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Sieves
In order to ‘categorify’ the notion of sheaf of a topological space,
the first step is to introduce an abstract notion of covering (of an
object by a family of arrows to it) in a category.

Definition
• Given a category C and an object c ∈ Ob(C), a presieve P in
C on c is a collection of arrows in C with codomain c.

• Given a category C and an object c ∈ Ob(C), a sieve S in C
on c is a collection of arrows in C with codomain c such that

f ∈ S ⇒ f ◦ g ∈ S

whenever this composition makes sense.
• We say that a sieve S is generated by a presieve P on an

object c if it is the smallest sieve containing it, that is if it is the
collection of arrows to c which factor through an arrow in P.

If S is a sieve on c and h : d → c is any arrow to c, then

h∗(S) := {g | cod(g) = d , h ◦ g ∈ S}

is a sieve on d .
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Grothendieck topologies I

Definition
• A Grothendieck topology on a category C is a function J

which assigns to each object c of C a collection J(c) of sieves
on c in such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c} is
in J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such that
f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are
said to be J-covering.

• A site is a pair (C, J) where C is a small category and J is a
Grothendieck topology on C.

Notice the following basic properties:
• If R,S ∈ J(c) then R ∩ S ∈ J(c);
• If R and R’ are sieves on an object c such that R′ ⊇ R then

R ∈ J(c) implies R′ ∈ J(c).
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Grothendieck topologies II
The notion of a Grothendieck topology can be put in the following
alternative (but equivalent) form:

Definition
A Grothendieck topology on a category C is an assignment J
sending any object c of C to a collection J(c) of sieves on c in
such a way that
(a) the maximal sieve Mc belongs to J(c);
(b) for each pair of sieves S and T on c such that T ∈ J(c) and

S ⊇ T , S ∈ J(c);
(c) if R ∈ J(c) then for any arrow g : d → c there exists a sieve

S ∈ J(d) such that for each arrow f in S, g ◦ f ∈ R;
(d) if the sieve S generated by a presieve {fi : ci → c | i ∈ I}

belongs to J(c) and for each i ∈ I we have a presieve
{gij : dij → ci | j ∈ Ii} such that the sieve Ti generated by it
belongs to J(ci ), then the sieve R generated by the family of
composites { fi ◦ gij : dij → c | i ∈ I, j ∈ Ii} belongs to J(c).

The sieve R defined in (d) will be called the composite of the
sieve S with the sieves Ti for i ∈ I and denoted by S ∗ {Ti | i ∈ I}.
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Bases for a Grothendieck topology

Definition
A basis (for a Grothendieck topology) on a category C with
pullbacks is a function K assigning to each object c of C a
collection K (c) of presieves on c in such a way that the following
properties hold:

(i) {1c : c → c} ∈ K (c)
(ii) if {fi : ci → c | i ∈ I} ∈ K (c) then for any arrow g : d → c in C,

the family of pullbacks {g∗(fi ) : ci ×c d → d | i ∈ I} lies in K (d).
(iii) if {fi : ci → c | i ∈ I} ∈ K (c) and for each i ∈ I we have a

presieve {gij : dij → ci | j ∈ Ii} ∈ K (ci ) then the family of
composites { fi ◦ gij : dij → c | i ∈ I, j ∈ Ii} belongs to K (c).

N.B. If C does not have pullbacks then condition (ii) can be replaced
by the following requirement: if {fi : ci → c | i ∈ I} ∈ K (c) then for
any arrow g : d → c in C, there is a presieve
{hj : dj → d | j ∈ J} ∈ K (d) such that for each j ∈ J, g ◦ hj factors
through some fi .
Every basis K generates a Grothendieck topology J given by:

R ∈ J(c) if and only if R ⊇ S for some S ∈ K (c)
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Grothendieck topology generated by a coverage
As we shall also see when we talk about sheaves, the axioms for
Grothendieck topologies do not have all the same status: the
most important one is the stability axiom. This motivates the
following definition.

Definition
A (sifted) coverage on a category C is a collection of sieves which
is stable under pullback.

Fact
The Grothendieck topology generated by a coverage is the
smallest collection of sieves containing it which is closed under
maximality and transitivity.

Theorem
Let C be a small category and D a coverage on D. Then the
Grothendieck topology GD generated by D is given by

GD(c) = {S sieve on c | for any arrow d f→ c and sieve T on d ,
[(for any arrow e

g→ d and sieve Z on e
(Z ∈ D(e) and Z ⊆ g∗(T )) implies g ∈ T ) and
(f ∗(S) ⊆ T )] implies T = Md}

for any object c ∈ C.
6 / 43
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Examples of Grothendieck topologies I
• For any (small) category C, the trivial topology on C is the

Grothendieck topology in which the only sieve covering an
object c is the maximal sieve Mc .

• The dense topology D on a category C is defined by: for a
sieve S,

S ∈ D(c) if and only if for any f : d → c there exists
g : e→ d such that f ◦ g ∈ S .

If C satisfies the right Ore condition i.e. the property that any
two arrows f : d → c and g : e→ c with a common codomain
c can be completed to a commutative square

• //

��

d

f
��

e
g // c

then the dense topology on C specializes to the atomic
topology on C i.e. the topology Jat defined by: for a sieve S,

S ∈ Jat (c) if and only if S 6= ∅ .
7 / 43
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Examples of Grothendieck topologies II

• If X is a topological space, the usual notion of covering in
Topology gives rise to the following Grothendieck topology
JO(X) on the poset category O(X ): for a sieve
S = {Ui ↪→ U | i ∈ I} on U ∈ Ob(O(X )),

S ∈ JO(X)(U) if and only if ∪
i∈I

Ui = U .

• More generally, given a frame (or complete Heyting algebra)
H, we can define a Grothendieck topology JH , called the
canonical topology on H, by:

{ai | i ∈ I} ∈ JH(a) if and only if ∨
i∈I

ai = a .

• Given a small category of topological spaces which is closed
under finite limits and under taking open subspaces, one may
define the open cover topology on it by specifying as basis
the collection of open embeddings {Yi ↪→ X | i ∈ I} such that
∪
i∈I

Yi = X .

8 / 43
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Topologies with smallest covering sieves

Definition
Let A be a collection of arrows in a category C which is closed
under composition on the left and which is interpolative in the
sense that every arrow in A can be factored as the composition of
two arrows in A. Then there is a Grothendieck topology JA on C
given by:

S ∈ JA(c) if and only if ∀f ∈ A, cod(f ) = c implies f ∈ S .

Example
Given a full subcategory D of C, one can take A to be the
collection of arrows whose domains lie in D.

Fact
The Grothendieck topologies on C of the form JA are precisely as
those which have a smallest covering sieve on every object.
N.B. If A is also closed under composition on the right then it can
be recovered from the associated Grothendieck topology as the
collection of arrows which belong to a smallest covering sieve.

9 / 43
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The Zariski site I
• Given a commutative ring with unit A, we can endow the

collection Spec(A) of its prime ideals with the Zariski
topology, whose basis of open sets is given by the subsets

Spec(A)f := {P ∈ Spec(A) | f /∈ P}

(for f ∈ A).
• One can prove that Spec(A) = Spec(A)f1 ∪ . . . ∪ Spec(A)fn if

and only if A = (f1, . . . , fn).
• We have a structure sheaf O on Spec(A) such that
O(Spec(A)f ) = Af for each f ∈ A. The fact that it is a sheaf
results from the fact that if A = (f1, . . . , fn) then the canonical
map

A→
∏

i∈{1,...n}

Afi

is the equalizer of the two canonical maps∏
i∈I

Afi →
∏

i,j∈{1,...,n}

Afi fj .

• The stalk OP of O at a prime ideal P is the localization
AP = colimf /∈PAf .

10 / 43
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The Zariski site II
Notice that Spec(A)f identifies with Spec(Af ) under the
embedding

Spec(Af ) ↪→ Spec(A)

induced by the canonical homomorphism A→ Af .
This motivates the following definition.

Definition
The Zariski site (over Z) is obtained by equipping the opposite of
the category Rngf.g. of finitely generated commutative rings with
unit with the Grothendieck topology Z given by: for any cosieve S
in Rngf.g. on an object A, S ∈ Z (A) if and only if S contains a finite
family {ξi : A→ Afi | 1 ≤ i ≤ n} of canonical maps ξi : A→ Afi in
Rngf.g. where {f1, . . . , fn} is a set of elements of A which is not
contained in any proper ideal of A.
This definition can be generalized to an arbitrary (commutative)
base ring k , by considering the category of finitely presented
(equivalently, finitely generated) k -algebras and homomorphisms
between them. Notice that pushouts exist in this category
(whence pullbacks exist in the opposite category) as they are
given by tensor products of k -algebras.

11 / 43
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Sheaves on a site I

Definition
• A presheaf on a (small) category C is a functor P : Cop → Set.
• Let P : Cop → Set be a presheaf on C and S be a sieve on an

object c of C.

A matching family for S of elements of P is a function which
assigns to each arrow f : d → c in S an element xf ∈ P(d) in
such a way that

P(g)(xf ) = xf◦g for all g : e→ d .

An amalgamation for such a family is a single element
x ∈ P(c) such that

P(f )(x) = xf for all f in S .

12 / 43
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Sheaves on a site II

• Given a site (C, J), a presheaf on C is a J-sheaf if every
matching family for any J-covering sieve on any object of C
has a unique amalgamation.

• The J-sheaf condition can be expressed as the requirement
that for every J-covering sieve S the canonical arrow

P(c)→
∏
f∈S

P(dom(f ))

given by x → (P(f )(x) | f ∈ S) should be the equalizer of the
two arrows ∏

f∈S

P(dom(f ))→
∏

f,g, f ∈ S
cod(g)=dom(f )

P(dom(g))

given by (xf → (xf◦g)) and (xf → (P(g)(xf ))).

13 / 43
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The notion of Grothendieck topos
• The J-sheaf condition can also be expressed as the

requirement that for every J-covering sieve S (regarded as a
subobject of HomC(−, c) in [Cop,Set]), every natural
transformation α : S → P admits a unique extension α̃ along
the embedding S � HomC(−, c):

S

��

α // P

HomC(−, c)

α̃

99

(notice that a matching family for R of elements of P is
precisely a natural transformation R → P)

• It can also be expressed as the condition

P(c) = lim←−
f :d→c∈S

P(d)

for each J-covering sieve S on an object c.

• The category Sh(C, J) of sheaves on the site (C, J) is the full
subcategory of [Cop,Set] on the presheaves which are
J-sheaves.

• A Grothendieck topos is any category equivalent to the
category of sheaves on a site.

14 / 43
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Examples of toposes

The following examples show that toposes can be naturally
attached to mathematical notions as different as (small)
categories, topological spaces, or groups. In fact, as we shall see
later in the course, toposes can also be naturally attached to
many other kinds of mathematical objects.

Examples

• For any (small) category C, [Cop,Set] is the category of
sheaves Sh(C,T ) where T is the trivial topology on C.

• For any topological space X , Sh(O(X ), JO(X)) is equivalent to
the usual category Sh(X ) of sheaves on X .

• For any (topological) group G, the category BG = Cont(G) of
continuous actions of G on discrete sets is a Grothendieck
topos (equivalent, as we shall see, to the category
Sh(Contt(G), Jat) of sheaves on the full subcategory
Contt(G) on the non-empty transitive actions with respect to
the atomic topology).

15 / 43
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The sheaf condition for presieves
It is sometimes convenient to check the sheaf condition for the sieve
generated by a presieve directly in terms of the presieve.

Definition
A presheaf F : Cop → Set satisfies the sheaf condition with respect
to a presieve P = {fi : ci → c | i ∈ I} if for any family of elements
{xi ∈ P(ci ) | i ∈ I} such that for any arrows h and k with
fi ◦ h = fj ◦ k , F (h)(xi ) = F (k)(xj ) there exists a unique element
x ∈ P(c) such that F (fi )(x) = xi for all i .
Clearly, F satisfies the sheaf condition with respect to the presieve
P if and only if it satisfies it with respect to the sieve generated by P.

The sheaf condition for the presieve P can be expressed as the
requirement that the canonical diagram

F (c) // ∏
i∈I

F (ci ) // //
∏

h : e → ci , k : e → cj

fi ◦ h = fj ◦ k

F (e)

is an equalizer.

N.B. If C has pullbacks then the product on the right-hand side can
be simply indexed by the pairs (i , j) (e = ci ×c cj and h and k being
equal to the pullback projections). 16 / 43
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Some remarks I

The following facts show that the notion of sheaf behaves very
naturally with respect to the notions of coverage and of
Grothendieck topology:

(i) For any presheaf P, the collection LP of sieves R such that P
satisfies the sheaf axiom with respect to all the pullbacks
sieves f ∗(R) is a Grothendieck topology, and the largest one
for which P is a sheaf.

(ii) By intersecting such topologies, we can deduce that for any
given collection of presheaves there is a largest
Grothendieck topology for which all of them are sheaves.

(iii) By (i), if a presheaf satisfies the sheaf condition with respect
to a coverage then it satisfies the sheaf condition with
respect to the Grothendieck topology generated by it.

17 / 43
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Some remarks II
Proposition
Let P be a presheaf Cop → Set. Then

(i) If P satisfies the sheaf condition with respect to a sieve S and
to each of the sieves in a family {Rf | f ∈ S} (where Rf is a
sieve on dom(f )) and all their pullbacks then P satisfies the
sheaf condition with respect to the composite sieve
S ∗ {Rf | f ∈ S}.

(ii) If P satisfies the sheaf condition with respect to all the
pullbacks of a sieve S then it satisfies the sheaf condition with
respect to each sieve T ⊇ S.

(iii) If P satisfies the sheaf condition with respect to all the
pullbacks of a sieve S on an object c and all the pullbacks of
sieves of the form g∗(R) for a sieve R on c indexed by arrows
g in S then it satisfies the sheaf condition with respect to R.

The fact that LP satisfies the transitivity axiom for Grothendieck
topologies follows from (iii) (the sheaf condition for the pullbacks
f ∗(R) of R follows from (iii) applied to f ∗(R) and f ∗(S) in place of R
and S), which in turn can be proved by using (i) to deduce that P
satisfies the sheaf condition for S ∗ {g∗(R) | g ∈ S} ⊆ R, and by an
argument similar to that used for establishing (ii) to deduce from
this that P satisfies the sheaf condition also with respect to R.
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Subcanonical sites
Definition
A Grothendieck topology J on a (small) category C is said to be
subcanonical if every representable functor HomC(−, c) : Cop → Set is a
J-sheaf.

Fact
For any locally small category C, there exists the largest Grothendieck
topology J on C for which all representables on C are J-sheaves. It is
called the canonical topology on C.

Definition
• A sieve R on an object c of a locally small category C is said to be

effective-epimorphic if it forms a colimit cone under the (large!)
diagram consisting of the domains of all the morphisms in R, and
all the morphisms over c between them.

• It is said to be universally effective-epimorphic if its pullback along
every arrow to c is effective-epimorphic.

The covering sieves for the canonical topology on a locally small
category are precisely the universally effective-epimorphic ones. It
follows that a Grothendieck topology is subcanonical if and only if it is
contained in the canonical topology, that is if and only if all its covering
sieves are effective-epimorphic.

19 / 43
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Basic properties of Grothendieck toposes
In the next lectures, we shall prove the following result, showing that
Grothendieck toposes satisfy all the categorical properties that one
might hope for.

Theorem
Let (C, J) be a site. Then

• the inclusion Sh(C, J) ↪→ [Cop,Set] has a left adjoint
a : [Cop,Set]→ Sh(C, J) (called the associated sheaf functor),
which preserves finite limits.

• The category Sh(C, J) has all (small) limits, which are preserved
by the inclusion functor Sh(C, J) ↪→ [Cop,Set]; in particular, limits
are computed pointwise and the terminal object 1Sh(C,J) of
Sh(C, J) is the functor T : Cop → Set sending each object
c ∈ Ob(C) to the singleton {∗}.

• The associated sheaf functor a : [Cop,Set]→ Sh(C, J) preserves
colimits; in particular, Sh(C, J) has all (small) colimits.

• The category Sh(C, J) has exponentials, which are constructed
as in the topos [Cop,Set].

• The category Sh(C, J) has a subobject classifier.

Corollary
Every Grothendieck topos is an elementary topos.
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The plus construction
Let us start by establishing the following fundamental theorem.

Theorem
For any site (C, J), the inclusion Sh(C, J) ↪→ [Cop,Set] has a left
adjoint a : [Cop,Set]→ Sh(C, J), called the associated sheaf
functor, which preserves finite limits.
The associated sheaf functor can be constructed as the functor
obtained by applying twice the plus construction P → P+. The plus
functor is defined as follows:

P+(c) = colimR∈J(c)Match(R,P)

where Match(R,P) is the set of matching families for R of elements
of P (the action of P+ on arrows being given by reindexing of the
matching family along the pullback sieve).
Notice that this is a filtered (actually, directed) colimit, so the
elements of P+(c) are equivalence classes [x] of matching families
x with respect to the equivalence relation ∼ given by equality on a
common refinement, that is

x = {xf | f ∈ R} ∼ y = {yg | g ∈ S}
if and only if

there exists T ⊆ R ∩ S in J(c) such that xh = yh for all h ∈ T .
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Properties of the plus construction
The following properties of the plus construction will be
instrumental for proving that the functor P → P++ satisfies the
universal property of the associated sheaf functor.
Notice that we have a natural transformation ηP : P → P+ given
by:

ηP(c)(x) = [{P(f )(x) | f ∈ Mc}] .
A presheaf is said to be separated if it satisfies the uniqueness
(but not necessarily the existence) requirement in the definition of
a sheaf.

Theorem
(i) A presheaf P is separated if and only if ηP : P → P+ is a

monomorphism.
(ii) A presheaf P is a sheaf if and only if ηP : P → P+ is an

isomorphism.
(iii) Every morphism P → F of a presheaf P to a sheaf F factors

uniquely through ηP : P → P+.
(iv) For any presheaf P, P+ is a separated presheaf.
(v) For any separated presheaf P, P+ is a sheaf.
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The associated sheaf functor
Applying the plus construction just once is in general not enough
for building a sheaf starting from a presheaf (unless the presheaf
is separated). Nonetheless, by the above theorem, for any
presheaf P, P++ is a sheaf and the morphism P → P++ given by
the composite of ηP : P → P+ and ηP+ : P+ → P++ satisfies the
universal property of the associated sheaf of the presheaf P; that
is, every morphism φ : P → F of a presheaf P to a sheaf F factors
uniquely through ηP+ ◦ ηP : P → P++:

P

ηP+◦ηP

��

φ // F

P++
φ̃

==

In other words, the associated sheaf functor
aJ : [Cop,Set]→ Sh(C, J) is left adjoint to the inclusion functor
iJ : Sh(C, J) ↪→ [Cop,Set]. This implies in particular that aJ
preserves all (small) colimits. On the other hand, the plus
construction preserves finite limits and filtered colimits commute
with finite limits in Set, so aJ also preserves finite limits.
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Description in terms of locally matching families
A more compact description of the associated sheaf functor

aJ : [Cop,Set]→ Sh(C, J)

is available.

Definition
Let P : Cop → Set be a presheaf and J a Grothendieck topology
on C. Then

• We say that two elements x , y ∈ P(c) of P are locally equal if
there exists a J-covering sieve R on c such that
P(f )(x) = P(f )(y) for each f ∈ R.

• Given a sieve S on an object c, a locally matching family for
S of elements of P is a function assigning to each arrow
f : d → c in S an element xf ∈ P(d) in such a way that,
whenever g is composable with f , P(g)(xf ) and P(f ◦ g)(x)
are locally equal.

Then aJ(P)(c) consists of equivalence classes of locally matching
families for J-covering sieves on c of elements P modulo local
equality on a common refinement.
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Subobjects in a Grothendieck topos

Since limits in a topos Sh(C, J) are computed as in the presheaf
topos [Cop,Set], a subobject of a sheaf F in Sh(C, J) is just a
subsheaf, that is a subfunctor which is a sheaf.

Notice that a subfunctor F ′ ⊆ F is a sheaf if and only if for every
J-covering sieve S and every element x ∈ F (c), x ∈ F ′(c) if and
only if F (f )(x) ∈ F ′(dom(f )) for every f ∈ S.

Theorem
• For any Grothendieck topos E and any object a of E , the

poset SubE(a) of all subobjects of a in E is a complete
Heyting algebra.

• For any arrow f : a→ b in a Grothendieck topos E , the
pullback functor f ∗ : SubE(b)→ SubE(a) has both a left
adjoint ∃f : SubE(a)→ SubE(b) and a right adjoint
∀f : SubE(a)→ SubE(b).
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The Heyting operations on subobjects

Proposition
The collection SubSh(C,J)(E) of subobjects of an object E in
Sh(C, J) has the structure of a complete Heyting algebra with
respect to the natural ordering A ≤ B if and only if for every c ∈ C,
A(c) ⊆ B(c). We have that

• (A ∧ B)(c) = A(c) ∩ B(c) for any c ∈ C;
• (A ∨ B)(c) = {x ∈ E(c) | {f : d → c | E(f )(x) ∈ A(d) ∪ B(d)}
∈ J(c)} for any c ∈ C;
(the infinitary analogue of this holds)

• (A⇒B)(c) = {x ∈ E(c) | for every f : d → c,E(f )(x) ∈ A(d)
implies E(f )(x) ∈ B(d)} for any c ∈ C.

• the bottom subobject 0 � E is given by the embedding into E
of the initial object 0 of Sh(C, J) (given by: 0(c) = ∅ if ∅ /∈ J(c)
and 0(c) = {∗} if ∅ ∈ J(c));

• the top subobject is the identity one.

Remark
From the Yoneda Lemma it follows that the subobject classifier Ω in
Sh(C, J) (see below) has the structure of an internal Heyting
algebra in Sh(C, J).
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The interpretation of quantifiers
Let φ : E → F be a morphism in Sh(C, J).

• The pullback functor

φ∗ : SubSh(C,J)(F )→ SubSh(C,J)(E)

is given by: φ∗(B)(c) = φ(c)−1(B(c)) for any subobject
B � F and any c ∈ C.

• The left adjoint

∃φ : SubSh(C,J)(E)→ SubSh(C,J)(F )

is given by: ∃φ(A)(c) = {y ∈ E(c) | {f : d → c | (∃a ∈
A(d))(φ(d)(a) = E(f )(y))} ∈ J(c)}
for any subobject A � E and any c ∈ C.

• The right adjoint

∀φ : SubSh(C,J)(E)→ SubSh(C,J)(F )

is given by ∀φ(A)(c) = {y ∈ E(c) | for all f : d →
c, φ(d)−1(E(f )(y)) ⊆ A(d)}
for any subobject A � E and any c ∈ C.
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Toposes are balanced

Definition
A category is said to be balanced if every arrow which is both a
monomorphism and an epimorphism is an isomorphism.

Remark
If in a category a monomorphism is regular (that is, occurs as the
equalizer of a pair of arrows) then it is an isomorphism if and only
it it is an epimorphism.

Proposition
In a Grothendieck topos E , every monomorphism is regular (that
is, it is the equalizer of its cokernel pair). In particular, E is
balanced. In fact, also epimorphisms in E are all regular.

Recall that regular epimorphisms are stable under pullbacks.
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The epi-mono factorization

Definition
The image Im(f ) of an arrow f : A→ B in a category C is, if it
exists, the smallest subobject of B through which f factors.

Remark
Images exist in every Grothendieck topos (and are stable under
pullback). In fact, they are obtained from the images calculated in
the presheaf topos by applying the associated sheaf functor.
By recalling that a topos is balanced, we can immediately prove
the following

Proposition
In every Grothendieck topos, every arrow f can be uniquely (up to
a unique isomorphism) factored as an epimorphism followed by a
monomorphism; the monic part of the factorization of f is given by
its image.
The proposition implies in particular that epimorphisms in E can
be characterized as the arrows whose image is an isomorphism.
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The closure operation on subobjects I
The associated sheaf functor aJ : [Cop,Set]→ Sh(C, J) induces a
closure operation cJ(m) on subobjects m of [Cop,Set] (compatible
with pullbacks of subobjects), defined by taking the pullback of the
image aJ(m) of m : A′ � A under aJ along the unit ηJ of the
adjunction between iJ and aJ :

cJ(A′) //

cJ (m)

��

aJ(A′)

aJ (m)

��
A

ηJ (A) // aJ(A)

Concretely, we have

cJ(A′)(c) = {x ∈ A(c) | {f : d → c | A(f )(x) ∈ A′(d)} ∈ J(c)} .

Remarks
• If A is a J-sheaf then aJ(A′) is isomorphic to cJ(A′).
• m is cJ -dense (that is, cJ(m) = 1A) if and only if aJ(m) is an

isomorphism.
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The closure operation on subobjects II

Proposition
Given a sieve S on an object c, regarded as a subobject
mS : S � HomC(−, c) in [Cop,Set], the following conditions are
equivalent:
(a) aJ sends mS to an isomorphism;
(b) the collection of arrows aJ(yC(f )) for f ∈ S is jointly epimorphic;
(c) S is J-covering.

We have previously remarked that the sheaf condition for a
presheaf P with respect to a sieve S could be reformulated as the
requirement that every morphism S → P admits a unique
extension along the canonical embedding S � HomC(−, c). In
fact, for any cJ -dense subobject A′ � A in [Cop,Set], if P is a
J-sheaf then every morphism α : A′ → P admits a unique
extension α̃ : A→ P along the embedding A′ � A:

A′

��

α // P

A
α̃

??
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Monomorphisms and epimorphisms in Sh(C, J)

• Since limits in Sh(C, J) are computed as in [Cop,Set], and the
latter are computed pointwise, we have that a morphism
α : P → Q in Sh(C, J) is a monomorphism if and only if for
every c ∈ C,

α(c) : P(c)→ Q(c)

is an injective function.

• Since the epimorphisms in Sh(C, J) are precisely the
morphisms whose image is an isomorphism, we have that a
morphism α : P → Q in Sh(C, J) is an epimorphism if and
only if it is locally surjective in the sense that for every c ∈ C
and every x ∈ Q(c),

{f : d → c | Q(f )(x) ∈ Im(α(d))} ∈ J(c) .
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Exponentials in Sh(C, J)

• We preliminarily remark that if exponentials exist in Sh(C, J)
then they are computed as in [Cop,Set], by using the
adjunction between aJ and iJ and the fact that aJ preserves
finite products.

• Next, we use the characterization of the J-sheaves on C as
the presheaves P such that for every cJ -dense subobject
A′ � A, every morphism A′ → P admits a unique extension
A→ P along the embedding A′ � A to conclude that if F is a
sheaf then F P is a sheaf for every presheaf P:

S

��

// F P S × P

��

// F

HomC(−, c)

99

HomC(−, c)× P

88
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The subobject classifier in Sh(C, J)

• Given a site (C, J) and a sieve S in C on an object c, we say
that S is J-closed if for any arrow f : d → c, f ∗(S) ∈ J(d)
implies that f ∈ S.

• Let us define ΩJ : Cop → Set by:
ΩJ(c) = {R | R is a J-closed sieve on c} (for an object c ∈ C),
ΩJ(f ) = f ∗(−) (for an arrow f in C),
where f ∗(−) denotes the operation of pullback of sieves in C
along f .
Then the arrow true : 1Sh(C,J) → ΩJ defined by:
true(∗)(c) = Mc for each c ∈ Ob(C)
is a subobject classifier for Sh(C, J).

• The classifying arrow χA′ : A→ ΩJ of a subobject A′ ⊆ A in
Sh(C, J) is given by:

χA′(c)(x) = {f : d → c | A(f )(x) ∈ A′(d)}

where c ∈ Ob(C) and x ∈ A(c).
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Closure operations
Definition
(a) A closure operation c on a partially ordered set (A,≤) is a

function c : A→ A satisfying the following properties:
• (extensivity) a ≤ c(a) for any a ∈ A;
• (order preservation) if a ≤ b then c(a) ≤ c(b);
• (idempotency) c(c(a)) = c(a) for any a ∈ A.

(b) A closure operation c on subobjects in a topos E is said to be
universal if it commutes with pullback, that is if
c(f ∗(m)) = f ∗(c(m)) for any subobject m : A′ → A and any
arrow f : B → A in E .

Proposition
Every universal closure operation c on subobjects in an
elementary topos preserves finite intersections of subobjects; that
is, c(m ∩ n) = c(m) ∩ c(n).

Remark
Given a Grothendieck topology J on a small category C, the
operation cJ on subobjects in [Cop,Set] induced by the associated
sheaf functor aJ (as described above) is a universal closure
operation in the sense of this definition.
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The concept of local operator
Definition
Let E be a topos, with subobject classifier > : 1→ Ω. A local
operator (or Lawvere-Tierney topology) on E is an arrow j : Ω→ Ω
in E such that the diagrams

1

>
��

>

��

Ω
j

��
j
��

Ω× Ω

j×j
��

∧ // Ω

j
��

Ω
j
// Ω Ω

j
// Ω Ω× Ω ∧

// Ω

commute (where ∧ : Ω× Ω→ Ω is the meet operation of the
internal Heyting algebra Ω).

Theorem
For any elementary topos E , there is a bijection between universal
closure operations on E and local operators on E .

Sketch of proof.
The bijection sends a universal closure operation c on E to the
local operator jc : Ω→ Ω given by the classifying arrow of the

subobject c(1
>
� >), and a local operator j to the closure operation

cj induced by composing classifying arrows with j .
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Abstract sheaves
Definition
Let c be a universal closure operation on an elementary topos E .

• A subobject m : a′ → a in E is said to be c-dense if
c(m) = ida, and c-closed if c(m) = m.

• An object a of E is said to be a c-sheaf if whenever we have a
diagram

b′

m
��

f ′ // a

b

where m is a c-dense subobject, there exists exactly one
arrow f : b → a such that f ◦m = f ′.

• The full subcategory of E on the objects which are c-sheaves
will be denoted by shc(E).

Fact
A subobject of a c-sheaf is c-closed if and only if its domain is a
c-sheaf.
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The dense-closed factorization

• For any universal closure operation c, we have the following
orthogonality property: for any commutative square

A′

m
��

f ′ // B′

n
��

A
f
// B

where m is c-dense and n is c-closed, there exists a unique
arrow g : A→ B such that n ◦ g = f and g ◦m = f ′.

• The factorization of a monomorphism m : A′ → A as the
canonical monomorphism A′ → c(A′) followed by the
subobject c(m) is the unique factorization (up to
isomorphism) of m as a c-dense subobject followed by a
c-closed one.

38 / 43



Topos Theory

Olivia Caramello

Sheaves on a site
Grothendieck
topologies

Grothendieck
toposes

Basic properties
of Grothendieck
toposes
Subobject lattices

Balancedness

The epi-mono
factorization

The closure
operation on
subobjects

Monomorphisms and
epimorphisms

Exponentials

The subobject
classifier

Local operators

For further
reading

Cartesian reflectors
Definition
(a) A subcategory F of a category E is said to reflective it is

replete (that is, every object isomorphic in E to an object of F
also lies in F) and the inclusion functor F ↪→ E is full and has
a left adjoint.

(b) A reflective subcategory of a cartesian category is said to be a
localization if the left adjoint to the inclusion functor preserves
finite limits.

(c) The reflector associated with a localization of a topos C is the
functor E → E given by the composite of the inclusion functor
with its left adjoint. (Notice that such a functor is always
cartesian.)

Proposition
Every (cartesian) reflector L : E → E associated with a localization
of E induces a universal closure operation cL on C defined as
follows: for any subobject m : A′ � A in E , cL(m) is the subobject
of A obtained by taking the pullback of the image L(m) of
m : A′ � A under L along the unit η of the localization:

cL(A′) //

cL(m)

��

L(A′)

L(m)

��
A

η(A) // L(A)
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Three equivalent points of view I
Theorem

(i) For any local operator j on an elementary (resp.
Grothendieck) topos E , shcj (E) is an elementary (resp.
Grothendieck) topos, and the inclusion shcj (E) ↪→ E has a left
adjoint aj : E → shcj (E) which preserves finite limits (and
satisfies the property that the monomorphisms which it sends
to isomorphisms are precisely the cj -dense ones).

(ii) Conversely, a localization of E defines, as specified above, a
universal closure operation on E and hence a local operator
on E .

(iii) In fact, these assignments define a bijection between the
localizations of E and the local operators (equivalently, the
universal closure operations) on E :

Universal closure operations

Local operators Localizations
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Three equivalent points of view II

• The proof of the fact that a localization can be recovered from
the corresponding closure operation relies on the following
result: for any localization L of E with associated reflector L
and closure operation cL, the following conditions are
equivalent for an object A of C:

(i) A is cL-separated;
(ii) ηA : A→ LA is a monomorphism.

Also, the following conditions are equivalent:
(i) A is a cL-sheaf;
(ii) ηA : A→ LA is an isomorphism;
(iii) A lies in L.

• The fact that a closure operation c can be recovered from the
associated localization follows from the fact that, for a
monomorphism m : A′ → A, m factors as the canonical
monomophism A′ → dom(η∗A(Lm)), which is c-dense (since it
is sent by L to an isomorphism), followed by the
monomorphism η∗A(Lm), which is c-closed (as it is the
pullback of Lm, which is closed).
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Local operators and Grothendieck topologies

Theorem
If C is a small category, the Grothendieck topologies J on C
correspond exactly to the local operators on the presheaf topos
[Cop,Set]. (More generally, the Grothendieck topologies J ′ which
contain a given Grothendieck topology J on C correspond exactly
to the local operators on the topos Sh(C, J).)

Sketch of proof.
The correspondence sends a local operator j : Ω→ Ω to the
subobject J � Ω which it classifies, that is to the Grothendieck
topology J on C defined by:

S ∈ J(c) if and only if j(c)(S) = Mc

Conversely, it sends a Grothendieck topology J, regarded as a
subobject J � Ω, to the arrow j : Ω→ Ω that classifies it.
In fact, if J is the Grothendieck topology corresponding to a local
operator j , an object of [Cop,Set] is a J-sheaf (in the sense of
Grothendieck toposes) if and only if it is a cj -sheaf (in the sense of
universal closure operations).
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