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Geometric morphisms
The natural, topologically motivated, notion of morphism of
Grothendieck toposes is that of geometric morphism. The natural
notion of morphism of geometric morphisms if that of geometric
transformation.

Definition
(i) Let E and F be toposes. A geometric morphism f : E → F

consists of a pair of functors f∗ : E → F (the direct image of
f ) and f ∗ : F → E (the inverse image of f ) together with an
adjunction f ∗ a f∗, such that f ∗ preserves finite limits.

(ii) Let f and g : E → F be geometric morphisms. A geometric
transformation α : f → g is defined to be a natural
transformation a : f ∗ → g∗.

• Grothendieck toposes and geometric morphisms between
them form a category, denoted by BTop.

• Given two toposes E and F , geometric morphisms from E to
F and geometric transformations between them form a
category, denoted by Geom(E ,F).
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Examples of geometric morphisms

• A continuous function f : X → Y between topological spaces
gives rise to a geometric morphism Sh(f ) : Sh(X )→ Sh(Y ).
The direct image Sh(f )∗ sends a sheaf F ∈ Ob(Sh(X )) to the
sheaf Sh(f )∗(F ) defined by Sh(f )∗(F )(V ) = F (f−1(V )) for
any open subset V of Y . The inverse image Sh(f )∗ acts on
étale bundles over Y by sending an étale bundle p : E → Y
to the étale bundle over X obtained by pulling back p along
f : X → Y .

• Every Grothendieck topos E has a unique geometric
morphism E → Set. The direct image is the global sections
functor Γ : E → Set, sending an object e ∈ E to the set
HomE(1E ,e), while the inverse image functor ∆ : Set→ E
sends a set S to the coproductt

s∈S
1E .

• For any site (C, J), the pair of functors formed by the
inclusion Sh(C, J) ↪→ [Cop,Set] and the associated sheaf
functor a : [Cop,Set]→ Sh(C, J) yields a geometric morphism
i : Sh(C, J)→ [Cop,Set].
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Slice toposes

The notion of Grothendieck topos is stable with respect to the
slice construction:

Proposition

(i) For any Grothendieck topos E and any object P of E , the
slice category E/P is also a Grothendieck topos; more
precisely, if E = Sh(C, J) then E/P ' Sh(

∫
P, JP), where JP

is the Grothendieck topology on
∫

P whose covering sieves
are precisely the sieves whose image under the canonical
projection functor πP :

∫
P → C is J-covering.

(ii) For any Grothendieck topos E and any morphism f : P → Q
in E , the pullback functor f ∗ : E/Q → E/P has both a left
adjoint (namely, the functor Σf given by composition with f )
and a right adjoint πf . It is therefore the inverse image of a
geometric morphism E/P → E/Q.
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The notion of locale
To better understand the relationship between topological spaces and
the associated toposes, it is convenient to introduce the notion of a
locale.

Definition
• A frame is a complete lattice A satisfying the infinite distributive

law
a ∧∨

i∈I
bi =∨

i∈I
(a ∧ bi )

• A frame homomorphism h : A→ B is a mapping preserving finite
meets and arbitrary joins.

• We write Frm for the category of frames and frame
homomorphisms.

Fact
A poset is a frame if and only if it is a complete Heyting algebra.
Note that we have a functor Top→ Frmop which sends a topological
space X to its lattice O(X ) of open sets and a continuous function
f : X → Y to the function O(f ) : O(Y )→ O(X ) sending an open
subset V of Y to the open subset f−(V ) of X . This motivates the
following

Definition
The category Loc of locales is the dual Frmop of the category of
frames (a locale is an object of the category Loc).
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Pointless topology

Pointless topology is an attempt to do Topology without making
reference to the points of topological spaces but rather entirely in
terms of their open subsets and of the inclusion relation between
them. For example, notions such as connectedness or
compactness of a topological space can be entirely reformulated
as properties of its lattice of open subsets:

• A space X is connected if and only if for any a,b ∈ O(X )
such that a ∧ b = 0, a ∨ b = 1 implies either a = 1 or b = 1;

• A space X is compact if and only if whenever 1 =∨
i∈I

ai in

O(X ), there exist a finite subset I′ ⊆ I such that 1 =∨
i∈I′

ai .

Pointless topology thus provides tools for working with locales as
they were lattices of open subsets of a topological space (even
though not all of them are of this form). On the other hand, a
locale, being a complete Heyting algebra, can also be studied by
using an algebraic or logical intuition.
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The dual nature of the concept of locale

This interplay of topological and logical aspects in the theory of
locales is very interesting and fruitful; in fact, important
‘topological’ properties of locales translate into natural logical
properties, via the identification of locales with complete Heyting
algebras:

Example

Locales Complete Heyting algebras
Extremally disconnected locales Complete De Morgan algebras

Almost discrete locales Complete Boolean algebras
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The adjunction between locales and spaces
• For any topological space X , the lattice O(X ) of its open sets

is a locale.
• Conversely, with any locale F one can associate a topological

space XF , whose points are the frame homomorphism
F → {0,1} and whose open sets are the subsets of frame
homomorphisms F → {0,1} which send a given element
f ∈ F to 1.

• In fact, the assignments

X → O(X )

and
F → XF

lift to an adjunction O a X− between the category Top of
topological spaces and continuous maps and the category
Loc = Frmop of locales.

• The topological spaces X such that the unit ηX : X → XO(X) is
a homeomorphism are precisely the sober spaces, while the
locales F such that the counit O(XF )→ F is an isomorphism
are the spatial locales.

• The adjunction thus restricts to an equivalence between the
full subcategories on the sober spaces and on the spatial
locales.
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Sheaves on a locale
Definition
Given a locale L, the topos Sh(L) of sheaves on L is defined as Sh(L, JL),
where JL is the Grothendieck topology on L (regarded as a poset
category) given by:

{ai | i ∈ I} ∈ JL(a) if and only if ∨
i∈I

ai = a .

Theorem
• For any locale L, there is a Heyting algebra isomorphism

L ∼= SubSh(L)(1Sh(L)).
• The assignment L→ Sh(L) is the object-map of a full and faithful

(pseudo-)functor from the category Loc of locales to the category
BTop of Grothendieck toposes.

The assignment L→ Sh(L) indeed brings (pointless) Topology into the
world of Grothendieck toposes; in fact, important topological properties of
locales can be expressed as topos-theoretic invariants (i.e. properties of
toposes which are stable under categorical equivalence) of the
corresponding toposes of sheaves. These invariants can in turn be used
to give definitions of topological properties for Grothendieck toposes.
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A general hom-tensor adjunction I

Theorem
Let C be a small category, E be a locally small cocomplete
category and A : C → E a functor. Then we have an adjunction

LA : [Cop,Set] // E : RA
oo

where the right adjoint RA : E → [Cop,Set] is defined for each
e ∈ Ob(E) and c ∈ Ob(C) by:

RA(e)(c) = HomE(A(c),e)

and the left adjoint LA : [Cop,Set]→ E is defined by

LA(P) = colim(A ◦ πP),

where πP is the canonical projection functor
∫

P → C from the
category of elements

∫
P of P to C.
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A general hom-tensor adjunction II
Remarks

• The functor LA can be considered as a generalized tensor
product, since, by the construction of colimits in terms of
coproducts and coequalizers, we have the following
coequalizer diagram:∐

c∈C,p∈P(c)
u:c′→c

A(c′)
τ
//

θ //
∐

c∈C, p∈P(c)
A(c)

φ // LA(P),

where
θ(c,p,u, x) = (c′,P(u)(p), x)

and
τ(c,p,u, x) = (c,p,A(u)(x)) .

For this reason, we shall also denote LA by

−⊗C A : [Cop,Set]→ E .

• We can rewrite the above coequalizer as follows:∐
c,c′∈C

P(c)× HomC(c′, c)× A(c′)
τ
//

θ //
∐
c∈C

P(c)× A(c)
φ // P ⊗C A .

From this we see that this definition is symmetric in P and A,
that is

P ⊗C A ∼= A⊗Cop P .
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A couple of corollaries
Corollary
Every presheaf is a colimit of representables. More precisely, for
any presheaf P : Cop → Set, we have

P ∼= colim(yC ◦ πP),

where yC : C → [Cop,Set] is a Yoneda embedding and πP is the
canonical projection

∫
P → C.

Corollary
For any small category C, the topos [Cop,Set] is the free
cocompletion of C (via the Yoneda embedding yC); that is, any
functor A : C → E to a cocomplete category E extends, uniquely
up to isomorphism, to a colimit-preserving functor [Cop,Set]→ E
along yC :

C

yC
��

A // E

[Cop,Set]

;;
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Separating sets of objects
Definition
A separating set of objects for a Grothendieck topos E is a set C of
objects of E such that for any object A of E , the collection of arrows
from objects in C to A is epimorphic.

Proposition
For any site (C, J), the collection of objects of the form lJ(c) (for
c ∈ C), where

lJ : C → Sh(C, J)

is the composite of the Yoneda embedding yC : C → [Cop,Set] with
the associated sheaf functor aJ : [Cop,Set]→ Sh(C, J), is a
separating set of objects for the topos Sh(C, J).
The following theorem, which we shall prove below, provides a sort
of converse to this proposition.

Theorem
For any set of objects C of E which is separating, we have an
equivalence

E ' Sh(C, Jcan
E |C)

where Jcan
E |C is the Grothendieck topology induced on C (regarded

as a full subcategory of E).
13 / 45
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Geometric morphisms as flat functors I

Definition
• A functor A : C → E from a small category C to a locally small

topos E with small colimits is said to be flat if the functor
−⊗C A : [Cop,Set]→ E preserves finite limits.

• The full subcategory of [C, E ] on the flat functors will be
denoted by Flat(C, E).

Theorem
Let C be a small category and E be a Grothendieck topos. Then we
have an equivalence of categories

Geom(E , [Cop,Set]) ' Flat(C, E)

(natural in E), which sends

• a flat functor A : C → E to the geometric morphism
E → [Cop,Set] determined by the functors RA and −⊗C A, and

• a geometric morphism f : E → [Cop,Set] to the flat functor
given by the composite f ∗ ◦ yC of f ∗ : [Cop,Set]→ E with the
Yoneda embedding yC : C → [Cop,Set].
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Flat = filtering
Definition
A functor F : C → E from a small category C to a Grothendieck
topos E is said to be filtering if it satisfies the following conditions:
(a) For any object E of E there exist an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C and
a generalized element Ei → F (bi ) in E .

(b) For any two objects c and d in C and any generalized element
〈x , y〉 : E → F (c)× F (d) in E there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C
with arrows ui : bi → c and vi : bi → d in C and a generalized
element zi : Ei → F (bi ) in E such that 〈F (ui ),F (vi )〉 ◦ zi =
〈x , y〉 ◦ ei for all i ∈ I.

(c) For any two parallel arrows u, v : d → c in C and any
generalized element x : E → F (d) in E for which
F (u) ◦ x = F (v) ◦ x , there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an arrow wi : bi → d
and a generalized element yi : Ei → F (bi ) such that
u ◦ wi = v ◦ wi and F (wi ) ◦ yi = x ◦ ei for all i ∈ I.

Theorem
A functor F : C → E from a small category C to a Grothendieck
topos E is flat if and only if it is filtering.

Remarks
• For any small category C, a functor P : C → Set is filtering if

and only if its category of elements
∫

P is a filtered category
(equivalently, if it is a filtered colimit of representables).

• For any small cartesian category C, a functor C → E is flat if
and only if it preserves finite limits.
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Geometric morphisms to Sh(C, J) I
We shall characterize the geometric morphisms to Sh(C, J) by
identifying them with the geometric morphisms to [Cop,Set] which
factor through the canonical geometric morphism
Sh(C, J) ↪→ [Cop,Set].

Definition
A subtopos of a topos E is a geometric morphism of the form

shj (E) ↪→ E

for a local operator j on E .
Recall that we proved that the subtoposes of a topos Sh(C, J) are
in bijective correspondence with the Grothendieck topologies on C
which contain J.

Proposition
Let f : F → E be a geometric morphism and j a local operator on
E . Then the following conditions are equivalent:

(i) f factors through shj (E) ↪→ E
(ii) f∗ sends all objects of F to j-sheaves in E .
(iii) f ∗ maps cj -dense subobjects in E to isomorphisms in F .

Corollary
Let f : E → [Cop,Set] be a geometric morphism. The the following
conditions are equivalent:

(i) f factors through Sh(C, J) ↪→ [Cop,Set].
(ii) f ∗ ◦ yC maps all J-covering sieves to epimorphic families in E .
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Geometric morphisms to Sh(C, J) I
Definition
If (C, J) is a site, a functor F : C → E to a Grothendieck topos is
said to be J-continuous if it sends J-covering sieves to epimorphic
families.
The full subcategory of Flat(C, E) on the J-continuous flat functors
will be denoted by FlatJ(C, E).

Theorem
For any site (C, J) and Grothendieck topos E , the
above-mentioned equivalence between geometric morphisms and
flat functors restricts to an equivalence of categories

Geom(E ,Sh(C, J)) ' FlatJ(C, E)

natural in E .

Sketch of proof.
Appeal to the previous theorem

• identifying the geometric morphisms E → Sh(C, J) with the
geometric morphisms E → [Cop,Set] which factor through the
canonical geometric inclusion Sh(C, J) ↪→ [Cop,Set], and

• using the characterization of such morphisms as the
geometric morphisms f : E → [Cop,Set] such that the
composite f ∗ ◦ y of the inverse image functor f ∗ of f with the
Yoneda embedding y : C → [Cop,Set] sends J-covering sieves
to epimorphic families in E .
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Further properties of Grothendieck toposes I
Let E be a Grothendieck topos. Then

(i) E is locally small.

(ii) E is well-powered.

(iii) Every equivalence relation in E is effective (in the sense that
it is the kernel pair of its own coequalizer), and every
epimorphism is the coequalizer of its kernel pair. In
particular, E is co-well-powered.

(iv) Finite limits commute with filtered colimits.

(v) The ‘change of base’ functor f ∗ : E/A→ E/B along any
arrow f : B → A in E preserves arbitrary colimits.

(vi) Coproducts are disjoint.

(vii) E has a separating set of objects (if E = Sh(C, J) then the
object of the form lJ(c) for c ∈ C, where lJ is the composite of
the Yoneda embedding C → [Cop,Set] with the associated
sheaf functor aJ : [Cop,Set], form a separating set).

(viii) E has a coseparating set of objects (if E = Sh(C, J) then the
objects of the form ΩlJ (c) for c ∈ C form a coseparating set).
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Further properties of Grothendieck toposes II
Let us recall the following result:

Theorem
Let C be a locally small and complete (resp. cocomplete) category.
If C is well-powered (resp. co-well-powered) and admits a
coseparating (resp. separating) set of objects then it has an initial
(resp. a terminal) object.
This can be notably applied to categories of the form

∫
F where F

is a contravariant functor Cop → Set defined on a locally small,
complete and well-powered category C with a coseparating set of
objects which sends colimits in C to limits to deduce that F is
representable (and the dual result). Also, this latter result can be
used to show the Special Adjoint Functor Theorem: any functor
F : C → D defined on a locally small, complete (resp. cocomplete)
and well-powered category C with a coseparating (resp.
separating) set of objects with values in a locally small category D
preserves all small limits (resp. colimits) if and only if it has a left
(resp. right) adjoint.

From the above properties of Grothendieck toposes it thus follows
that:

• A covariant (resp. contravariant) functor on a Grothendieck
topos with values in Set is representable if and only if it
preserves arbitrary (small) limits (resp. sends colimits to
limits).

• A functor between Grothendieck toposes admits a left adjoint
(resp. a right adjoint) if and only if it preserves arbitrary (small)
limits (resp. colimits).
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The canonical topology on a Grothendieck topos

Recall that the canonical topology Jcan
C on a category C is the

largest one for which all representables in C are sheaves. Its
covering sieves are precisely the universally effective-epimorphic
ones.

Proposition
Let E be a Grothendieck topos. Then a sieve is Jcan

E -covering if
and only if it contains a small epimorphic family.

Sketch of proof.

• Every small epimorphic family generates a sieve which is
universally effective-epimorphic, and every sieve which
contains a universally effective-epimorphic one is universally
effective-epimorphic.

• On the other hand, E being well-powered, every epimorphic
sieve contains a small epimorphic family (notice that if two
arrows f ,g with common codomain A have the same image
then for any arrows ξ, χ : A→ B, we have ξ ◦ f = χ ◦ f if and
only if ξ ◦ g = χ ◦ g).
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Giraud’s theorem
It is possible to axiomatically characterize Grothendieck toposes,
thanks to a theorem due to J. Giraud:

Theorem
The following conditions are equivalent:

(i) E is a Grothendieck topos.
(ii) E is a locally small category with finite limits in which colimits

exist and are preserved by the change of base functors,
coproducts are disjoint, equivalence relations are effective and
epimorphisms are the coequalizers of their kernel pairs, and
there is a separating set of objects.

Sketch of proof.
The implication (i)⇒(ii) was established above. For the converse,
we shall prove that if C is a separating set of objects for E , regarded
as a full subcategory of E , then we have an equivalence
E ' Sh(C, Jcan

E |C). This equivalence will be given by the geometric
morphism E → Sh(C, Jcan

E |C) corresponding to the inclusion functor
A of C into E (notice that this functor is flat since it is filtering, and it
is filtering since C is separating for E).
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Sketch of proof I

In order to prove that the functors
RA = HomE(A(−),−) : E → Sh(C, Jcan

E |C) and
LA : Sh(C, Jcan

E |C)→ E are quasi-inverses to each other, we verify
that

• The counit εe : LA(RA(e)) = lim−→c→e
c is an isomorphism for

every e ∈ E (this follows from the fact that C is separating in
light of the exactness properties needed to establish the fact
that the covering sieves for the canonical topology on a
Grothendieck topos are precisely those which contain small
epimorphic families).

• The unit ηP : P → RA(LA(P)) is an isomorphism for every
P ∈ Sh(C, Jcan

E |C). For this, since ηP is clearly an
isomorphism for R a representable, it clearly suffices to prove
that RA : E → Sh(C, Jcan

E |C) preserves arbitrary colimits.
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Sketch of proof II
To prove that RA preserves colimits, one can resort to the
following criterion for a cocone {D(i)→ C | i ∈ I} in Sh(C, Jcan

E |C)
on a diagram D : I → Sh(C, Jcan

E |C) to be colimiting in terms of the
canonical arrow ξ : colimp(D)→ C in [Cop,Set] from the colimit
colimp(D) of D in [Cop,Set]: this is the case if and only if the arrow
aJcan
E |C (ξ) is an isomorphism, that is if and only if in [Cop,Set]

(1) Im(ξ) is cJcan
E |C -dense, and

(2) the diagonal monomorphism colimp(D)→ Kξ to the domain
Kξ of the kernel pair of ξ is locally surjective.

In order to verify (2), one can in turn use the following
characterization of colimits in E : if E = colimi∈I(Ei ) then,
denoting by ξi the canonical coproduct arrows Ei →

∐
i∈I Ei and

by π :
∐

i∈I Ei → E the canonical arrow, for any arrows x : F → Ei
and y : F → Ej , we have that π ◦ ξi ◦ x = π ◦ ξj ◦ y if and only if
there exists an epimorphic family {ek : Fk → F | k ∈ K} in E such
that (ξi ◦ x ◦ ek , ξj ◦ y ◦ ek ) belongs to the equivalence relation on
HomE(Fk ,

∐
i∈I Ei ) generated by the pairs (ξi ◦ a, ξj ◦Eu ◦ a) for an

arrow u : i → j in I and a generalized element a : Fk → Ei .
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Essential geometric morphisms I
Definition
A geometric morphism f : E → F is said to be essential if the
inverse image functor f ∗ : F → E has a left adjoint.

Theorem
• Every functor f : C → D induces an essential geometric

morphism
E(f ) : [Cop,Set]→ [Dop,Set],

whose inverse image functor f ∗ is given by composition with
f op.

• In fact, the inverse image f ∗ is simultaneously a ‘tensor
product’ functor LA1 and a ‘hom functor’ RA2 , where

A1 = HomD(f (−),−) : D → [Cop,Set]

and
A2 = HomD(−, f (−)) : C → [Dop,Set],

so it has a left adjoint LA2 and a right adjoint RA1 .
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Essential geometric morphisms II
Remarks

• The direct image of the geometric morphism E(f ), namely the
right adjoint to f ∗, is the right Kan extension lim←−f op along f op,
given by the following formula:

lim←−
f op

(F )(b) = lim←−
φ:fa→b

F (a),

where the limit is taken over the opposite of the comma
category (f ↓b).

• The left adjoint to f ∗ is the left Kan extension lim−→f op along f op,
given by the following formula:

lim−→
f op

(F )(b) = lim−→
φ:b→fa

F (a),

where the colimit is taken over the opposite of the comma
category (b↓ f ).

Proposition
If C and D are Cauchy-complete categories, a geometric morphism
[Cop,Set]→ [Dop,Set] is of the form E(f ) for some functor f : C → D
if and only if it is essential; in this case, f can be recovered from
E(f ) (up to isomorphism) as the restriction to the full subcategories
of representables of the left adjoint to the inverse image of E(f ).
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Morphisms of sites I
By using the characterization of filtering functors with values in a
Grothendieck topos as functors which send certain families to
epimorphic families and the fact that the image under the
associated sheaf functor of a family of natural transformations with
common codomain is epimorphic if and only if the family is locally
jointly surjective, we obtain the following result:

Corollary
Let (C, J) and (C′, J ′) be essentially small sites, and
l : C → Sh(C, J), l ′ : C′ → Sh(C′, J ′) be the canonical functors
(given by the composite of the relevant Yoneda embedding with the
associated sheaf functor). Then, given a functor F : C → C′, the
following conditions are equivalent:

(i) A induces a geometric morphism u : Sh(C′, J ′)→ Sh(C, J)
making the following square commutative:

C F //

l
��

C′

l′

��
Sh(C, J)

u∗ // Sh(C′, J ′);

(ii) The functor F is a morphism of sites (C, J)→ (C′, J ′) in the
sense that it satisfies the following properties:
(1) A sends every J-covering family in C into a J ′-covering family in
C′.

(2) Every object c′ of C′ admits a J ′-covering family

c′
i −→ c′ , i ∈ I ,

by objects c′
i of C′ which have morphisms

c′
i −→ F (ci)

to the images under A of objects ci of C.
26 / 45



Topos Theory

Olivia Caramello

Geometric
morphisms

Locales and
pointless
topology

Geometric
morphisms as flat
functors

Geometric
morphisms to
Sh(C, J)

Characterizing
Grothendieck
toposes
Giraud’s theorem

Morphisms
between sites

The Comparison
Lemma

Points of toposes

Separating sets
of points of a
topos

The subterminal
topology

Topos-theoretic
Galois theory

For further
reading

Morphisms of sites II
(3) For any objects c1, c2 of C and any pair of morphisms of C′

f ′1 : c′ −→ F (c1) , f ′2 : c′ −→ F (c2) ,

there exists a J ′-covering family

g′i : c′i −→ c′ , i ∈ I ,

and a family of pairs of morphisms of C

f i
1 : bi −→ c1 , f i

2 : bi → c2 , i ∈ I ,

and of morphisms of C′

h′i : c′i −→ F (bi ) , i ∈ I ,

making the following squares commutative:

c′i
g′i //

h′i
��

c′

f ′1
��

F (bi )
F (f i

1) // F (c1)

c′i
g′i //

h′i
��

c′

f ′2
��

F (bi )
F (f i

2) // F (c2)
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Morphisms of sites III
(4) For any pair of arrows f1, f2 : c ⇒ d of C and any arrow of C′

f ′ : b′ −→ F (c)

satisfying
F (f1) ◦ f ′ = F (f2) ◦ f ′ ,

there exist a J ′-covering family

g′i : b′i −→ b′ , i ∈ I ,

and a family of morphisms of C

hi : bi −→ c , i ∈ I ,

satisfying
f1 ◦ hi = f2 ◦ hi , ∀ i ∈ I ,

and of morphisms of C′

h′i : b′i −→ F (bi ) , i ∈ I ,

making commutative the following squares:

b′i
g′i //

h′i
��

b′

f ′

��
F (bi )

F (hi ) // F (c)
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Morphisms of sites IV
If F is a morphism of sites (C, J)→ (D,K ), we denote by
Sh(F ) : Sh(D,K )→ Sh(C, J) the geometric morphism which it
induces.

Remarks
• If (C, J) and (D,K ) are cartesian sites (that is, C and D are

cartesian categories) then a functor C → D which is cartesian
and sends J-covering sieves to K -covering sieves is a
morphism of sites (C, J)→ (D,K ).

• If J and K are subcanonical then a geometric morphism
g : Sh(D,K )→ Sh(C, J) is of the form Sh(f ) for some f if and
only if the inverse image functor g∗ sends representables to
representables; if this is the case then f is isomorphic to the
restriction of g∗ to the full subcategories of representables.

Corollary
The assignment L→ Sh(L) from locales to Grothendieck toposes
is a full and faithful 2-functor.

29 / 45



Topos Theory

Olivia Caramello

Geometric
morphisms

Locales and
pointless
topology

Geometric
morphisms as flat
functors

Geometric
morphisms to
Sh(C, J)

Characterizing
Grothendieck
toposes
Giraud’s theorem

Morphisms
between sites

The Comparison
Lemma

Points of toposes

Separating sets
of points of a
topos

The subterminal
topology

Topos-theoretic
Galois theory

For further
reading

The Comparison Lemma I

Definition
Let D be a full subcategory of a small category C, and let J be a
Grothendieck topology on C. Then D is said to be J-dense if for
every object c ∈ C there exists a sieve S ∈ J(c) generated by a
family of arrows whose domains lie in D.

Theorem (The Comparison Lemma)
Let (C, J) be a site and D be a J-dense subcategory of C. Then
the sieves in D of the form R ∩ arr(D) for a J-covering sieve R in
C form a Grothendieck topology J|D on D, called the induced
topology, and, denoted by i : D → C the canonical inclusion
functor, the geometric morphism

E(i) : [Dop,Set]→ [Cop,Set],

restricts to an equivalence of categories

E(i)| : Sh(D, J|D) ' Sh(C, J) .
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The Comparison Lemma II

Corollary

• Let B be a basis of a frame L, i.e. a subset B ⊂ L such that
every element in L can be written as a join of elements in B;
then we have an equivalence of categories

Sh(L) ' Sh(B, JL|B),

where JL is the canonical topology on L.
• Let C be a preorder and J be a subcanonical topology on C.

Then we have an equivalence of categories

Sh(C, J) ' Sh(IdJ(C)),

where IdJ(C) is the frame of J-ideals on C (regarded as a
locale). In fact, this result holds also without the
subcanonicity assumption.
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Comorphisms of sites

Definition
A comorphism of sites (D,K )→ (C, J) is a functor D → C which is
cover-reflecting (in the sense that for any d ∈ D and any
J-covering sieve S on π(d) there is a K -covering sieve R on d
such that π(R) ⊆ S).

Proposition
Every comorphism of sites π : D → C induces a flat and
J-continuous functor Aπ : C → Sh(D,K ) given by

Aπ(c) = aK (HomC(π(−), c))

and hence a geometric morphism

f : Sh(D,K )→ Sh(C, J)

with inverse image f ∗(F ) ∼= aK (F ◦ π) for any J-sheaf F on C.
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Points of toposes

Definition
By a point of a topos E , we mean a geometric morphism Set→ E .

Examples

• For any site (C, J), the points of the topos Sh(C, J)
correspond precisely to the J-continuous flat functors
C → Set;

• For any locale L, the points of the topos Sh(L) correspond
precisely to the frame homomorphisms L→ {0,1};

• For any small category C and any object c of C, we have a
point ec : Set→ [Cop,Set] of the topos [Cop,Set], whose
inverse image is the evaluation functor at c.

Fact
Any set of points P of a Grothendieck topos E indexed by a set X
via a function ξ : X → P can be identified with a geometric
morphism ξ̃ : [X ,Set]→ E .
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Separating sets of points

Definition
• Let E be a topos and P be a collection of points of E indexed

by a set X via a function ξ : X → P. We say that P is
separating for E if the points in P are jointly surjective, i.e. if
the inverse image functors of the geometric morphisms in P
jointly reflect isomorphisms (equivalently, if the geometric
morphism ξ̃ : [X ,Set]→ E is surjective, that is its inverse
image reflects isomorphisms).

• A topos is said to have enough points if the collection of all
the points of E is separating for E .

Fact
A Grothendieck topos has enough points if and only if there exists
a set of points of E which is separating for E .
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The subterminal topology
The following notion provides a way for endowing a given set of
points of a topos with a natural topology.

Definition
Let ξ : X → P be an indexing of a set P of points of a Grothendieck
topos E by a set X . We define the subterminal topology τEξ as the
image of the function φE : SubE(1)→P(X ) given by

φE(u) = {x ∈ X | ξ(x)∗(u) ∼= 1Set} .

We denote the space X endowed with the topology τEξ by XτEξ .

The interest of this notion lies in its level of generality, as well as in
its formulation as a topos-theoretic invariant admitting a ‘natural
behaviour’ with respect to sites.

Fact
If P is a separating set of points for E then the frame O(XτEξ ) of open
sets of XτEξ is isomorphic to SubE(1) (via φE ).
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Categories of toposes paired with points
The construction of the subterminal topology can be made functorial.

Definition
The category Topp toposes paired with points has as objects the
pairs (E , ξ), where E is a Grothendieck topos and ξ : X → P is an
indexing of a set of points P of E , and whose arrows (E , ξ)→ (F , ξ′),
where ξ : X → P and ξ′ : Y → Q, are the pairs (f , l) where f : E → F
is a geometric morphism and l : X → Y is a function such that the
diagram

[X ,Set]
E(l) //

ξ̃

��

[Y ,Set]

ξ̃′

��
E f // F

commutes (up to isomorphism).

Theorem
We have a functor Topp → Top (where Top is the category of
topological spaces) sending an object (E , ξ) of Topp to the space XτEξ
and an arrow (f , l) : (E , ξ)→ (F , ξ′) in Topp to the continuous
function l : XτEξ → XτF

ξ′
.
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Examples of subterminal topologies I

Definition
Let (C,≤) be a preorder category. A J-prime filter on C is a subset
F ⊆ ob(C) such that F is non-empty, a ∈ F implies b ∈ F
whenever a ≤ b, for any a,b ∈ F there exists c ∈ F such that
c ≤ a and c ≤ b, and for any J-covering sieve {ai → a | i ∈ I} in C
if a ∈ F then there exists i ∈ I such that ai ∈ F .

Theorem
Let C be a preorder and J be a Grothendieck topology on it. Then
the space XτSh(C,J) has as set of points the collection FJ

C of the
J-prime filters on C and as open sets the sets the form

FI = {F ∈ FJ
C | F ∩ I 6= ∅},

where I ranges among the J-ideals on C. In particular, a
sub-basis for this topology is given by the sets

Fc = {F ∈ FJ
C | c ∈ F},

where c varies among the objects of C.
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Examples of subterminal topologies II

• The Alexandrov topology (E = [P,Set], where P is a preorder
and ξ is the indexing of the set of points of E corresponding
to the elements of P)

• The Stone topology for distributive lattices (E = Sh(D, Jcoh)
and ξ is an indexing of the set of all the points of E , where D
is a distributive lattice and Jcoh is the coherent topology on it)

• A topology for meet-semilattices (E = [Mop,Set] and ξ is an
indexing of the set of all the points of E , whereM is a
meet-semilattice)

• The space of points of a locale (E = Sh(L) for a locale L and
ξ is an indexing of the set of all the points of E)

• A logical topology (E = Sh(CT, JT) is the classiying topos of a
geometric theory T and ξ is any indexing of the set of all the
points of E i.e. models of T)

• The Zariski topology

...
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The topos Cont(G)
Proposition
Given a topological group G, the category Cont(G) of continuous
actions of G on discrete sets and G-equivariant maps between
them is a Grothendieck topos, equivalent to the topos
Sh(Contt (G), Jat) of sheaves with respect to the atomic topology
Jat on the full subcategory Contt (G) on the non-empty transitive
actions.

Remark
In fact, the same result holds by replacing Contt (G) with the full
subcategory ContU (G) of Cont(G) on the actions of the form G/U
where U ∈ C for a cofinal system U of open subgroups of G (that is,
a collection of subgroups such that every open subgroup contains a
member of U).

Recall that classical topological Galois theory provides, given a
Galois extension F ⊆ L, a bijective correspondence between the
intermediate field extensions (resp. finite field extensions)
F ⊆ K ⊆ L and the closed (resp. open) subgroups of the Galois
group AutF (L). This admits the following categorical reformulation:
the functor K → Hom(K ,L) defines an equivalence of categories

(LL
F )op ' Contt (AutF (L)),

which extends to an equivalence of toposes

Sh(LL
F

op
, Jat ) ' Cont(AutF (L)) .

A natural question thus arises: can we characterize the categories
C whose dual is equivalent to (or fully embeddable into) the
category of (non-empty transitive) actions of a topological
automorphism group?
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Topos-theoretic Galois theory
Theorem
Let C be a small category satisfying AP and JEP, and let u be a
C-universal et C-ultrahomogeneous object of the ind-completion
Ind-C of C. Then there is an equivalence of toposes

Sh(Cop, Jat ) ' Cont(Aut(u)),

where Aut(u) is endowed with the topology in which a basis of
open neighbourhoods of the identity is given by the subgroups of
the form Iχ = {α ∈ Aut(u) | α ◦ χ = χ} for χ : c → u an arrow in
Ind-C from an object c of C.
This equivalence is induced by the functor

F : Cop → Cont(Aut(u))

which sends any object c of C to the set HomInd-C(c,u) (endowed
with the obvious action of Aut(u)) and any arrow f : c → d in C to
the Aut(u)-equivariant map

− ◦ f : HomInd-C(d ,u)→ HomInd-C(c,u) .
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Restricting to sites

The following result arises from two ‘bridges’, respectively
obtained by considering the invariant notions of atom and of arrow
between atoms.

Sh(Cop, Jat ) ' Cont(Aut(u))

Cop Contt (Aut(u))

Theorem
Under the hypotheses of the last theorem, the functor F is full and
faithful if and only if every arrow of C is a strict monomorphism,
and it is an equivalence on the full subcategory Contt (Aut(u)) of
Cont(Aut(u)) on the non-empty transitive actions if C is moreover
atomically complete.

41 / 45



Topos Theory

Olivia Caramello

Geometric
morphisms

Locales and
pointless
topology

Geometric
morphisms as flat
functors

Geometric
morphisms to
Sh(C, J)

Characterizing
Grothendieck
toposes
Giraud’s theorem

Morphisms
between sites

The Comparison
Lemma

Points of toposes

Separating sets
of points of a
topos

The subterminal
topology

Topos-theoretic
Galois theory

For further
reading

Applications

• A natural source of ultrahomogenenous and universal objects
is provided by Fraïssé’s construction in Model Theory and its
categorical generalizations.
For instance, if the category C is countable and all its arrows
are monomorphisms then there always exists a C-universal
and C-ultrahomogeneous object in Ind-C.

• This theorem generalizes Grothendieck’s theory of Galois
categories (which corresponds to the particular case when
the fundamental group is profinite).

• It can be applied for generating Galois-type theories in
different fields of Mathematics, which do not fit in the
formalism of Galois categories.
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Examples

Natural categories with monic arrows: C equal to the category of
• Finite sets and injections
• Finite graphs and embeddings
• Finite groups and injective homomorphisms

Natural categories with epic arrows: Cop equal to the category of

• Finite sets and surjections
• Finite groups and surjective homomorphisms
• Finite graphs and homomorphisms which are surjective both

at the level of vertices and at the level of edges.
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Categories of ‘imaginaries’

• If a category C satisfies the first but not the second condition
of our last theorem, our topos-theoretic approach gives us a
fully explicit way to complete it, by means of the addition of
‘imaginaries’, so that also the second condition gets satisfied.

• This is the case for instance for the categories considered
above; so we get notions of ‘imaginary finite set’, ‘imaginary
finite group’ etc.

• The objects of the atomic completion admit an explicit
description in terms of equivalence relations in the topos
Sh(Cop, Jat ) on objects coming from the site Cop.

• In a joint work with L. Lafforgue we give an alternative
concrete description of the atomic completion.
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For further reading

O. Caramello.
Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic ‘bridges’
Oxford University Press, 2017.

P. T. Johnstone.
Sketches of an Elephant: a topos theory compendium, vols. 1
and 2
Oxford University Press, 2002.

S. Mac Lane and I. Moerdijk.
Sheaves in geometry and logic: a first introduction to topos
theory
Springer-Verlag, 1992.
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