξ : X → P be an indexing of a set P of points of a Grothendieck
topos E by a set X. The subterminal topology τEξ is the image of the function
φE : SubE(1) → P(X) (where SubE(1) is the frame of subterminal objects in E)
given by

φE(u) = {x ∈ X | ξ(x)∗(u) � 1Set} .

We denote the space X endowed with the topology τEξ by XτEξ .
If E is a localic topos and ξ indexes all the points of E (up to isomorphism)

then the space XτEξ is called the space of points of E.

Indeed, the following proposition shows that in order to obtain a topological
duality or equivalence from a localic one, it suffices to make a functorial choice of
a separating set of points of the toposes Sh(C, J) and Sh(D,K) (in a sense which is
made precise in [18]). Recall that a set of points of a topos is said to be separating
if their inverse image functors are jointly conservative.

Proposition 4.4. If P is a separating set of points for E (for example, the set of
points of a localic topos having enough points) then the frame O(XτEξ ) of open sets
of XτEξ is isomorphic to SubE(1) (via φE).

Remark 4.5. Any topological space X is homeomorphic to the space X
τSh(X)
ξ

, where

ξ is the canonical indexing of the points of Sh(X) given by the points of X.

A topological space X is said to be sober if every irreducible closed subset
is the closure of a unique point. Sober spaces can also be characterized as the
topological spaces X such that the canonical map X → X

τSh(X)
χ

, where χ is the
indexing of the set of all points of Sh(X) is a homeomorphism (cf. Theorem 2.10
[18]). Affine algebraic varieties with the Zariski topology are sober spaces (cf. the
topos-theoretic interpretation of the Zariski topology below).
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The interest of the notion of subterminal topology lies in its level of generality
and its formulation as a topos-theoretic invariant admitting natural site characteri-
zations, as shown by the following theorem.

Definition 4.6. Let (C,≤) be a preorder and J a Grothendieck topology on it. A
J-prime filter on C is a subset F ⊆ C such that F is non-empty, a ∈ F implies b ∈ F
whenever a ≤ b, for any a, b ∈ F there exists c ∈ F such that c ≤ a and c ≤ b, and
for any J-covering sieve {ai → a | i ∈ I} in C if a ∈ F then there exists i ∈ I such
that ai ∈ F.

Theorem 4.7 ([18]). Let C be a preorder and J be a Grothendieck topology on it.
Then the space XτSh(C,J) has as set of points the collection F J

C
of the J-prime filters

on C and as open sets the sets the form

FI = {F ∈ F J
C

| F ∩ I , ∅},

where I ranges among the J-ideals on C. In particular, a sub-basis for this topology
is given by the sets

Fc = {F ∈ F J
C

| c ∈ F},

where c varies among the elements of C.

Here are some examples of ‘subterminal topologies’:

• The Alexandrov topology: taking E = [P,Set], where P is a preorder and ξ
is the indexing of the set of points of E corresponding to the elements of P,
we obtain the Alexandrov topological spaceAP associated with P.

• The Stone topology for distributive lattices: taking E = Sh(D, Jcoh
D

) where
D is a distributive lattice and ξ is an indexing of the set of all the points of
E, we obtain the space of prime filters on D.

• A topology for meet-semilattices: taking E = [Mop,Set] for a meet-semilattice
M and ξ is an indexing of the set of all the points of E, we obtain the space
of filters onM.

• The space of points of a locale L is obtained by taking E = Sh(L) and ξ to
be an indexing of the set of all the points of E.

• A logical topology on a set S of set-based models of a geometric theory:
taking E equal to the classifying topos Sh(CT, JT) of a geometric theory T
and ξ any indexing of the points in S, we obtain a space whose points are
the models of T in S and whose open sets are given by the subsets {M ∈ S |
M � φ} for a geometric sentence φ over the signature of T.

• The Zariski topology on the set of prime filters of a commutative ring with
unit A is recovered by taking in the previous point T equal to the theory PA

of prime filters on A defined as follows. The signature of PA consists of a
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propositional symbol Pa for each element a ∈ A, and the axioms of PA are
the following:

(> ` P1A);

(P0A ` ⊥);

(Pa·b a` Pa ∧ Pb)

for any a, b in A;
(Pa+b ` Pa ∨ Pb)

for any a, b ∈ A.

The models of PA in Set are precisely the prime filters on A, that is the
subsets S of A such that the complement A \ S is a prime ideal. If, instead
of taking the theory PA of prime filters, we had considered the propositional
theory of prime ideals (axiomatized over the same signature in the obvious
way), we would have obtained a classifying topos inequivalent to the small
Zariski topos of A, in spite of the fact that the two theories have the same
models in Set.

The classifying topos of PA is precisely the small Zariski topos of A.

The fact that many different ‘concrete’ dualities or equivalences can be gener-
ated by applying our machinery is due to the generality of the method (which in
fact goes well beyond the setting of preordered categories) and to the degrees of
freedom implicit in it: the choice of the structures C, that of the structures D, that
of the topologies J and K, that of the points of the toposes Sh(C, J) and Sh(D,K)
and even that of the way for functorializing the given Morita-equivalences.

Let us discuss, by way of illustration, how two classical dualities can be nat-
urally recovered by applying our machinery, and a few examples of new dualities
obtained through it.

Stone duality between the category of distributive lattices and that of coherent
spaces is obtained by functorializing the Morita-equivalences of the form

Sh(D, Jcoh
D ) ' Sh(XD),

where D is any distributive lattice and XD is the Stone space associated with D.
Indeed, the morphisms D→ D′ of distributive lattices are precisely the morphisms
of sites (D, Jcoh

D )→ (D′, Jcoh
D′ ), and any distributive lattice D can be recovered from

Sh(D, Jcoh
D ) as the lattice of its compact subterminals; accordingly, the arrows in

the target category are the continuous maps between coherent spaces whose inverse
image send compact open sets to compact open sets. The space XD is the space of
points of the locale IdJcoh

D
(D) of ideals of D. As predicted by Theorem 4.2, the

coherent spaces are precisely the sober topological spaces with a basis of compact
open sets which forms a distributive lattice (equivalently, with a basis of compact
open sets which is closed under finite intersections).
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Lindenbaum-Tarski duality between the category of sets and the category of
complete atomic Boolean algebras and frame homomorphisms between them which
preserve arbitrary infima can be obtained by functorializing the Morita-equivalences
of the form

[A,Set] ' Sh(P(A)),

where A is any set and P(A) is the powerset of A, or of the form

Sh(B) ' Sh(At(B)),

where B is any complete atomic Boolean algebra and At(B) is the set of its atoms.
Here B is viewed as a frame and equipped with the canonical topology, with respect
to which the full subcategory At(B) of B is dense (by definition of atomic frame).

Notice that any map of sets f : A → B induces a frame homomorphism
P( f ) : P(B) → P(A) which preserves arbitrary infima. A geometric morphism
[A,Set] → [B,Set] is of the form E( f ) for some map f : A → B (resp. a frame
homomorphism P(B) → P(A) is of the form P( f ) for some map f : A → B)
if and only if it is essential (resp. it admits a left adjoint or, equivalently by the
Adjoint Functor Theorem, it preserves arbitrary infima). The invariant notion of
essential geometric morphism thus provides a most abstract explanation for the
fact that one has to take frame homomorphisms which preserve arbitrary infima as
arrows between complete atomic Boolean algebras in order to obtain a duality with
the category of sets.

Among the new dualities or equivalences that we obtain by means of our ma-
chinery we mention the following:

• A duality between the category of meet-semilattices and meet-semilattices
homomorphisms betweeen them and the category of locales whose objects
are the locales with a basis of supercompact elements which is closed under
finite meets and whose arrows are the locale maps whose associated frame
homomorphisms send supercompact elements to supercompact elements.

• A duality between the category of frames with a basis of supercompact el-
ements and complete homomorphisms between them and the category of
posets (endowed with the Alexandrov topology).

This duality restricts to Lindenbaum-Tarski duality.

• A duality between the category of disjunctively distributive lattices and the
category whose objects are the sober topological spaces which have a basis
of disjunctively compact open sets which is closed under finite intersection
and satisfies the property that any covering of a basic open set has a dis-
junctively compact refinement by basic open sets and whose arrows are the
continuous maps between such spaces such that the inverse image of any
disjunctively compact open set is a disjunctively compact open set.
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• For any regular cardinal k, a duality between the category of k-frames and the
category whose objects are the frames which have a basis of k-compact ele-
ments which is closed under finite meets and whose arrows are the frame ho-
momorphisms between them which send k-compact elements to k-compact
elements.

• A duality between the category of disjunctive frames and the category Posdis

which has as objects the posets P such that for any a, b ∈ P there exists a
family {ci | i ∈ I} of elements of P such that for any p ∈ P, p ≤ a and p ≤ b
if and only if p ≤ ci for a unique i ∈ I and as arrows P → P′ the monotone
maps g : P → P′ such that for any b ∈ P′ there exists a family {ci | i ∈ I} of
elements of P such that for any p ∈ P, g(p) ≤ b if and only if p ≤ ci for a
unique i ∈ I.

• A duality between the category DirIrrPFrm of directedly generated pre-
frames whose objects are the directedly generated preframes and whose ar-
rowsD → D′ are the preframe homomorphisms f : D → D′ between them
such that the frame homomorphism A( f ) : IdJD(D) → IdJ′

D
(D′) which

sends an ideal I ofD to the ideal ofD′ generated by f (I) preserves arbitrary
infima, and the category Posdir having as objects the posets P such that for
any a, b ∈ P there is c ∈ P such that c ≤ a and c ≤ b and for any elements
d, e ∈ P such that d, e ≤ a and d, e ≤ b there exists z ∈ P such that z ≤ a,
z ≤ b, d, e ≤ z, and as arrows P → P′ the monotone maps g : P → P′ with
the property that for any b ∈ P′ there exists a ∈ P such that g(a) ≤ p and for
any two u, v ∈ P such that g(u) ≤ b and g(v) ≤ b there exists z ∈ P such that
u, v ≤ z and g(z) ≤ b.

This duality restricts to the well-known duality between algebraic lattices
sup-semilattices.

• An equivalence between the category of meet-semilattices and the category
whose objects are the meet-semilattices F with a bottom element 0F which
have the property that for any a, b ∈ F with a, b , 0, a ∧ b , 0 and whose
arrows are the meet-semilattice homomorphisms F → F′ which send 0F to
0F′ and any non-zero element of F to a non-zero element of F′.

• A duality between the category IrrDLat whose objects are the irreducibly
generated distributive lattices and whose arrowsD → D′ are the distributive
lattices homomorphisms f : D → D′ between them such that the frame
homomorphism A( f ) : IdJD(D) → IdJ′

D
(D′) which sends an ideal I ofD to

the ideal ofD′ generated by f (I) preserves arbitrary infima, and the category
Poscomp whose objects are the posets and whose arrows P → P′ are the
monotone maps g : P → P′ such that for any q ∈ P′, there exists a finite
family {ak | k ∈ K} of elements of P such that for any p ∈ P, g(p) ≤ q if and
only if p ≤ ak for some k ∈ K.

This duality restricts to Birkhoff duality.
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• A duality between the category AtDLat whose objects are the atomic dis-
tributive lattices and whose arrows D → D′ are the distributive lattices
homomorphisms f : D → D′ between them such that the frame homo-
morphism A( f ) : IdJD(D) → IdJ′

D
(D′) which sends an ideal I of D to the

ideal of D′ generated by f (I) preserves arbitrary infima, and the category
Set f whose objects are the sets and whose arrows A → B are the functions
f : A → B such that the inverse image under f of any finite subset of B is a
finite subset of A.

Let us explain, by way of illustration, how the duality between DirIrrPFrm
and Posdir is obtained. Given a preframeD, we say that an element d ∈ D is direct-
edly irreducible if any directed sieve on d is maximal, i.e. if for any directed family
{di | i ∈ I} of elements of D such that d =∨

i∈I
di there exists i ∈ I such that d = di;

given a preframe D, we denote by DirIrr(D) the poset of directedly irreducible
elements of D. We shall call the preframes in which every element is a directed
join of directedly irreducible elements the directedly generated preframes. For any
directedly generated preframeD, the Comparison Lemma yields an equivalence of
toposes

Sh(D, Jdir
D ) ' [DirIrr(D)op,Set] .

The invariant C =‘to be a directed family’ satisfies the hypotheses of Theorem
4.2 for each directedly generated preframe D, each of which equipped with the
directed topology JD. We functorialize the above equivalences contravariantly on
the side of preframes using morphisms of sites and covariantly on the side of their
sets of directedly irreducible elements using essential geometric morphisms. In this
way, we obtain an equivalence between the category DirIrrPFrm defined above
and the category whose objects are the posets P such that the subset Iddir(P) of C-
compact elements of Id(P) is closed in Id(P) under finite meets and whose arrows
P → P′ are the monotone maps g : P → P′ between them such that the inverse
image g−1 : Id(P′) → Id(P) sends ideals in Iddir(P′) to ideals in Iddir(P). It is
not hard to see that the latter category coincides with the category Posdir defined
above.

It should be noted that all the Stone-type dualities or equivalences generated
through our machinery have essentially the same level of ‘mathematical depth’ as
the classical Stone duality. Still, the technical sophistication of the different duali-
ties can vary substantially from one to the other; compare for instance the duality
for directedly irreducible preframes described above with the classical Stone dual-
ity. Whilst the latter was discovered by Stone without the help of toposes, it can be
argued that without the insight provided by toposes one could have hardly discov-
ered the former duality, just because of its higher technical sophistication; interest-
ingly, its restriction to the categories of algebraic lattices and of sup-semilattices
had been found before (without using toposes) but the description of the categories
and functors involved in this restricted duality is much simpler than in the general
case.

64



Quite remarkably, even when we recover classical dualities by applying our
machinery, the description of the categories or the functors involved can be differ-
ent from (and even simpler than) the classical one, reflecting the peculiar nature of
our methodology. As an example, take Moshier and Jipsen’s topological duality for
meet-semilattices established in [66]. Our duality for meet-semilattices is based on
the equivalence

[Mop,Set] ' Sh(XM)

holding for each meet-semilatticeM naturally inM, where XM is the topological
space obtained by putting the subterminal topology on the set of points of the topos
[Mop,Set], namely the space of filters on M. Since [Mop,Set] ' Sh(IdM), the
meet-semilattice M can be recovered from the locale IdM (resp. from the space
XM) as the subset of supercompact (i.e., not admitting any non-trivial covering in
the frame) elements in it (resp. as the subset of supercompact open sets of XM). In
[66] instead, the meet-semilatticeM is recovered from XM as the set of its compact
open sets which satisfy a certain filtering property with respect to the specialization
order.

In [18], we also establih a number of other results on the general theme of
Stone-type dualities, including adjunctions between categories of preorders and
categories of frames or locales, for instance between meet-semilattices (resp. dis-
tributive lattices, preframes, Boolean algebras) and frames. We also apply the
methodology of ‘toposes as bridges’ for translating properties of preordered struc-
tures into properties of the corresponding posets, locales or topological spaces; an
example of such transfers, involving the Alexandrov space AP associated with a
preorder P, was discussed in section 3.1 above.

The key feature of toposes that we have exploited in the context of this inves-
tigation is the fact that they allow one to embody in a single object the abstract
(i.e., categorically invariant) relationships existing between different pairs of struc-
tures, in this case between structures related by a density condition (in the sense
of the Comparison Lemma). Let us illustrate this point by discussing the case of
a topological space X and a basis B for it. Concretely, the set O(X) of open sets
of a topological space X (and hence the space X itself, if it is sober) can be re-
constructed from any basis B, regarded concretely as a subset of P(X), by taking
the subsets of X which are unions of subsets in B. Abstractly, that is regarding B
as a preorder category, a further ingredient is necessary for recovering O(X) from
B: this ingredient is precisely the Grothendieck topology Jcan

O(X)|B induced by the
canonical topology Jcan

O(X) on O(X). Indeed, by the Comparison Lemma we have an
equivalence of toposes

Sh(X) ' Sh(B, Jcan
O(X)|B)

or, equivalently, an isomorphism of frames

O(X) � IdJcan
O(X) |B

(B) .

The most interesting situations, that is those which give rise to genuine rep-
resentation theorems, are those in which the induced topology Jcan

O(X)|B admits an
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intrinsic description in terms of the categorical structure on B. Indeed, in such a
situation one can recontruct the space X from B alone, without the need of any
additional datum. Notice that this is for instance the case of Stone duality: given a
coherent space X, the induced topology on the basis for X formed by the compact
open sets, which is a distributive lattice, is equal to the coherent topology on it. We
shall encounter other situations of this kind in section 4.1.4 below.

The possibility of embodying abstract relationships by means of equivalences
between two different representations of the same topos has great conceptual and
technical power. Indeed, it allows a structural, and hence most canonical, investi-
gation of the relationships existing between the different structures related by the
equivalence founded on the duality between toposes and their sites of definition.

Our general topos-theoretic framework for Stone-type dualities can also be
used for generating dualities for more complex algebraic or topological structures
through the identification of appropriate topos-theoretic invariants; by way of illus-
tration, we discuss the topos-theoretic generation of analogues of Priestley duality
for distributive lattices for other kinds of partially ordered structures in section
4.1.3 below. It can also be used for establishing completeness theorems for propo-
sitional logics whose syntactic sites are preorded sites to which our theory applies.

The last part of [18] is devoted to the problem of constructing partially ordered
structures presented by generators and relations. As we have already explained
in section 2.1.3, the theory of syntactic categories can be systematically used for
addressing this kind of problems; in fact, we show in [18] that a large class of
structures (called ‘ordered infinitary Horn theories’) presented by generators and
relations can be realized as syntactic categories of suitable theories. The interest
of the technique of toposes as ‘bridges’ in this context lies in the fact that for a
theory belonging to a fragment of geometric logic any different representation of
its classifying topos will provide a different description of its syntactic category as
a full subcategory of it.

For instance, given a commutative ring with unit (A,+, ·, 0A, 1A), the distribu-
tive lattice L(A) generated by symbols D(a), a ∈ A, subject to the relations D(1A) =

1L(A), D(a · b) = D(a) ∧ D(b), D(0A) = 0L(A), and D(a + b) ≤ D(a) ∨ D(b) can be
characterized (up to isomorphism) as the lattice of compact elements of the frame
of open sets of the prime spectrum of A endowed with the Zariski topology since it
coincides with the coherent syntactic category of the theory PA of prime filters on
A introduced above. Indeed, we have an equivalence

Sh(L(A), Jcoh
L(A)) ' Sh(Spec(A)) .

The topos Sh(Spec(A)) also admits alternative representations reflecting the differ-
ent points of view that one can have on the Zariski spectrum; for instance, we have
an equivalence

Sh(Spec(A)) ' Sh(Rad(A), JA),

where Rad(A) is the frame of radical ideals of A (with the subset-inclusion order-
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ing) and JA is the canonical topology on it, and an equivalence

Sh(Spec(A)) ' Sh(S (A),C),

where S (A) is the meet-semilattice given by the quotient of the underlying monoid
of A by the smallest congruence which identifies a and a2 for all elements a of
A, with the order given by [a] ≤ [b] if and only if a · b = a (where [a] denotes
the equivalence class of a in S (A)), while CA is the Grothendieck topology on
S (A) generated by the covering families of the form ∅ ∈ CA([0A]) and of the form
[ai] → [a] (for i = 1, . . . , n), where [ai] ≤ [a] and [a1 + · · · + an] = [a] = x (cf.
section 8.7 of [18] and section V3.1 of [50]).

Another example is provided by the construction of the free frame F(A) on a
complete join-semilattice A. This can be built as the geometric syntactic category
of the theory LA defined as follows: the signature ΣA of LA consists of one 0-ary
relation symbol Fa for each element a ∈ A, and the axioms of LA are, besides those
of geometric logic, all the sequents over ΣA of the form

(∨
i∈I

Fai a` Fa)

for any family of elements {ai | i ∈ I} in A such that a =∨
i∈I

ai in A, and of the form

(Fa ` Fb)

for any elements a, b ∈ A such that a ≤ b.
This preorder category is the frame of subterminal objects of the classifying

topos of LA, so any representation Sh(C, J) of this classifying topos will yield a
representation of F(A) as the frame of J-ideals on C. One can take for instance
C to be the opposite of the category of finitely presentable models of the empty
cartesian theory over the signature of LA (which can be identified with the set
Pfin(A) of finite subsets of A) and J to be the Grothendieck topology associated
with LA as a quotient of this theory, or choose any other representation to obtain
an alternative description of the frame F(A).

4.1.2 A general method for building reflections

The notion of adjunction between two categories represents a natural weakening
of that of categorical equivalence; indeed, any adjunction restricts to a categorical
equivalence between the subcategories of fixed points of the two adjoint functors.
An adjunction is said to be a reflection (resp. a coreflection) is the counit (resp.
the unit) is an isomorphism, equivalently if the right (resp. left) adjoint functor
is full and faithful. Reflections and coreflections are dual to each other, and they
suffice to generate all adjunctions since, as it is shown in [57], any adjunction can
be canonically obtained by composing a coreflection with a reflection by means of
the comma category construction.
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We have seen in section 4.1.1, reviewing the contents of paper [18], that many
Stone-type dualities or equivalences between categories of preorders and categories
of posets, locales and topological spaces can be obtained from the process of ap-
propriately ‘functorializing’ families of categorical equivalences between toposes.
Since Stone-type dualities or equivalences normally extend to adjunctions between
larger categories, it is natural to wonder whether such adjunctions can also be ob-
tained starting from relationships between the toposes associated with the struc-
tures as in the theory of [18] which are looser than that of categorical equivalence.
Paper [20] provides a positive answer to this question, by showing that families of
geometric morphisms between those toposes satisfying a number of natural condi-
tions are liable to generate reflections extending the given dualities or equivalences.

For example, Stone’s adjunction between the category of Boolean algebras and
that of topological spaces can be obtained starting from the canonical geometric
morphisms

Sh(X)→ Sh(BX , Jcoh
BX

),

where BX is the Boolean algebra of clopen sets of X, while Alexandrov’s equiv-
alence between the category of preorders and that of topological spaces can be
obtained starting from the canonical geometric morphisms

[X≤,Set]→ Sh(X),

where X≤ is the preorder obtained by equipping the set of points of a topological
space X with the specialization pre-ordering.

We develop our technique for generating reflections in full generality, imple-
menting the idea that adjunctions between a given pair of categories can be nat-
urally generated starting from a pair of functors from each of the two categories
into a third one together with some relationships between them. Our method is
complete, in the sense that any reflection between categories can be obtained as
an application of it, but its main interest lies in its inherent technical flexibility;
indeed, it happens very often in practice that two different categories are best un-
derstood in relation with each other from the point of view of a third category to
which both are related (cf. the philosophy of toposes as ‘bridges’ or the concept of
comma category [57]).

Our method proceeds in a ‘top-down’ way starting from a family of arrows (sat-
isfying appropriate conditions) which express relations between the ‘realizations’
of objects and arrows of two given categories in a ‘bridge category’ to which both
of them map: the unit and counit are directly derived from the arrows in the family,
and the categories and functors yielding the reflection are equally built from the
given family through a general formal procedure.

4.1.3 Priestley-type dualities for partially ordered structures

In this section, which is based on [21], we briefly review a general method, based
on the ‘bridge’ technique, for building natural analogues of the classical Priestley
duality for distributive lattices for other kinds of partially ordered structures.
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Recall that Priestley duality for distributive lattices (cf. [69] and [70]) is a
duality between the category of distributive lattices and the category of Priestley
spaces. Via this duality, a distributive lattice D corresponds to the ordered topo-
logical space PD obtained by equipping the set FD of prime filters on D with the
patch topology (i.e., the topology having as a sub-basis the collection of the sets
of the form {P ∈ FD | d ∈ P} for d ∈ D and their complements) and the spe-
cialization order ≤ on FD with respect to the coherent topology on FD (i.e., the
topology having as a basis the collection of sets of the form {P ∈ FD | d ∈ P}): no-
tice that this order is precisely the subset-inclusion one. The assignment D → PD

can be made functorial as follows: any morphism D → D′ of distributive lattices
induces an order-preserving continuous map PD′ → PD. We thus have a functor
P : DLat→ PTop, to which we shall refer as the Priestley functor, where DLat is
the category of distributive lattices and PTop is the category of ordered topological
spaces. Any distributive lattice D can be recovered from the associated Priestley
space as the poset of clopen ≤-upper sets; in fact, this assignment defines a functor
from the category of Priestley spaces to the opposite of the category of distributive
lattices which yields the other half of Priestley duality. The ordered topological
spaces (X, τ,≤) which are, up to isomorphism, in the image of the Priestley functor
are called Priestley spaces; notably, these spaces admit natural intrinsic topological
characterizations as the compact ordered topological spaces satisfying the Priestley
separation axiom: if for any x, y ∈ X such that x � y, there is a clopen ≤-upper set
U of τ such that x ∈ U and y < U.

Looking at Priestley duality from an algebraic viewpoint, we see that we can
characterize the algebra of clopen subsets of the Priestley space associated to a
distributive lattice D via Priestley duality as the free Boolean algebra on D.

In order to build natural ‘Priestley-type’ for partially ordered structures other
than distributive lattices, we generalize both the topological and the algebraic view-
point on the classical duality. As we have just remarked, topologically Priestley du-
ality is based on the patch topology construction, while algebraically the Boolean
algebra of clopen sets of the Priestley space associated to a distributive lattice can
be characterized as the free Boolean algebra on it. The unification between the al-
gebraic and the topological formulations of the duality is conveniently provided by
the notion of topos; in fact, the toposes involved in Priestley-type dualities admit,
on the one hand, an algebraic representation (as categories of sheaves on a pre-
ordered structure with respect to an appropriate Grothendieck topology on it) and
on the other hand a topological one (as categories of sheaves on suitable spectra of
these structures, as provided by the techniques of [18]).

Topologically, our ‘Priestley-type’ dualities are built by considering natural
spectra for the given partially ordered structures, generating patch-type topologies
from them and equipping the resulting spaces with the specialization ordering on
the original spectra; algebraically, the dualities are obtained by assigning to any
given ordered structure a Boolean algebra which is free on it (in an appropriate
sense), equipped with a natural ordering on the points of its spectrum.

We discuss in [21] specific examples of dualities generated through this method,
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including ‘Priestley-type’ dualities for coherent posets, meet-semilattices and dis-
junctively distributive lattices.

For instance, our Priestley-type duality for meet-semilattices reads as follows.
We have a categorical equivalence

B : MsLatop → PTopM

between the category MsLat of meet-semilattices and a subcategory PTopM of the
category of Priestley spaces.

Given a meet-semilattice M, the Priestley space B(M) is the ordered topo-
logical space whose underlying set is the collection XM of all the filters on M,
endowed with the topology generated by the sets of the form {F ∈ XM | m ∈ F}
and their complements in P(XM), and with the order ≤M defined as follows: for
any F, F′ ∈ XM, F ≤M F′ if and only if F ⊆ F′. Given a meet-semilattice homo-
morphism f :M→ N , B( f ) : XN → XM is the map sending any filter F in XN to
the filter inM given by the inverse image f −1(F).

Given a Priestley space, we call a clopen upper set which cannot be decom-
posed as a proper union of clopen upper sets weakly indecomposable.

The subcategory PTopM can be characterized as the category of ordered topo-
logical spaces whose objects are the Priestley spaces (X, τ,≤) such that for any
x, y ∈ X with x � y, there is a weakly indecomposable clopen ≤-upper set U
of τ with the property that x ∈ U and y < U, and such that the intersection of
any two weakly indecomposable clopen ≤-upper set is weakly indecomposable,
and whose arrows are the continuous order-preserving maps between them such
that the inverse image of any weakly indecomposable upper clopen set is weakly
indecomposable.

Any meet-semilatticeM can be recovered from the associated Priestley space
B(M) as the set of weakly indecomposable clopen ≤-upper sets.

Algebraically, the algebra of clopen subsets of the Priestley space B(M) can
be identified with the free Boolean algebra on the meet-semilattice M (for any
M ∈MsLat).

In [21] we also establish a link between the construction of free structures
and that of Stone-type or Priestley-type dualities. Note that in the classical Priest-
ley duality one recovers a distributive lattice from the free Boolean algebra on it
equipped with a partial order on its spectrum (as the set of its upper elements with
respect to this order), while in the classical Stone duality one recovers a distribu-
tive lattice from the free frame on it (as the set of its compact elements). In fact,
all the Priestley-type dualities established by means of the method of [21] arise, if
viewed algebraically, from the construction of free Boolean algebras on particular
kinds of posets, while the Stone-type dualities established in [18] arise from the
construction of free frames or posets on preordered structures.

A key result in this respect which is proved in [21] concerns the spatial realiza-
tion of these free structures as substructures of powerset structures. Notice that the
free Boolean algebra on a distributive lattice D can be realized as the sub-Boolean
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algebra of the powerset P(XD), where XD is the Stone spectrum of D, generated by
D � O(XD) ↪→P(XD). To obtain an analogue of this result for general Priestley-
type dualities, we treat the matter in full generality by introducing the notion of
‘the free (L,M)-structure on a preordered structure C’ (where L is a category of
first-order structures over a one-sorted signature Σ and M is a class of functions
from C to structures in L) as a structure equipped with an embedding i of C in it
such that any function f inM can be uniquely extended via i to an arrow in L.

We then prove a general theorem allowing us to identify, under appropriate
assumptions including in particular the requirement that any powerset P(X) be
naturally identified wtih a Σ-structure in L and for any function f : X → Y , the
function P( f ) : P(Y) → P(X) be an arrow in L, the free (L,M)-structure on
C’ as the Σ-substructure of P(XC) generated by C (where XC is a space associated
with C as in Theorem 2.7 [21]). Notice that the problem of choosing a space XC
such that a free structure on C can be realized as a substructure of P(XC) generated
by C is quite delicate since in general the two constructions have nothing to do
with each other. Take for example C = P(X); C, regarded as a meet-semilattice,
coincides with the Boolean algebra generated by itself, but it is not the free Boolean
algebra on it (as a meet-semilattice), since Boolean algebra homomorphisms of
Boolean algebras do not in general coincide with meet-semilattice homomorphisms
of their underlying meet-semilattices. Anyway, as shown by Theorem 2.7 [21], for
a great variety of structures C there is a natural choice of a set X such that C can be
embedded as a substructure of the powerset P(X) and the free (L,M)-structure
on C can be identified with the substructure of P(X) generated by C. The way XC
is constructed in [21] is by taking the space of points of a topos Sh(C, JC), where
JC is a Grothendieck topology on C satisfying some natural assumptions.

As an illustration of this result, consider the problem of building the free dis-
tributive lattice DM on a meet-semilattice M. We show that we have an equiva-
lence of toposes

Sh(DM, Jcoh
DM) ' [Mop,Set]

and that DM can be realized as the sublattice of P(XM) generated by M ↪→

O(XM) ⊆ P(XM) (where XM is the space of filters on M as defined in [18],
cf. section 4.1.1 above).

The meet-semilatticeM can be recovered from DM as the set of elements of
DM which are indecomposable, in the sense that they cannot be written as a proper
finite join of elements of DM. The free functor MSLat → DLat thus has an in-
verse defined on its essential image, which sends a distributive lattice D in it to
the set of its indecomposable elements. This equivalence can be extended to a
coreflection from MSLat to the subcategory of DLat whose objects are the dis-
tributive lattices whose set of indecomposable elements forms, with the induced
order, a meet-semilattice, and whose arrows are the distributive lattice homomor-
phisms which send indecomposable elements to indecomposable elements; indeed,
for any such distributive lattice D, denoting by MD the collection of its indecom-
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posable elements, we have a canonical geometric morphism

Sh(D, Jcoh
D )→ [MDop,Set] .

The essential image of the free functor MSLat → DLat can be characterized
as the subcategory of DLat whose objects are the distributive lattices D such that
any element can be written as a finite join of indecomposable elements and the
meet of any two indecomposable elements is indecomposable and whose arrows
are the distributive lattice homomorphisms between such lattices which send in-
decomposable elements to indecomposable elements. We thus have the following
criterion for a meet-semilattice homomorphic inclusion i : M ↪→ D of a meet-
semilatticeM into a distributive lattice: i realizes D as the free distributive lattice
onM if and only if i realizesM as the set of indecomposable elements of D and
every element of D can be written as a finite join of indecomposable elements.

4.1.4 Gelfand spectra and Wallman compactifications

In this section we briefly review the contents of paper [22]. In this work we carry
out a systematic, topos-theoretically inspired, investigation of the notion of Wall-
man compactification with a particular emphasis on its relationships with Gelfand
spectra and Stone-Čech compactifications. We show that the notion of Wallman
base can serve in many contexts as a convenient tool for representing topological
spaces, to the point of leading to useful dualities between notable categories of
topological spaces, such as the category of T1 compact spaces or that of compact
Hausdorff spaces, and natural categories of distributive lattices. In fact, in addi-
tion to proving several specific results about Wallman bases and maximal spectra
of distributive lattices, we establish a general framework for functorializing the
representation of a topological space as the maximal spectrum of a Wallman base
for it, which allows to generate different dualities between categories of topolog-
ical spaces and subcategories of the category of distributive lattices; in particular,
this leads to a categorical equivalence between the category of commutative C∗-
algebras and a natural category of distributive lattices. We also establish a general
theorem concerning the representation of the Stone-Čech compactification of a lo-
cale as a Wallman compactification, which subsumes the previous results obtained
on this problem.

Let us start by describing our general method for building dualities for topo-
logical spaces by using Wallman bases.

Recall that a topological space X is said to be T1 if for every pair of distinct
points, each has a neighborhood not containing the other. A Wallman base B for a
topological space X is a sublattice of the frame O(X) of open sets of X which is a
base for X and such that for any x ∈ X and U ∈ B such that x ∈ U, there exists a
V ∈ B such that x < V and U ∪ V = X.

We have already observed in section 4.1.1 that by Grothendieck’s Comparison
Lemma for any topological space X and base B for it we have an equivalence of
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toposes
Sh(X) ' Sh(B, Jcan

O(X)|B),

and that if the topology Jcan
O(X)|B can be characterized ‘intrinsically’ in terms of the

partially ordered structure of B induced by the inclusion B ⊆ O(X) then the space X
admits an ‘intrinsic’ representation in terms of B which, if appropriately functori-
alized, can lead to a duality between a category of such spaces X and a category of
such posets B. The notion of Wallman basis is particularly relevant in this respect
since for many Wallman bases B of topological spaces X, the Grothendieck topol-
ogy Jcan

O(X)|B admits an intrinsic description in terms of the categorical structure on
B. For example:

• If X is compact and B is a Wallman base for it then, under a form of the
axiom of choice, the topology Jcan

O(X)|B can be identified with a Grothendieck
topology JB

m intrinsically defined in terms of the lattice structure on B: its
covering sieves {ci → c | i ∈ I} are precisely those such that whenever
c ∨ b = 1 in B there exists a finite subset J ⊆ I such that∨

i∈J
ci ∨ b = 1;

• In the particular case of the above point when X is Hausdorff and B is equal
to the lattice Coz(X) of cozero sets on X (recall that a cozero set is an open set
of the form f −1(R \ {0}) for a continuous function f : X → R) the topology
JB

m even admits a further representation, as the Grothen-dieck topology on B
whose covering sieves are those which contain countable covering families
(in the usual set-theoretic sense);

• If X is a T1 compact space and B is equal to O(X) then the induced Grothen-
dieck topology Jcan

O(X)|B obviously coincides with the canonical one.

A well-known result states that if X is a compact space and B is a Wallman
basis for it then X is homeomorphic to the maximal spectrum Max(B) of B, whose
points are the maximal ideals of B (regarded as a distributive lattice - recall that an
ideal of a distributive lattice is a lower set which is closed under finite joins) and
whose topology has as basis of open sets of the form {M ∈ Max(B) | b < M} for an
element b ∈ B.

This motivates the consideration of spaces of the form Max(D) where D is a
distributive lattice. One can see that these spaces are always T1 and compact and
that we have an equivalence

Sh(Max(D)) ' Sh(D, JD
m ),

equivalently, O(Max(D)) � IdJD
m

(D).
If one wants to drop the compactness condition, one can consider the spaces

of maximal ideals Max(F) of frames F (an ideal of a frame is a lowerset which is
closed under arbitrary joins); the spaces of these form are always T1 and we have
an equivalence

Sh(Max(F)) ' Sh(F, JF
f ),
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where the Grothendieck topology JF
f is defined by saying that its covering sieves

{ci → c | i ∈ I} are precisely those such that whenever c∨b = 1 in F,∨
i∈I

ci∨b = 1.

Note that if F is a compact frame then any maximal ideal of F considered as a
distributive lattice is also a maximal ideal of F considered as a frame; in particular,
we have an equality of Grothendieck topologies JF

m = JF
f .

More generally, one can define the notion of maximal spectrum Max(E) of a
localic topos E as the subspace of the space of points of E (cf. Definition 4.3)
which are minimal with respect to the specialization ordering, equivalently which
are closed in the topology. Notice that this notion is a topos-theoretic invariant of
E. This invariant admits a natural behaviour with respect to sites; indeed, for any
preorder site (C, J), one can give an explicit description of the maximal spectrum
Max(C, J) of the topos Sh(C, J) as the space whose points are the J-ideals on C
which are maximal with respect to the subset-inclusion ordering, and whose open
sets are the subsets of the form {H ∈ Max(C, J) | I * H} for a J-ideal I on C. Since
Max(C, J) is a subspace of the space of points Spec(C, J)) of the topos Sh(C, J),
there exists a unique Grothendieck MCJ on C refining J which makes the diagram

Sh(Spec(C, J)) ' Sh(C, J)

Sh(Max(C, J))
?�

OO

' Sh(C,MCJ )
?�

OO

commute. This topology admits a natural description in many cases of interest (cf.
for instance the topologies JD

m (= MD
Jcoh

D
) on distributive lattices D or the topologies

JF
f (= MF

Jcan
F

) on frames F considered above). One can therefore try to generate
dualities involving maximal spectra by constructing and functorializing ‘bridges’
of the form

Sh(C,MCJ ) ' Sh(Max(C, J))

C Max(C, J)

This is done in section 3 of [22] in the particular setting of distributive lattices;
we prove a general duality theorem between an appropriate category of topological
spaces each of which equipped with a Wallman base on it and a subcategory of the
category of distributive lattices. This duality theorem is then applied to establish
a duality for T1 compact spaces and a duality between the category of compact
Hausdorff spaces and a particular category of Alexandrov algebras.

The first duality is obtained by considering B = O(X) as a Wallman base for
any T1 compact space X and is based on a characterization of the frames D such
that the canonical homomorphism D→ O(Max(D)) � IdJD

m
(D) is an isomorphism.

This condition amounts precisely to requiring that Jcan
D = JD

m . We call these frames
conjunctive. The assignments X ; O(X) and D ; Max(D) thus define a duality
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between the category of compact T1 spaces and continuous maps between them
and the category whose objects are the compact conjunctive frames and whose
arrows are the distributive lattice homomorphisms between them whose inverse
image sends maximal ideals to maximal ideals (cf. Theorem 3.8 [22]). This dual-
ity actually extends to a duality between the category of T1 spaces and continuous
maps between them and the category of conjunctive frames and frame homomor-
phisms between them whose inverse image sends maximal ideals (of frames) to
maximal ideals. Modulo the identification of maximal ideals with coatoms and of
conjunctive frames with coatomistic ones (cf. Proposition 3.9 [22] and the discus-
sion preceding it), this is the duality between T1 spaces and coatomistic frames
established in [63].

The second duality is obtained by considering the lattice of cozero sets B =

Coz(X) as a Wallman base for any compact Hausdorff space X and is based on
a characterization of the distributive lattices D of the form Coz(X) such that the
space Max(D) is (compact and) Hausdorff. Recall from section [50] A Alexan-
drov algebra A is a distributive lattice (with bottom and top element) satisfying the
following properties:

• A is normal, i.e. for every pair of elements a1, a2 ∈ A such that a1 ∨ a2 = 1,
there exist elements b1, b2 ∈ A such that b1 ∧ b2 = 0, b1 ∨ a2 = 1 and
b2 ∨ a1 = 1;

• Countable joins exist in A and they distribute over finite meets;

• The following ‘approximation property’ holds: for any element a ∈ A there
exist countable sequences {bn | n ∈ N} and {cn | n ∈ N} such that∨

n∈N
cn = a,

bn ∨ a = 1 for all n ∈ N and bn ∧ cn = 0 for all n ∈ N.

We show, by building on previously known results for completely regular spaces,
that the lattices of cozero sets of compact Hausdorff spaces are precisely the Alexan-
drov algebras which are countably compact, in the sense that whenever∨

n∈N
cn = 1,

there exists a finite subset I ⊆ N such that ∨
n∈I

cn = 1. Moreover, we prove

that any compact Hausdorff space can reconstructed from the Alexandrov alge-
bra A = Coz(X) not only by taking the maximal spectrum Max(Coz(X)) on it, but
also as the space of points of the topos Sh(A,C), where C is the Grothendieck
topology on A given by countable joins.

This duality is also analyzed, in view of Gelfand duality [45] between com-
mutative C∗-algebras and compact Hausdorff spaces, from the point of view of
C∗-algebras leading to an explicit categorical equivalence between the category of
C∗-algebras and this category of lattices; in particular, any C∗-algebra is shown to
be recoverable from the associated Alexandrov algebra through a construction of
essentially order-theoretic and arithmetic nature. In passing, we observe that in or-
der to construct the Gelfand spectrum of a real C∗-algebra A one does not need to
invoke the full structure of A; indeed, the reticulation of A, namely the distributive
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lattice given by the coherent syntactic category of the theory PA of prime filters on
A considered in section 4.1.1, suffices to construct its Gelfand spectrum since the
equivalence of toposes

Sh(Spec(A)) ' Sh(Ccoh
PA
, Jcoh

PA
)

yields a homeomorphism

Max(A) � Max(Ccoh
PA
, Jcoh

PA
)

(recall that the maximal spectrum of a topos is an invariant). The results are pre-
sented for real C∗-algebras (that is, for rings of real-valued continuous functions
on a compact Hausdorff space) but they can be straightforwardly extended to the
context of complex C∗-algebras.

The duality between compact Hausdorff spaces and countably compact Alexan-
drov algebras can actually be extended to a duality between the whole category of
Alexandrov algebras (and lattice homomorphisms between them preserving count-
able joins) and the category of completely regular spaces with the Lindelöf prop-
erty (that every open cover of the space has a countable subcover) and continuous
maps between them. This duality has a number of interesting consequences; for
instance, it follows immediately from the representation of X as the space of points
of the topos Sh(Coz(X),C) that any open cover of a cozero set in such a space (for
instance, in every compact Hausdorff space) has a countable subcover, and that ev-
ery prime ideal of Coz(X) which is closed under taking countable joins in Coz(X)
is maximal.

Another topic which is treated in [22], always by adopting our viewpoint of
toposes as ‘bridges’ is that of the relationships between the Stone-Čech compacti-
fication of a topological space X and its Wallman compactifications. The study of
such relations had been initiated by Wallman himself, who proved that for any nor-
mal completely regular space X its Stone-Čech compactification can be identified
with the Wallman compactification Max(O(X)), and was continued by several au-
thors, including Gillman and Jerison [46], Frink [42] and Johnstone [50] and [51].
We introduce the concept of A-conjunctive sublattice of a frame A as the natural
lattice-theoretic counterpart of the concept of Wallman base: given a frame A and
a sublattice B of A, we say that B is A-conjunctive if for any a ∈ A and b ∈ B, if
{c ∈ B | c ∨ b = 1 in A} ⊆ {c ∈ B | c ∨ d = 1 in A for some d ∈ B such that d ≤ a}
then b ≤ a. This concept admits a natural characterization involving the toposes
Sh(A, Jcan

A ) and Sh(B, JB
m). We then prove a general theorem based on this notion

which subsumes all the previous results obtained on this problem and allows one
to establish (iso)morphisms between the Stone-Čech compactification of a locale
and its Wallman compactifications in many new cases which were not covered by
the past treatments. Our result reads as follows.

Theorem 4.8 (Theorem 2.11 [22]). Assume the axiom of (countable) dependent
choices. Let A be a locale, and ηA : A → β(A) its Stone-Čech compactification.
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Let B be a normal conjunctive sublattice of A. Then the canonical map h : β(A)→
IdJB

m
(B) is an isomorphism if and only if the direct image of ηA sends B injectively

to β(A) and ηA(B) ⊆ β(A) is a β(A)-conjunctive base for β(A).
In particular, if A is a completely regular locale and B is a conjunctive normal

base for it (for example, if B is a normal A-conjunctive base for A) then h is an
isomorphism if and only if ηA(B) ⊆ β(A) is a β(A)-conjunctive base for β(A).

Moreover, we discuss and interpret several different representations for Gelfand
spectra and Stone-Čech compactifications as Morita-equivalences between differ-
ent geometric (propositional) theories having the same classifying topos.

Finally, in section 4 of [22] we investigate the notion of maximal spectrum of
a commutative ring with unit from the point of view of the distributive lattice con-
sisting of the compact open sets of its Zariski spectrum. This leads to a logical
characterization of the topos of sheaves on such a spectrum as the classifying topos
of a certain propositional geometric theory which, if the spectrum is sober, axiom-
atizes precisely the maximal ideals of the ring. Next, we explicitly characterize the
class of rings with the property that the corresponding distributive lattice is con-
junctive, and remark that any finite-dimensional commutative C∗-algebra enjoys
this property; this leads in particular to an explicit algebraic characterization of the
lattice of cozero sets on its Gelfand spectrum as a distributive lattice presented by
generators and relations.

4.2 Duality between equations and solutions

The theme of the duality between equations and solutions spans many different
fields of Mathematics. From a logical point of view, it can be viewed as a manifes-
tation of the fundamental duality between syntax and semantics, the equations giv-
ing the syntax and the solutions giving the interpretation of the syntax in a suitable
structure: the syntactic side normally consists of presentations, and the solutions
are obtained by mapping the structures presented by them to a fixed structure.

This theme is addressed in full generality in [30], where we develop an abstract
categorical framework generalizing the classical “system-solution” Galois connec-
tion in affine algebraic geometry. We show that such adjunctions take place in a
multitude of contexts and study them at different levels of generality, from syntactic
categories to equational classes of algebras. Notably, classical dualities like Stone
duality for Boolean algebras, Gelfand duality for commutative C∗-algebras, Pon-
tryagin duality for Abelian groups, turn out to be special instances of this frame-
work.

To determine how such general adjunctions restrict to dualities we prove ab-
stract analogues of Hilbert’s Nullstellensatz and Gelfand-Kolmogorov-Stone’s lem-
ma, completely characterising the fixed points on one side of the adjunction. We
also investigate the relationship between our framework for generating affine ad-
junctions and the theory of dualities generated by a “schizophrenic” object, show-
ing that under some natural assumptions the dualities generated through our ma-
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chinery are induced by a “schizophrenic” object. Our framework is actually com-
plete in that, as we show in the paper, any duality between categories in which one
has equalizers and arbitrary intersections of subobjects arises as an appliation of
our machinery.

A natural framework in which the results of [30] can be applied is that of the-
ories of presheaf type. In fact, as we prove in [15], for any theory of presheaf type
the semantic (i.e., Gabriel-Ulmer) and the syntactic notions of finite presentability
coincide and yield an equivalence between a full subcategory of the geometric syn-
tactic category of the theory and the opposite of the category of finitely presentable
models of the theory.

In the following two sections we succinctly review the contents of [30] and
discuss the above-mentioned duality theorem for theories of presheaf type.

4.2.1 General affine adjunctions

The general framework of [30] is based on a categorical abstraction of the classical
notions of affine subset and of ideal in a polynomial ring.

In classical affine algebraic geometry, one studies solutions to systems of poly-
nomial equations with coefficients in an algebraically closed field k. For any subset
R of the polynomial ring over finitely many variables k[X] := k[X1, . . . , Xn], one
can consider the affine subset V (R) ⊆ kn of solutions of the equations

p(X1, . . . , Xn) = 0, p ∈ R .

over kn, where kn is the affine n-space over k.
Conversely, for any subset S ⊆ kn, one can consider the ideal C (S ) ⊆ k[X] of

polynomials that vanish over S , and the quotient k-algebra k[X]/C(S ), called the
coordinate ring of the affine set S .

This yields a Galois connection. The fixed points of the closure operator V ◦
C are then precisely the affine sets in kn. Since V ◦C is a topological closure
operator, i.e. it commutes with finite unions, affine algebraic sets are the closed
sets of a topology on kn, namely, the Zariski topology. The fixed points of the dual
closure operator C ◦V, on the other hand, may be identified thanks to Hilbert’s
Nullstellensatz: they are precisely the radical ideals of k[X].

The Galois connection given by the pair (C,V) can be made functorial by con-
sidering, on the algebraic side, the category of finitely presented k-algebras with
their homomorphisms and, on the geometric side, a category whose objects are
subset embeddings S ⊆ kn, for each finite n and whose arrows (S , S ⊆ kn) →
(T,T ⊆ Km) are the regular maps S → T (i.e., the equivalence classes of polyno-
mial functions f : kn → km which restrict to functions S → T , two such functions
being equivalent if and only if they agree on S ). There is a functor that associates
to each regular map S → T a contravariant homomorphism of the coordinate rings
of V ◦C (T ) and V ◦C (S ), and a functor that associates to each homomorphism
of presented k-algebras k[X]/I → k[Y]/J, with Y = {Y1, . . . ,Ym} and J an ideal
of k[Y], a contravariant regular map V (J) → V (I). These two functors yield a
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contravariant adjunction; upon restricting each functor to the fixed points in each
domain, one obtains the classical duality between affine algebraic varieties and
their coordinate rings. It is important to note that in this adjunction, coordinate
rings are presented, that is, they are not merely isomorphic to a ring of the form
k[X]/I: they come with a specific defining ideal I.

Let us first generalize this setup to the setting of universal algebra.
The main observation is that in any variety of algebras, the free algebras play

the same role as the ring of polynomials. Ideals of the ring of polynomials become
then, in full generality, congruences on some free algebra, while the ground field k
is replaced by any algebra A in the variety.

In Corollary 6.13 [30] we obtain an adjunction between Vop
p , the opposite of the

category Vp of presented V-algebras (morphisms being the ring homomorphisms
between them), and the category of subsets of (the underlying set of) Aµ, as µ
ranges over all cardinals, with definable maps as morphisms. Notice that, assuming
the axiom of choice, the category Vp of presented V-algebras is equivalent to the
category of V-algebras.

The functors defining the adjunction act on objects by taking a subset R ⊆
F (µ)×F (µ) (where F (µ) is the free V-algebra on µ generators), that is, a “system
of equations in the language of V”, to its solution set V (R) ⊆ Aµ, where V (R) is
the set of elements of Aµ such that each pair of terms in R evaluate identically
over it, and a subset S ↪→ Aµ to its “coordinate V-algebra”, namely, F (µ)/C (S ),
whereC (S ) is the congruence on F (µ) consisting of all pairs of terms that evaluate
identically at each element of S .

To identify the fixed points of this general affine adjunction on the algebraic
side, we prove an appropriate generalisation of the Nullstellensatz based on the
identification of a suitable notion of radical congruence. The identification of an
appropriate type of representation for those V-algebras that are fixed under the ad-
junction (in part (iii) of the theorem) also leads to a result reminiscent of Birkhoff’s
Subdirect Representation Theorem.

As far as it concerns the affine side, we observe that in several cases the com-
position V ◦C gives a topological closure operator. The resulting topology is a
generalisation of the Zariski topology. Under the hypothesis that this topology is
Hausdorff and that all the definable functions are continuous with respect to the
product topology, we characterize in Lemma 8.3 [30] the fixed points on this side
as the closed subsets with respect to the product topology. This characterization
allows one to naturally recover Gelfand duality and Stone duality as particular in-
stances of our framework.

In [30] we also lift the general affine adjunction for varieties of algebras of
Corollary 6.13 to a more general categorical context. Conceptually, the key in-
gredient in the algebraic construction sketched above is the functor IA : T → Set
sending the free algebra F (µ) on µ generators to the set Aµ. In the categorical
abstraction, the basic datum is any functor I : T → S, which can be conceived
as the interpretation of the “syntax” T into the “semantics” S, along with a distin-
guished object 4 of T (in the algebraic specialisation, 4 is F (1), the free singly
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generated V-algebra). Here T and S are simply arbitrary locally small categories.
Out of these data, we construct two categories D and R respectively of subobjects
and of relations.

The category D abstracts that of sets affinely embedded into Aµ; here, sets are
replaced by objects of S, the powers Aµ are replaced by objects I (t) as t ranges
over objects of T, and the morphisms of S that are “definable” are declared to
be those in the range of I . The category R abstracts the category of relations
(not necessarily congruences) on the free V-algebras F (µ); that is, its objects are
relations on the hom-set homT(t,4), as t ranges over objects of T. Arrows are
T-arrows that preserve the given relations.

It is possible, in this setting, to define the operator C in full generality. In order
to define an appropriate abstraction of the operator V, we need to require that S
has enough limits, as “solutions” to “systems of equations” are computed by inter-
secting solutions to “single equations”. The pair (C,V) yields a Galois connection
which functorially lifts to an adjunction between D and R. This represents a weak
form of the algebraic adjunction, since in the algebraic setting one is involved with
quotients of the categories D and R rather than with D and R themselves. To ob-
tain an appropriate categorical generalization of the affine algebraic adjunction, we
consider quotient categories Dq of D and Rq of R respectively obtained by identify-
ing pairs of definable morphisms in D which agree on the given “affine subobject”
and pairs of morphisms that agree on the same “presented object” (in a suitable
abstract sense). Interestingly, in order for the adjunction between D and R to de-
scend to the quotients, it is necessary to impose a condition on the object 4, namely
that it be an I -coseparator (meaning that for any T-object t, the family of arrows
I (ϕ) : I (t) → I (4), as ϕ ranges over all T-arrows ϕ : t → 4, is jointly monic
in S); in the algebraic specialisation, we show that this assumption on 4 = F (1)
is automatically satisfied. Under this additional assumption, which is satisfied in
many cases of interest beyond the algebraic setting, we obtain our general affine
adjunction between Dq and Rq (see Theorem 3.8 [30]).

The following table, taken from [30], illustrates the correspondences between
the main concepts involved in the affine adjunctions at differne levels of generality.

Theorem 3.8 can notably be applied in the context of theories of presheaf type,
yielding adjunctions between categories of congruences on finitely presentable
models and categories of definable sets and definable homomorphisms between
them. In fact, the generality of our categorical adjunction theorem is such that,
as we prove in Theorem 4.1 [30], any duality between categories such that one of
them has equalizers and arbitrary intersections of subobjects is a restriction of an
adjunction of the form specified by Theorem 3.8 [30].

Finally, we show that there is a natural connection between our general cate-
gorical framework and the classical theory of dualities generated by a “schizofrenic
object”. Recall that a contravariant adjunction F : A → Bop and G : Bop → A
between two categories A and B equipped with functors UA : A → Set and
UB : B → Set is said to be induced by a “schizofrenic” or “dualising” object
if there exist objects a ∈ A and b ∈ B such that
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Algebraic geometry Universal algebra Categories
Ground field k Any algebra A in V Functor I : T→ S
Class of k-algebras Any variety V Category R
k[X1, . . . , Xn] Free algebras Objects in T
Ideals Congruences Subsets of hom2

T(t,4)
with t in T

Assignment
k[X1, . . . , Xn]→ k

Assignment F (µ)→ A Object 4 in T

Regular map Definable map Restriction of I ( f )
Coordinate algebra of S Algebra presented by

C(S )
Pair (t,C (S )) in R

Affine variety V ◦C-closed set Pair (t,V (R)) in S

Table 1: Corresponding concepts in the geometric, algebraic, and categorical set-
ting.

• UA is representable by a,

• UB is representable by b,

• the composite functor UB ◦F is represented by the object G (b),

• the composite functor UA ◦ G is represented by the object F (a), and

• UB(F (a)) � UA(G (b)).

We prove in Theorem 4.8 [30] that if S = Set and the functor I : T → S
is representable then a suitable restriction of the adjunction of Theorem 3.8 is in-
duced by a “schizophrenic” object (in a sense which is made precise in the paper).
This is for instance the case of the ring-theoretic affine adjunction of classical al-
gebraic geometry, in which we have S equal to Set, T equal to the opposite of
the category of free k-algebras (i.e. the polynomial rings in a finite number of
variables) and I equal to the representable functor HomT(k,−); for any affine va-
riety V ⊆ kn, the corresponding ideal IV can be realized as the set of morphisms
(V, kn) → ({0, k}) in the category Rq, while for any ideal I of a polynomial ring
k[X1, . . . , Xn], the corresponding variety VI can be realized as the set of morphisms
(I, k[X1, . . . , Xn])→ (1k, k) in the category Dq (where 1k is the equality relation on
k).

4.2.2 Finite presentability in the setting of theories of presheaf type

Let us recall the following standard notions of finite presentability for models of
geometric theories.

Definition 4.9. Let T be a geometric theory over a signature Σ and M a set-based
T-model. Then
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(a) The model M is said to be finitely presentable if the representable functor
HomT-mod(Set)(M,−) : T-mod(Set)→ Set preserves filtered colimits;

(b) The model M is said to be finitely presented if there is a geometric formula
{~x . φ} over Σ and a string of elements (ξ1, . . . , ξn) ∈ MA1 × · · · × MAn (where
A1, . . . , An are the sorts of the variables in ~x), called the generators of M, such
that for any T-model N in Set and string of elements (b1, . . . , bn) ∈ MA1×· · ·×

MAn such that (b1, . . . , bn) ∈ [[~x . φ]]N , there exists a unique arrow f : M → N
in T-mod(Set) such that ( fA1 × · · · × fAn)((ξ1, . . . , ξn)) = (b1, . . . , bn).

Notice that the syntactic notion of finite presentability is signature-dependent,
while the semantic one is an invariant of the category T-mod(Set).

As we have already remarked in section 3.1, irreducible formulae play a funda-
mental role in the study of theories of presheaf type, since they correspond to the
irreducible objects of their classifying toposes. Their role is further clarified by the
following theorem, which generalizes the classical duality between the cartesian
formulae and the models presenting them holding for all cartesian theories.

Theorem 4.10 (Theorem 4.3 [15]). Let T be a theory of presheaf type over a
signature Σ. Then

(i) Any finitely presentable T-model in Set is presented by a T-irreducible geo-
metric formula φ(~x) over Σ.

(ii) Conversely, any T-irreducible geometric formula φ(~x) over Σ presents a T-
model.

In fact, the category f.p.T-mod(Set)op is equivalent to the full subcategory Cirr
T of

CT on the T-irreducible formulae.
In particular, the syntactic and the semantic notions of finite presentability co-

incide for T.

This result arises from the following ‘bridge’:

Irreducible ob ject
[f.p.T-mod(Set),Set] ' Sh(CT, JT)

f.p.T-mod(Set)op

Any ob ject

(
CT, JT)

T-irreducible
f ormula

Indeed, since the category f.p.T-mod(Set) is Cauchy-complete, the irreducible
objects of the topos [f.p.T-mod(Set),Set] are precisely (the objects which are iso-
morphic to) the representable functors, while an object A of the topos Sh(CT, JT)
which is irreducible is necessarily, up to isomorphism, of the form yT({~x . φ}) for
some object {~x . φ} of CT (where yT is the Yoneda embedding CT → Sh(CT, JT)),
since it can be covered by objects coming from CT (via yT) and the image of CT in
Sh(CT, JT) is closed under subobjects in Sh(CT, JT) (notice that the irreducibility
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of A implies that A is a retract in Sh(CT, JT) of one of the objects from CT which
cover it).

By Theorem 6.1.17 [8], the model presented by a T-irreducible formula {~x . φ}
can be built as the image of the ‘tautological’ universal model of T inside CT under
the flat JT-continuous functor HomCT({~x . φ},−) : CT → Set.

It is worth to note that, unlike the case of finitary algebraic (or more generally,
cartesian) theories, free models, i.e. models presented by formulae of the form
{xA1

1 , . . . , xAn
n . >}, do not necessarily exist for general theories of presheaf type;

nonetheless, the formulae which present the finitely presentable models of such
a theory T ‘cover’ all the others in the syntactic category of the theory, in the
sense that every geometric formula-in-context over the signature of T, regarded
as an object of its syntactic category CT, admits a JT-covering sieve generated by
arrows whose domains are T-irreducible formulae (cf. Theorem 3.3 above). In
fact, whilst theories of presheaf type may syntactically not look at all like finitary
algebraic theories, they actually share with them many fundamental properties that
are revealed by the study of their classifying toposes. The novelty and depth of the
topos-theoretic viewpoint is witnessed by the fact that many of the results that we
have established for general theories of presheaf type (for instance, Theorems 2.15
and 3.3) were not even known to hold for finitary algebraic theories.

On the other hand, the level of generality of the concept of theory of presheaf
type goes well beyond that of universal algebra since it is essentially that of cat-
egory theory. Indeed, any small category C can be regarded, up to Cauchy com-
pletion, as the category of finitely presentable models of a theory of presheaf type
(namely, the geometric theory of flat functors on Cop). This fact - which follows
from the fact that every Cauchy complete category C can be recovered, up to equiv-
alence, from the ind-completion Ind-C as its full subcategory on the finitely pre-
sentable objects (cf. Proposition C4.2.2 [54]) noticing that the ind-completion of a
small category is equivalent to the ind-completion of its Cauchy completion - is of
fundamental importance since it allows one to prove categorical results by logical
means. In fact, realizing a Grothendieck topos Sh(C, J) as the classifying topos of a
geometric theory T (such as the theory of J-continuous flat functors on C) can be a
poweful tool since syntactic sites (CT, JT) of geometric theories T are categorically
better-behaved than most sites; for instance, they are always subcanonical and CT
is closed under subobjects in Sh(CT, JT). As an illustration of this remark, consider
our topos-theoretic interpretation of topological Galois theory given by Theorem
3.8. This categorical theorem was actually proved in [28] by logical means thanks
to the equivalence

Sh(CT′ , JT′) ' Sh(f.p.T-mod(Set)at, Jat),

where T′ is the theory of homogeneous T-models, using the syntactic site of T′
and the identification of the atoms of the classifying topos of T′ as the T′-complete
formulae; it seems impossible, or at least much more technically complicated, to
give a direct categorical proof holding in full generality. This is due to the fact that
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the atoms of the topos admit an easy description in terms of the site (CT′ , JT′) but
a much more complicated one in terms of the site (f.p.T-mod(Set)op, Jat).

4.3 Lattice-ordered groups and MV-algebras

In section 4.1 we have illustrated, by means of our topos-theoretic interpreta-
tion and generation of Stone-type, Priestley-type and Gelfand-type dualities, the
general point of section 2.1.1 according to which dualities or equivalences be-
tween ‘concrete’ categories can be naturally obtained by ‘functorializing’ Morita-
equivalences. Another way in which Morita-equivalences can lead to categorical
equivalences between ‘concrete’ categories, is simply by restriction to a given fixed
topos, in particular to the topos Set, that is by considering the induced categorical
equivalence between the categories of models of the two theories in the given topos.
In particular, any double representation of a given topos yields a categorical equiv-
alence between the two avatars of the category of points of the topos obtained by
calculating this invariant on the one hand by using the first representation and on
the other by using the second representation. This principle is illustrated in section
4.3.2, where we derive a whole class of new Morita and categorical equivalences
between MV-algebras and `-groups from a representation result for a class of clas-
sifying toposes as presheaf toposes.

In the converse direction, as remarked in section 2.1.1, if two geometric theo-
ries T and T′ have equivalent categories of models in Set then, provided that the
given categorical equivalence is established by only using constructive logic and
geometric constructions, one can naturally expect it to ‘lift’ to a Morita-equivalence
betweenT andT′. In section 4.3.1 we present two examples of Morita-equivalences
(from [25] and [26]) obtained by ‘lifting’ known categorical equivalences between
categories of set-based models of geometric theories, namely Mundici’s equiva-
lence between MV-algebras and lattice-ordered abelian groups with strong unit and
Di Nola-Lettieri’s equivalence betweeen the category of perfect MV-algebras and
lattice-ordered abelian groups. In both cases, the ‘bridge’ technique, applied to the
resulting Morita-equivalence, allows one to extract new information about the pair
of theories related by it which is not visible by adopting the classical techniques.
Indeed, as we show in those papers, both pairs of theories are not bi-interpretable,
whence the use of their common classifying topos as a ‘bridge’ becomes essential
for transferring notions and results from one theory to the other.

Remarkably, all the geometric theories involved in the above-mentioned Morita-
equivalences are of presheaf type. In section 4.3.3 we encounter yet other notable
examples of theories of presheaf type, namely the epicyclic theory (classified by
Connes-Consani’s epicylic topos), and two related theories respectively classified
by the cyclic topos and by the topos [N∗,Set]. Interestingly, as shown in section
4.3.2, the latter theory is strictly related to the geometric theory of finite MV-chains
considered in [27].
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4.3.1 Mundici’s and Di Nola-Lettieri’s equivalences from a topos-theoretic
viewpoint

In this section we briefly review the contents of papers [25] and [26]. These papers
concern the subject of MV-algebras and lattice-ordered abelian groups.

The class of structures known as MV-algebras was introduced in 1958 by C. C.
Chang (cf. [31] and [32]) in order to provide an algebraic proof of the complete-
ness of Łukasiewicz’s multi-valued propositional logic. As this logic generalizes
classical logic, MV-algebras are a generalization of the concept of Boolean algebra
(indeed, Boolean algebras can be characterized as the idempotent MV-algebras).
After their introduction in the context of algebraic logic, MV-algebras became ob-
jects of independent interest and found applications in different areas of Mathe-
matics, the most notable ones being in functional analysis (cf. [68]), in the theory
of lattice-ordered abelian groups (cf. [68] and [38]) and in the field of generalized
probability theory (cf. Chapters 1 and 10 of [67] for a general overview). Several
equivalences between categories of MV-algebras and categories of lattice-ordered
abelian groups (`-groups, for short) can be found in the literature, the most impor-
tant ones being the following:

• Mundici’s equivalence [68] between the whole category of MV-algebras and
the category of `-groups with strong unit;

• Di Nola-Lettieri’s equivalence [38] between the category of perfect MV-
algebras (i.e., MV-algebras generated by their radical) and the whole cat-
egory of `-groups.

In [25] we interpret Mundici’s equivalence as an equivalence between the cate-
gories of set-based models of two geometric theories, namely the algebraic theory
MV of MV-algebras and the theory Lu of abelian `-groups with strong unit, and
prove that this equivalence generalizes over an arbitrary Grothendieck topos yield-
ing a Morita-equivalence between the two theories.

The signature of the theoryMV of MV-algebras consists of one sort, two func-
tion symbols (⊕,¬) and one constant (0). The axioms ofMV are:

(> `x,y,z x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z)

(> `x,y x ⊕ y = y ⊕ x)

(> `x x ⊕ 0 = x)

(> `x ¬¬x = x)

(> `x x ⊕ ¬0 = ¬0)

(> `x,y ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x)
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In any MV-algebra there is a natural order ≤ defined by: x ≤ y if and only
if ¬x ⊕ y = 1; this is a partial order relation which induces a lattice structure on
the underlying set of the MV-algebra. One can also define 1 := ¬0 and a product
operation � by setting x � y := ¬(¬x ⊕ ¬y). The notation xn will be used as an
abbreviation for x � · · · � x n times (for any natural number n ≥ 1).

Recall that an abelian `-group with strong unit is a structure G = (G,+,−,≤
, inf, sup, 0, u), where (G,+,−, 0) is an abelian group, ≤ is a partial order relation
that induces a lattice structure and is compatible with addition, i.e., it has the trans-
lation invariance property

∀x, y, t ∈ G x ≤ y⇒ t + x ≤ t + y

and u ∈ G is a strong unit, i.e., u ≥ 0 and for any x ∈ G there is a natural number n
such that x ≤ nu.

The class of abelian `-groups with strong unit can be axiomatized by a geomet-
ric theory Lu over a signature consisting of one sort, four function symbols +, −,
sup and inf, one relation symbol ≤ and two constants 0 and u; its axioms are those
of the theory of abelian `-groups plus those which define the concept of strong unit:

(> ` u ≥ 0)

(x ≥ 0 `x
∨

n∈N x ≤ nu)

Our proof of the Morita-equivalence between MV and Lu is based on a geo-
metric and constructive reinterpretation of the classical functors defining Mundici’s
equivalence. Recall that one half of Mundici’s equivalence is provided by the unit
interval functor Γ, which assigns to each `-group with strong unit (G, u) the MV-
algebra given by the unit interval [0, u] in G (where x ⊕ y = min(u, x + y) and
¬x = u − x). The fact that this functor only involves geometric constructions is
straightforward. More subtle is the definition of the functor going in the other
direction from MV-algebras to `-groups with strong unit, which assigns to an MV-
algebra A the Grothendieck group of the monoid of good sequences on A (recall
that a sequence a = (a1, a2, . . . , an, . . . ) of elements of A is said to be good if
ai ⊕ ai+1 = ai for each i ∈ N and there is a natural number n such that ar = 0 for
any r > n). Whilst the set of all sequences does not admit a geometric definition in
general, the subset of good sequences does since one can realize it as the colimit
over N of the sets of good sequences which are 0 in all places ≥ n, and the latter
are geometric subsets of the nth power ofA.

The fact that the theories MV and Lu have equivalent classifying toposes -
rather than merely equivalent categories of set-based models - has a number of
non-trivial consequences. For instance, the established Morita-equivalence pro-
vides, for any topological space X, an equivalence between the category of sheaves
of MV-algebras over X and the category of sheaves of pointed `-groups (i.e. abelian
`-groups with a distinguished element) over X whose stalks are `-groups with
strong unit, which is natural in X and extends Mundici’s equivalence at the level of
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stalks. Most importantly, one can apply the ‘bridge’ technique to the given Morita-
equivalence to transfer properties and results across the two theories:

EMV ' ELu

MV Lu

Of course, different invariants considered on the common classifying topos will
give different results concerning the two theories.

Taking for instance as invariant the property of being equivalent to a presheaf
topos, we immediately obtain that the theory Lu is of presheaf type as the algebraic
theoryMV is.

Choosing instead as invariant the notion of subtopos one obtains, by Theorem
2.5, the striking result that the quotients of MV and of Lu (in their respective lan-
guages) correspond to each other bijectively. Note that this result would be trivial
if the theories MV and Lu were bi-interpretable, but, as we show in the paper, this
is not the case. Still, there is an interpretation (geometric) functor I : CMV → CLu ,
which for instance allows one to prove identities for MV-algebras by arguing in the
language of `-groups.

If we consider the invariant property of objects of toposes to be irreducible
we get a logical characterization of the finitely presentable `-groups with strong
unit (equivalently, of the `-groups with strong unit corresponding to the finitely
presented MV-algebras under Mundici’s equivalence) as the `-groups presented by
a formula which is Lu-irreducible. By considering as invariants the properties of
the classifying topos to have a compact terminal object and to have enough points,
we derive a form of compactness and completeness for the infinitary theory Lu

from the fact that they are satisfied by the finitary theoryMV.
It is worth to note that, while the language of `-groups with strong unit is of-

ten more convenient for performing calculations than that of MV-algebras, mostly
due to the fact that these structures are torsion-free, the theory of MV-algebras is
finitary algebraic, has close ties with semiring theory and tropical mathematics (cf.
for instance [40]) and supports a number of important notions which are neither
natural from the point of view of `-groups nor studied in that context (think for
example of the notion of infinitesimal element of an MV-algebra).

Let us now turn to paper [26]. As in [25], we lift a categorical equivalence,
in this case Di Nola-Lettieri’s equivalence between the category of perfect MV-
algebras and the category of lattice-ordered abelian groups, to a Morita-equivalence
between two geometric theories, by showing that all the concepts involved in the
given equivalence admit a constructive and geometric treatment. Recall that an
ideal of an MV-algebra is a lowerset (with respect to the natural ordering on the
algebra) which is closed with respect to the ⊕ operation; the radical Rad(A) of
an MV-algebra A is defined as the intersection of all the maximal ideals of A,
equivalently the set of infinitesimal elements of A plus 0 (recall that an element x
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of an MV-algebra is said to be infinitesimal if it is non-zero and nx ≤ ¬x for all
integers n ≥ 0).

An MV-algebra A is said to be perfect if it is non-trivial (i.e., A , {0} or
equivalently 1 , 0) andA = Rad(A)∪¬Rad(A), where ¬Rad(A) = {x ∈ A | ¬x ∈
Rad(A)} is the coradical ofA.

The theories involved are the theory L of lattice-ordered abelian groups (which
is defined in the obvious way over the signature for lattice-ordered abelian groups
with strong unit considered above) and the theory P of perfect MV-algebras, which
we define to be the quotient of the theoryMV obtained by adding the axioms

(> `x x2 ⊕ x2 = (x ⊕ x)2),

(x ⊕ x = x `x x = 0 ∨ x = 1),

(x = ¬x `x⊥).

Indeed, the set-based models of the theory P can be identified precisely with
the perfect MV-algebras. As we prove in the paper, the radical of such an algebra
A can be constructively defined as the set {x ∈ A | x ≤ ¬x}.

The Morita-equivalence between the theories L and P has many consequences
on the theories which are not visible from different viewpoints. Indeed, as in the
case of the theories of [25], we prove that L and P are not bi-interpretable in the
classical sense; still, by applying the ‘bridge’ technique in connection with the
invariant properties of objects of toposes to be irreducible (resp. subterminals, co-
herent), we uncover three levels of partial bi-interpretability holding for particular
classes of formulas: irreducible formulas, geometric sentences and imaginaries.

P
P-irreducible formulas

geometric sentences over ΣP
imaginaries for P

EP ' EL

coherent objects
subterminal objects
irreducible objects

L
L-irreducible formulas

geometric sentences over ΣL
imaginaries for L

The P-irreducible formulae are precisely the formulae that present the finitely
presentable perfect MV-algebras, that is the algebras which correspond to the fini-
tely presented `-groups via Di Nola-Lettieri’s equivalence. These formulae rep-
resent the analogue for the theory P of the cartesian formulae in the theory of
MV-algebras. Indeed, even though the category P-mod(Set) is not a variety in the
sense of universal algebra (i.e., the category of set-based models of a finitary alge-
braic theories), it is generated by its finitely presentable objects since the theory P
is of presheaf type classified by the topos [f.p.P-mod(Set),Set].
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In order to explicitly describe the P-irreducible formulae and the above-ment-
ioned partial bi-interpretations, we establish a bi-interpretation between the theory
L of lattice-ordered abelian groups and a cartesian theoryM axiomatizing the pos-
itive cones of these groups (which we call the theory of cancellative lattice-ordered
abelian monoids with bottom element). In fact, Di Nola-Lettieri’s equivalence
turns out to admit a simpler formulation in the language of monoids than in that
of groups. Interestingly, our bi-interpretation between M and L also provides an
alternative description of the Grothendieck group of a model M of M as a sub-
set, rather than a quotient as in the classical definition, of the productM×M; in
particular, its underlying set can be identified with the set

{(u, v) ∈ M ×M | inf(u, v) = 0},

where inf is the operation of infimum of a pair of elements inM.
We then investigate the classifying topos of the theory P of perfect MV-algebras,

representing it as a subtopos

Sh(f.p.C-mod(Set)op, JP) ↪→ [f.p.C-mod(Set),Set]

of the classifying topos of the algebraic theory C axiomatizing the variety gener-
ated by Chang’s MV-algebra, namely the quotient of the theory MV obtained by
adding the sequent (> `x x2 ⊕ x2 = (x ⊕ x)2). We show that JP is rigid (cf. section
2.2 above for the notion of rigid topology) and subcanonical and derive various
results concerning the relationship between these two theories, notably including a
representation theorem for the finitely presentable (resp. finitely generated) alge-
bras in Chang’s variety C-mod(Set) as finite products of finitely presentable (resp.
finitely generated) perfect MV-algebras. Indeed, the only non-trivial JP-coverings
on a MV-algebraA ∈ f.p.C-mod(Set) are those which contain families of the form

A

A/(a1
1)

A/(¬a1
1)

A/(a1
1)/([a2

1])

A/(a1
1)/(¬[a2

1])

A/(¬a1
1)/([a2

2])

A/(¬a1
1)/(¬[a2

2])

. . .

. . .

. . .

. . .

A/(a1
1)/ . . . /([. . . [an

1] . . . ])

A/(a1
1)/ . . . /(¬[. . . [an

1] . . . ])

A/(¬a1
1)/ . . . /([. . . [an

2n−1] . . . ])

A/(¬a1
1)/ . . . /(¬[. . . [an

2n−1] . . . ])
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for any elements ai
j (where i = 1, . . . , n and j = 1, . . . , 2i−1) in the Boolean skeleton

B(A) ofA (i.e., such that ai
j ⊕ ai

j = ai
j); for any MV-algebraA in C-mod(Set),A/

Rad(A) � B(A), so if the elements ai
j are taken to be a set of generators for B(A),

the algebras appearing as the leaves of the above diagram are perfect MV-algebras,
and for each Boolean element x of an MV-algebraA, we have thatA � A/(x)×A/
(¬x).

Among the other insights obtained on the relationship between the theories
P and C, we mention a characterization of the perfect MV-algebras which cor-
respond to finitely presented lattice-ordered abelian groups via Di Nola-Lettieri’s
equivalence as the finitely presented objects of Chang’s variety which are perfect
MV-algebras, and the property thatC is the cartesianization of P (i.e., the collection
of cartesian sequents which are provable in P).

We then revisit the above-mentioned representation theorem for MV-algebras
in Chang’s variety from the point of view of subdirect products of perfect MV-
algebras. We show that the class of MV-algebras in Chang’s variety C-mod(Set)
constitutes a particularly natural MV-algebraic setting extending the variety of
Boolean algebras (recall that every Boolean algebra is an MV-algebra, actually
lying in C-mod(Set)), with perfect algebras representing the counterpart of the
algebra {0, 1} and powerset algebras, that is products of the algebra {0, 1}, cor-
responding to products of perfect MV-algebras. Theorem 10.2 [26] represents
a natural generalization in this setting of the Stone representation of a Boolean
algebra as a field of sets, while Theorem 10.6 [26] represents the analogue of
Lindenbaum-Tarski’s theorem (which characterizes the Boolean algebras isomor-
phic to powersets as the complete atomic Boolean algebras). As every Boolean
algebra with n generators is a product of at most 2n copies of the algebra {0, 1},
so every finitely presented algebra in C-mod(Set) with n generators is a product of
at most 2n finitely presented perfect MV-algebras (cf. Theorem 9.2 [26]). These
relationships are summarized in the table below.

Classical context MV-algebraic generalization
Boolean algebra MV-algebra in C-mod(Set)
{0, 1} Perfect MV-algebra
Powerset � product of {0, 1} Product of perfect MV-algebras

Finite Boolean algebra
Finitely presentable MV-algebra in
C-mod(Set)

Complete atomic Boolean algebra
MV-algebra in C-mod(Set) satisfy-
ing the hypotheses of Theorem 10.6
[26]

Representation theorem for finite
Boolean algebras Theorem 9.2 [26]

Stone representation for Boolean al-
gebras Theorem 10.2 [26]

Lindenbaum-Tarski’s theorem Theorem 10.6 [26]
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Finally, we transfer the above-mentioned representation theorems for the MV-
algebras in Chang’s variety in terms of perfect MV-algebras into the context of
`-groups with strong unit and show that a theory of pointed perfect MV-algebras
is Morita-equivalent to the theory of lattice-ordered abelian groups with strong
unit (whence to that of MV-algebras). Our Morita-equivalence between P and L
also implies, in light of Theorem 2.5 and our Morita-equivalence lifting Mundici’s
equivalence, that the theory L can be identified with a quotient of the theory Lu;
we identify this quotient in Remark 11.5 as the theory obtained from Lu by adding
the following axioms:

(0 ≤ x ∧ x ≤ u `x sup(0, 2 inf(2x, u) − u) = inf(u, 2 sup(2x − u, 0))
(0 ≤ x ∧ x ≤ u ∧ inf(2x, u) = x `x x = 0 ∨ x = u)

This theory axiomatizes precisely the antiarchimedean `-groups with strong
unit, i.e. the `-groups corresponding to perfect MV-algebras under Mundici’s
equivalence.

4.3.2 New Morita-equivalences for local MV-algebras in varieties

In [27] we construct a new class of Morita-equivalences between theories of local
MV-algebras and theories of `-groups, which includes the Morita-equivalence ob-
tained in [26] by lifting Di Nola-Lettieri’s equivalence. Recall that an MV-algebra
A is said to be local if it has exactly one maximal ideal, equivalently if every ele-
ment x of A is either in the radical, in the coradical or it is finite (in the sense that
nx = 1 for some n and m¬x = 1 for some m).

The starting point of our investigation is the observation that the class of perfect
MV-algebras is the intersection of the class of local MV-algebras with a specific
proper variety of MV-algebras, namely Chang’s variety. We wonder what happens
if we replace Chang’s variety with an arbitrary variety of MV-algebras. We prove
that ‘globally’ the theory of local MV-algebras is not of presheaf type, while if
we restrict to any proper subvariety V , the theory of local MV-algebras in V is of
presheaf type and Morita-equivalent to a theory expanding the theory of `-groups.
In order to present this latter theorem, we have to explain a number of preliminary
results obtained in [27].

By a result of [56], every proper subvariety of MV-algebras is a so-called Ko-
mori variety, i.e. it is generated by a finite number of finite simple MV-algebras
S m = Γ(Z,m) and a finite number of Komori chains, i.e. algebras of the form
S ω

m = Γ(Z ×lex Z, (m, 0)), where Z ×lex Z is the lexicographic product of the group
of integers with itself and Γ is the unit interval functor from the category of `-
groups with strong unit to the category of MV-algebras. We show that for any
Komori variety V = V(S n1 , . . . , S nk , S

ω
m1
, . . . , S ω

ms
), the least common multiple n of

the ranks ni and m j of the generators is an invariant of V , i.e. it does not depend
on the choice of the generators for V .

We consider two different axiomatizations for the theory of local MV-algebras
in a Komori variety V . The first, which we call Loc1

V , is obtained from the theory
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TV of the variety V by adding the sequents

σn: (> `x ((n + 1)x)2 = 0 ∨ (n + 1)x = 1);

NT: (0 = 1 `⊥).

The Grothendieck topology J1 on f.p.TV -mod(Set)op associated with Loc1
V as

a quotient of TV is obtained by considering finite multicompositions of diagrams
of the form

A

A/((n + 1)x)2)

A/(¬((n + 1)x)2)

These diagrams are product diagrams in TV -mod(Set), whence J1 is subcanonical
(recall that a Grothendieck topology is subcanonical if and only if its covering
sieves are effective-epimorphic, cf. p. 534 [54]). This in turn implies that the
algebraic theory TV of the variety V is the cartesianization of the theory Loc1

V ;
indeed, this result arises from the following ‘bridge’:

Validity of a cartesian sequent σ in the universal model
Sh(f.p.TV -mod(Set)op, J1) ↪→ [f.p.TV -mod(Set),Set]

Loc1
V

Provability of σ in Loc1
V

TV
Provability of σ in TV

We also prove, in a fully constructive way using Di Nola-Lettieri’s axiomati-
zation for a Komori variety, that the radical of an MV-algebra in V is definable by
the formula ((n + 1)x)2 = 0 (where n is the invariant of V defined above).

We would like to show that J1 is rigid in order to generalize the results ob-
tained for perfect MV-algebras in [26]. To this end, we consider another, more
refined axiomatization for the theory of local MV-algebras in V . Indeed, it seems
impossible to directly establish the rigidity of J1 since the partitionsA = {x ∈ A |
((n + 1)x)2 = 0} ∪ {x ∈ A | (n + 1)x = 1} of the algebrasA in TV -mod(Set) defined
by axiom σn are not compatible with respect to the MV-algebraic operations. To
solve this problem, we observe that for any local MV-algebra in V , the quotient
A/Rad(A) is isomorphic to a finite simple MV-algebra S m, where m divides the
invariant n of the variety V , so we have a canonical MV-algebra homomorphism
φA : A → S n. Unlike the partitions defined by the topology J1, the radical classes
of A, i.e. the subsets of the form Finn

d(A) := φ−1
A

(d) for d ∈ S n, are compatible
with the MV-algebraic operations. We are able to find geometric formulae defin-
ing these subsets in any local MV-algebra in V , which we call x ∈ Finn

d (for any
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d ∈ S n). Let us consider the geometric sequent

ρn : (> `x

n∨
d=0

x ∈ Finn
d),

and call Loc2
V the quotient of TV obtained by adding the sequents ρn and NT. We

show that the theories Loc2
V and Loc1

V are syntactically equivalent (assuming the
axiom of choice), since they are both coherent and their set-based models are the
same. Most importantly, we show (in Proposition 6.18 [27]) that the sequents

(x ∈ Finn
d ∧ y ∈ Finn

b `x,y x ⊕ y ∈ Finn
d⊕b) (1)

(for each d, b ∈ {0, . . . , n} and where with d ⊕ b we indicate the sum in S n =

{0, 1, . . . , n}) and
(x ∈ Finn

d `x ¬x ∈ Finn
n−d) (2)

(for each d ∈ {0, . . . , n}) are provable in the theory TV . This fact has important
consequences: for instance, it allows us to identify the biggest local subalgebra of
an algebraA in TV -mod(Set) as the algebra

Aloc = {x ∈ A | x ∈ Finn
d(A) for some d ∈ {0, . . . , n}}

(cf. Proposition 6.19 [27]). This in turn implies that every finitely presentable
Loc2

V -model is finitely presentable also as a TV -model. So, by Theorem 2.12,
to prove that the theory Loc2

V is of presheaf type we are reduced to verify that
the Grothendieck topology J2 on f.p.TV -mod(Set)op associated with Loc2

V as a
quotient of TV is rigid. But this easily follows from the compatibility property
of the partition defined by the Finn

d with respect to the MV-algebraic operations
expressed by the above-mentioned sequents; indeed, the topology J2 is generated
by finite multicompositions of diagrams of the form

A

A/(x ∈ Finn
0(A))

A/(x ∈ Finn
d(A))

A/(x ∈ Finn
n(A))

...

...

whereA is a finitely presentable algebra in V , and if we choose at each step of such
a multicomposition one of the generators of the algebraA, the codomain algebras
of the resulting diagram will be trivial or local MV-algebras since any MV-algebra
which satisfies sequents σn and NT is local.

So we have an equivalence of toposes

ELoc2
V
' Sh(f.p.TV -mod(Set)op, J2) ' [f.p.Loc2

V -mod(Set)] .
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Since the theories Loc2
V and Loc1

V are syntactically equivalent, it follows from
Theorem 2.5 that J1 = J2; so J1 is rigid. This in turn implies that every finitely
presentable non-trivial algebra in V is a finite direct product of finitely presentable
local MV-algebras in V (cf. Theorem 6.23 [27]). This generalizes the represen-
tation result obtained in [26] for the finitely presentable MV-algebras in Chang’s
variety as finite products of perfect MV-algebras. Still, as we show in section 6.3 of
[27], there are a number of important structural differences between the particular
setting of perfect MV-algebras investigated in [26] and that of local MV-algebras
in an arbitrary Komori variety, particularly in connection with the representation of
MV-algebras in the variety as Boolean products of local MV-algebras.

Having proved that the theory Loc2
V is of presheaf type, we proceed to define

an expansion of the theory of `-groups which is Morita-equivalent to it. We shall
indicate with the symbol δ(I) (resp. δ(J)) and δ(n) the set of divisors of a number
in I (resp. in J) and the set of divisors of n.

Recall that the rank of a local MV-algebra A in a Komori variety is the car-
dinality of the simple MV-algebra A/Rad(A). By results of [39], the local MV-
algebras in a Komori variety V = V(S n1 , . . . , S nk , S

ω
m1
, . . . , S ω

ms
) are precisely the

local MV-algebras A of finite rank rank(A) ∈ δ(I) ∪ δ(J), where I = {n1, . . . , nk}

and J = {m1, . . . ,ms}, such that if rank(A) ∈ δ(I) \ δ(J) then A is simple, and for
any such algebraA of rank k there exists an `-group G and an element g ∈ G such
that A � Γ(Z ×lex G, (k, g)). Building on this, we define the theory G(I,J) as fol-
lows. The signature ofG(I,J) is obtained from that of the theory L of lattice-ordered
abelian groups by adding a 0-ary relation symbol Rk for each k ∈ δ(n) (where n is
the least common multiple of the numbers in I ∪ J), and a constant. The predicate
Rk has the meaning that the rank of the corresponding MV-algebra is a multiple of
k (notice that the property ‘to have rank equal to k’ is not definable by a geometric
formula since it is not preserved by homomorphisms of local MV-algebras in V).
The axioms of G(I,J) are:

(> ` R1);

(Rk ` Rk′), for each k′ which divides k;

(Rk ∧ Rk′ ` Rl.c.m.(k,k′)), for any k, k′;

(Rk `g g = 0), for every k ∈ δ(I) \ δ(J);

(Rk ` ⊥), for any k < δ(I) ∪ δ(J).

Theorem 4.11 (Corollary 7.8 [27]). For any Komori variety

V = V(S n1 , . . . , S nk , S
ω
m1
, . . . , S ω

ms
),

the theories Loc2
V and G(I,J), where I = {n1, . . . , nk} and J = {m1, . . . ,ms}, are

Morita-equivalent.
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This theorem is proved by showing that G(I,J) is of presheaf type (by applying
a theorem in Chapter 8 of [8] asserting that any quotient of a theory of presheaf
type T by adding axioms of the form (φ `~x ⊥) is again of presheaf type), and by
verifying that the categories of set-based models of the theoriesG(I,J) and Loc2

V are
equivalent (notice that two theories of presheaf type are Morita-equivalent if and
only if their categories of set-based models are equivalent).

The categories of set-based models of these theories are not in general algebraic
as in the case of perfect MV-algebras; however, we characterize the varieties V for
which we have algebraicity as precisely those which can be generated by a single
chain. We show that all the Morita-equivalences of Theorem 4.11 are non-trivial,
i.e. do not arise from bi-interpretations.

Strictly related to the theory of local MV-algebras is the theory of simple MV-
algebras, i.e. of local MV-algebras whose radical is {0}; indeed, an MV-algebra A
is local if and only if the quotient A/Rad(A) is a simple MV-algebra. This theory
shares many properties with the theory of local MV-algebras: globally it is not of
presheaf type but it has this property if we restrict to an arbitrary proper subvariety.
On the other hand, while the theory of simple MV-algebras of finite rank is of
presheaf type (as it coincides with the geometric theory of finite chains), the theory
of local MV-algebras of finite rank is not, as we prove in section 8 of [27].

By applying Theorem 2.11 to the theoryMV of MV-algebras and the full sub-
category F of f.p.MV-mod(Set) on the finite chains, we obtain an explicit axiom-
atization of the geometric theory F = MVF of finite chains (where the notation is
that of Theorem 2.10): F is the theory obtained fromMV by adding the following
axiom:

(> `x

∨
k,t∈N

(∃z)((k − 1)z = ¬z ∧ x = tz)) .

We show that the set-based models of F are precisely the (simple) MV-algebras
that can be embedded as subalgebras of the MV-algebra Q ∩ [0, 1].

4.3.3 Cyclic theories

In [24] we investigate from a logical viewpoint some toposes introduced by A.
Connes and C. Consani in connection with their research programme for study-
ing the local factors of L-functions attached to arithmetic varieties through coho-
mology and non-commutative geometry; more specifically, we describe suitable
geometric theories classified by them.

Connes-Consani’s epicyclic topos (cf. [35]), Connes’ cyclic topos (cf. [34])
and the arithmetic topos (cf. [36]) are all presheaf toposes, so our techniques for
generating theories classified by a given presheaf topos developed in [8] and re-
called in section 2.2 are most relevant in this context. In fact, we shall describe a
geometric theory classified by the epicylic topos and two related theories respec-
tively classified by the cyclic topos and by the arithmetic topos. Recall that the
epicyclic topos is defined as the topos [Λ̃,Set], where Λ̃ is Goodwillie’s epicyclic
category, the cyclic topos as the topos [Λ,Set], where Λ is the cyclic category, and
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the arithmetic topos as the topos [N∗,Set], where N∗ is the multiplicative monoid
of non-zero natural numbers.

Our strategy for defining geometric theories classified by these toposes is to
identify basic theories of presheaf type T such that the categories Λ̃, Λ and N∗ can
be identified as full subcategories of the category f.p.T-mod(Set), and then apply
Theorems 2.10 and 2.11.

In the case of the epicyclic topos, our basic theory of presheaf type is written
over a signature which is essentially the one considered in [35], namely that of
oriented groupoids with the addition of a non-triviality predicate. In fact, one of
the main results obtained in [35] is a characterization of the points of the epicyclic
topos in terms of projective geometry over a semi-field of characteristic 1, using
this language for describing the objects of the cyclic as well as of the epicyclic
category. We show that the theory GT of partially oriented groupoids with (non-
triviality) predicate T (cf. Definition 1 [24]) is of presheaf type and the epicylic
category Λ̃ can be identified with the full subcategory of GT -mod(Set) consisting
of the oriented groupoids of the form Z o X for transitive Z-actions on finite sets
X.

In the case of the cyclic topos, the basic theory of presheaf type is the theory
GC of partially oriented groupoids with cycles (cf. Definition 3 [24]), written over
the signature of oriented groupoids by adding a function symbol whose intended
interpretation is the assignment to an object of the generator of the cyclic group of
endomorphisms on it. This reflects the fact that, while morphisms in the epicyclic
category can send minimal loops to non-minimal ones, the morphisms in the cyclic
category must send minimal loops to minimal loops. We show the cyclic category
Λ can be identified with the full subcategory of the category GC-mod(Set) consist-
ing of partially oriented groupoids with cycles of the form Z o {0, . . . , n − 1} (for
n ≥ 1).

We should mention that in an unpublished note ([64]) I. Moerdijk suggested a
theory of “abstract circles” classified by the cyclic topos, but his argument that this
theory is classified by it appears incomplete since it only proves that the category
of set-based models of this theory is equivalent to the category of points of the
cyclic topos. A complete, fully constructive, proof of this fact is given in Chapter
9 of [8]. While the theory of abstract circles is coherent, the cyclic theory defined
in Theorem 3 [24] is infinitary but presents the technical advantage that, while
the domain of definition of the concatenation operation on segments in an abstract
circle is not controlled by a geometric formula, in the setting of the cyclic theory,
the operation of composition of arrows in a groupoid is always defined whenever
the codomain of the first arrow matches the domain of the second.

To describe a theory classified by the arithmetic topos, we observe that sending
the unique object of N∗ to Z realizes the category N∗ as a full subcategory of the
category of finitely presentable models of the theoryO, of partially ordered groups
with a non-triviality predicate ,, namely the theory obtained from the (algebraic)
theory of groups (where the constant 1 denotes the neutral element of the group)
by adding a positivity predicate P and the following axioms:
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(> ` P(1))

(P(a) ∧ P(b) `a,b P(a · b))

(P(a) `a,c P(c−1 · a · c))

(P(a) ∧ P(a−1) `a a = 1)

(x , x `x ⊥).

This theory is of presheaf type since it is obtained from a cartesian theory by
adding an axiom of the form (φ `~x ⊥) (a theorem in Chapter 8 of [8] ensures that
any quotient of a theory of presheaf type by adding axioms of the form (φ `~x ⊥) is
again of presheaf type).

By applying Theorem 2.11, one shows (cf. Theorem 4 [24]) that the geometric
theory TN := O,Z of Z (where the notation is that of Theorem 2.10) is obtained
from O, by adding the following axioms:

(> `a P(a) ∨ P(a−1))

(> `x,y (x , y) ∨ (x = y))

(> ` ∃x(x , 1))

(P(x) ∧ P(y) `x,y
∨

n,m∈N+ ∃z(P(z) ∧ (x = zn) ∧ (y = zm))).

By Theorem 6 [24], the set-based models of TN can be identified with the (non-
trivial) ordered groups which are isomorphic to ordered subgroups of (Q,Q+). This
enlightens a relationship with the geometric theory of finite chains F considered in
section 4.3.2, whose models are precisely the MV-algebras which can be embed-
ded as subalgebras of Q ∩ [0, 1]. Since the finite chains can be identified with the
simple MV-algebras S n and there is a (necessarily unique) MV-algebra homomor-
phism S n → S m if and only if n divides m, the classifying topos of F is the topos
[Ñ∗,Set], where Ñ∗ is the category whose objects are the non-zero natural numbers
and whose arrows are given by the divisibility relation. We thus have a geometric
surjection

EF = [Ñ∗,Set]→ [N∗,Set] = ETN .

This morphism induces a functor

F-mod(Set)→ TN-mod(Set),

which can be identified, by Mundici’s equivalence, with the functor sending an
`-group with unit (G, u) which can be embedded in (Q, 1) to the underlying `-
group G. It follows in particular that the set of isomorphism classes of points of
the topos [N∗,Set], which was identified in [36] with the set Q∗+\A f /Ẑ∗ of adèle
classes whose archimedean component vanishes, is a quotient of the collection of
isomorphism classes of points of the topos EF.
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