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Chapter VII:

Operations on linear sheaves on sites

and Grothendieck’s six operations

for étale cohomology
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Reminder on sheaves on Grothendieck sites

Definition: Let C = (essentially) small category.
(i) A sieve Son an object X of C is a subobject
S<s Hom(e,X) in C=I[C™,Sel.
In other words it is a collection of arrows
X — X
such that, for any X” -5 X’ - X,
feS=foges.

(ii) For any morphism X T yofe

and any sieve Son Y, f~'Siis the sieve on X

S XHom(e,v) Hom(e, X) — Hom(e, X) .

In other words, an arrow X’ 25 Xisin f'Sifandonlyif foa: X’ — Yisin S.

Remarks:
e Any intersection of sieves on X is a sieve on X.

e Any family of arrows X; Ty x generates a sieve on X. It consists in the

morphisms X’ — X which factorise through at least one of the f’s.
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Definition:
Let C = (essentially) small category.
A topology J on C is a map

X — J(X)
| [

object of C set of sieves on X
which verifies the following axioms:

(Maximality) Fo any X, the maximal sieve

Hom(e, X) consisting of all arrows X' — X
is an element of J(X).
(Stability) For any morphism f: X — Y, the map
S— 'S
sends J(Y) into J(X).
(Transitivity) If X is an object and S € J(X), a sieve S’ on X
such that F~1S" € J(X"), V (X’ !, X) € S, necessarily belongs to J(X).

Remark: A family of morphisms X; I x
is called “J-covering” if the sieve it generates belongs to J(X).
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Definition:

(i) A siteis a pair (C, J) consisting in
C = (essentially) small category,
J = topology on C.

(ii) A sheaf on a site (C, J) is a presheaf
F:C® — Set
such that, for any X and S € J(X), the canonical map

F(X)— lim  F(X")

is one-to-one. PE=PaES
(iii) The category of sheaves on (C, J), denoted
Cs=Sh(C,J),
is the full subcategory of
C = [C, Se] (= category of presheaves on C)

on presheaves F which are sheaves.
In other words, a morphism of sheaves is a morphism of presheaves.
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The sheafification functor

Proposition: Let (C, J) = site.
Then the canonical embedding functor

has a left adjoint J :ACJ —C )
j* : C — CJ
P — JP
characterized by the property that any morphism
P—F

from a presheaf P to a sheaf F uniquely factorises as
P—j"P—F.

Remarks:

(i) The sheafification j*P of P can be constructed by the formula

JP=(PH*
where (P1)(X) = I|_>m M P(X").
SeJX) (xrZxyes

(ii) There is a canonical composed functor

t.cX ¢l
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Exactness properties

Proposition:

(i) The category C has arbitrary limits and colimits
and they are computed component-wise, i.e.

(im Pa ) (X) = im Pa(X),

D D
(nm Pd) (X) = lim Py(X)
D D
(if) The category @ has arbitrary limits and colimits with

(iii) The functor i :CAJ s @

respects arbitrary limits, while its left adjoint
j* o 5—) CAJ

respects arbitrary colimits and finite limits.
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Corollary:

() A group object [resp. ring object, resp. module object over a ring object]
of C, is a sheaf of sets

X — G(X) [resp. O(X), resp. M(X) ]

endowed with a structure of group [resp. ring, resp. module over the ring

O(X)] on each
g(X) [resp. O(X), resp. M(X) ]

such that all restriction maps induced by morphisms X Ty yofc
G(Y) = g(X) [resp. O(Y) — O(X), resp. M(Y) = M(X)]

are group [resp. ring, resp. module] morphisms.

(ii) A morphism of group objects [resp. ring objects, resp. module objects
over some ring object O] is a morphism of sheaves

Gi — G [resp. O1 — O, resp. M1 — Mo ]
such that all maps

G1(X) = Go(X)  [resp. O1(X) — O2(X), resp. M1(X) — Maz(X) ]

are group [resp. ring, resp. module] morphisms.
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The abelian categories of Modules

Definition:
Let (C, J, O) = ringed site
= site (C, J)
+ ring object O of C.
Then module objects over O in Cy
are called O-Modules and their category is denoted

MOd(Q 0

Proposition:
For any ringed site (C, J, O),
MOd(Q

is an abelian category
with arbitrary limits and colimits.
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Change of structure ring-sheaf

Proposition:
Let (C,J) = site,
(01 — O2) = morphism of ring objects in C,.

Then the forgetful functor
g Mode, — Modp, ,

M — M,
has a left adjoint denoted

./\/lOd(Q1 — MOd@z,
M — O Ko, M.

Remarks:

(i) For any object M of Modp,,
02 ®o, M

is constructed as the sheafification of the presheaf
X — 02(X) @0, (x) M(X).
(ii) The forgetful functor respects arbitrary limits and colimits

while its left adjoint
J M — O ®0, M
respects arbitrary colimits.
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Exponentials (or “inner 7om”) and tensor

products

Definition:
(i) For any object S of any category C,
the relative category C/S is the category
whose objects are morphisms X L£,80fcC
and whose morphisms (Xj P8 (X258
are commutative triangles of C:

NA

Xi Xo
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(if) For any topology J on a (ess.) small category C
and any object X of C,
the induced topology Jx on C/X is defined by the property
that a sieve on an object of C/X belongs to Jx
if its image by the forgetful functor

C/X — C,
X' = X) — X'

belongs to J.
(iii) In this situation, composmon with C/X — C
defines a functor C — C/X
which restricts to a functor called the restriction functor

rx © Cp — (C/X)y,
F +— Fx=Fx.
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Remarks:

(1) Restriction functors respect arbitrary limits and colimits.
In particular, they transform any ring object O of C,
into ring objects Ox of each C/X
and induce additive exact functors

MOdo — MOC/@X 0
(if) For any sheaves F; and F, on (C, J), the presheaf

X +— HOIn(FH)(, F2\X)
is a sheaf denoted F}' or Hom(Fy, F).
It is characterized by the property that, for any sheaf G,
Hom(G, Hom(F1, F2)) = Hom(G x Fq, F2).
(iii) In the same way, for any ring object O of Cy
and any O-Modules M1, Mo,

the presheaf
X — HOIIl(:)X(F”)(, F2|X)

is a sheaf denoted Home (M4, Ma).
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Proposition:
Let (C, J, ©) = commutative ringed site
= site (C, J)+ commutative ring object O of 5J,
N = O-Module in C,.

Then the functor
MOdO — MOd(f),

L +— Homo (N, L:)
has a left adjoint denoted
MOd(') — MOdo 9
M — MRoN.

Furthermore, ® extends as a double functor
Modp x Modp — Modo,
(M)N) — M ®O N
such that the two triple functors
ModZ x Modyy x Modo — O(X)-modules

(M,N, L) +—— Homp(M®@o N, L),
(M,N,L) —— Homp(M,Homp (N, L))

are isomorphic.
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Remarks:

(i) The tensor product M ®o N is constructed
as the sheafification of the functor

(ii) The two functors Modp x Modn — Modo

(M,N) — Mo N
and (M,N) — N®oM
are canonically isomorphic.

(iii) The double functor
(M,N)— MR N

respects arbitrary colimits in M or N,
while the double functor

(N)‘C) — mmO(N)E)

respects arbitrary limits in £
and transforms arbitrary colimits in A/ into limits.
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Push-forward and pull-back functors

Definition:
(i) A category & is called a topos
if it is equivalent to the category C, of sheaves on some site (C, J).
(ii) A (geometric) morphism of toposes &1 — &>
is a pair of adjoint functors (&2 L &, & L &)
whose left component f~ respects finite limits (as well as arbitrary colimits).
(iii) A morphism between two morphisms of toposes &1 = &

(6 — (g9
is a natural transformation of functors

x:f'—gt.
Remarks:

(i) If (F',£.) is a topos morphism, f~" is called the pull-back component and f, the
push-forward component.

(ii) The composite of two morphisms of toposes
& ("5 & (g gs)

&

is defined as the pair (f ' o g™, g. o f.).
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(iii) Morphisms from a topos &; to a topos £, make up a category denoted
Geom(&1, &) .
(iv) Any morphism of toposes
&l — & [resp. & — & ]
induces a functor defined by composition

Geom(&1,E) —  Geom(E{, &)
[resp. Geom(&y, &) — Geom(&1,E3) ).

(v) If £ is atopos and 1 denotes its terminal object, there is a unique morphism of
—1
toposes £ PP, Set defined by

p 'l = JI1 (“constant” objects of &)
iel
and p.F = Hom(1,F) (“global sections” functor).

1
(vi) A morphism of toposes Set W %), ciscalled a “point” of £ and its left
component x ' : £ — Set the “fiber functor” at the point.

(vii) Points of a topos £ make up a category Pt(E€) = Geom(Set, E).
(viii) Any morphisms of toposes & — & induces a functor

Pt(E1) — PH(E2) .
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Lemma: For any morphism of toposes
(f_1)f*) : 51 — 52)
both functors f~' and f, transform
group objects into group objects,
ring objects into ring objects
and module objects over a ring object into module objects over the transform
of this ring object.

Sketch of proof:
This is because both functors f~' and f,
respect finite limits, in particular finite products.

Definition:
(i) Aringed topos is a topos £ endowed with a ring object O.
(ii) A morphism of ringed toposes
(£1,01) — (&2,02)

is a morphism of toposes () e P
LK) & — &

completed with a morphism of ring objects
10, — O or, equivalently, O, — £.0;.
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Corollary:
Let (&1,01) — (&2,02)
= morphism of ringed toposes

. 11
consisting in &; % &

1
e and f 0> — O4.

(i) The composition of the functor
f. : Modp, — Mod, o,
and of the forgetful functor defined by O, — £, O
Modk, o, — Modo,
f, : Modp, — Modp, .
(ii) This functor f. : Modn, — Modp, has a left adjoint functor
f*: Modp, — Modo,
constructed as the composite of the functors
f~1: Modp, — Mod; 10,

Mods—1p, — Modo,,
M — O ®f7102M.
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Remark:
f, : Modp, — Modp, respects limits,

f*: Modp, — Modp, respects colimits.
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A concrete process to generate some morphisms of toposes

Proposition:
Let & s &
= two toposes defined by two sites (C1, J1), (Cz, Jo)
such that C, has arbitrary finite limits,
and p: Co — Cq
= functor such that
e p respects finite limits,
e p transforms J>-covering families
into J;-covering families.

Then p defines a toposes morphism
in the following way: (Fyf): & — &
e For any sheaf F; on (C1, J1), f. F1 is the sheaf on (Cz, J2)
Xa — Fi(p(X2)).
e For any sheaf F, on (Cz, J2), f*F> is the sheafification of the presheaf
Xi — XZE(I)%‘)CZ) Fa(X2)

where Xi\, Cz is the category of objects Xz of C. endowed with a morphism
X1 — p(XQ) inCy.
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Remarks:
(i) This generalises the construction of the topos morphism

(f*y ) : Sh(X7) — Sh(X2)

associated to a continuous maps f: X; — Xz
between topological spaces Xj, Xo.
Indeed, f defines p = f1:0(X2) — 0(X3).

(if) Even if &, &> are two toposes defined by sites (Cq, J1), (Co, Jo)

such that C»> has finite limits,

not all morphisms of toposes £; — &, are constructed in this way.
(iii) Nevertheless, it will be enough for the étale toposes of schemes.
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Sketch of proof of the proposition:
e If Fy is a sheafon (Cq,J),

Xo — Fi(p(X2))

is a sheaf on (Co, J»)
because p transforms J>-covering families into Jy-covering families.
e ltis clear that f* is left adjoint to f..
We only need to prove that it respects finite limits.
For this it is enough to prove that for any Xj the functor
For— li Fo(X5)

—
Xa€(X1\p C2)

respects finite limits.

This is because the category Xi\, C: is filtering,
as C» has finite limits and they are respected by p.
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Corollary:

— —

For & = (C1),,, &2 = (C2),,

and (f~1,f,): & — & defined by p: Co — C4

as in the previous proposition,

let 01, 0> = ring objects of &4, & related by a morphism
f~10, — Oy or, equivalently, O; — £,04

consisting in a compatible family of ring morphisms

02(X2) — O1(p(X2)), Xz € Ob(C2) .
Then (f~1,f,) : & — &> defines adjoint additive functors
f, : Modp, — Modp,
and

f* MOO'(92 — MOdo1,
M — O4 ®f7102M.
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Localisation of toposes

Proposition:
Let £ = topos.

(i) For any object F of &, the relative category
E/F

is a topos, called the localisation of £ eil—'\.
More precisely, if £ = Cy, then £/F = (C/F),,
where:

e C/F is the category whose objects are pairs

(X,a) with X eO0b(C), ae F(X),
and whose morphisms (Xi, a1) — (Xz, a2) are morphisms of C
f: Xy — Xo suchthat F(f)(a2) = a,

e Jr is the “induced” topology on C/F such that
a family of morphisms (X;, a;) i (X, a) is Je-covering
if and only if the family X; — X is J-covering.

v
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(ii) For any morphism f: F; — F» of &, the functor
=1 : E/Fg — 5/F1,
(F—)FQJ — (FXF2F1—>F1)
has a left adjoint
fi E/IFT — E/F
(FLFR) — (FES R
and a right adjoint
f*:g/F1 —)S/Fz

so it defines a morphism of toposes
(F £ E/F — E/F>.

Remarks:
(i) If 1is the terminal object of £, £/1 identifies with £.
(i) f € =Cyand ¢:C % C L5 G, is the canonical functor,
then for any object X of C, the restriction functor
ENX) = (C/g(x))J(z(x]] — (C/X)JX

—

is an equivalence, so that £/{(X) and (C/X)JX identify.
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Sketch of proof of the proposition:
(i) Itis enough to prove that for any presheaf P on C,
5/P and C//TD are equivalent.
A natural equivalence is defined by the two functors
c/pP — E/\P
(X,a) +— fiberof P’(X) 25 P(X) ]

(p:P'" = P) +— Pp= m
Ob(C/P) over the element a € P(X)

and T

aeP(X)

Q +— (Ppg—P)= m

X = [I Q(X,a)
Lb((}) 1

(ii) The functor fi : (F — F1) — (F — F) is left adjoint to
1 (F—> F)— (F xr, F1 — F1) by definition of fiber products.
In a topos, functors F — F x £, F; respect arbitrary colimits.
Indeed, this is true in Set, therefore in C and lastly in @
as " : C—C respects arbitrary colimits and finite limits.
So ' has a right adjoint functor f.
(and defines a topos morphism (', £.) : £/F1 — £/F)
according to the following theorem:

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019

27/151



Theorem:

Letp:£E—D
= functor from a topos £ to a category D.

Then p has a right adjoint if and only if it respects colimits.

Furthermore, if £ = @ endowed with ¢: C % CAJ—> @,
the right adjoint of p is

D — é:j
X — Hom(p o {(X),Y)

Y — Fy= m

Ob(C)

Remark:

It can also be proved that if £ is a topos, a functor p : £ — D has a left adjoint
if and only if it respects limits.
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Proof of the theorem:

The condition is necessary for any functor between categories.
Conversely, suppose € is a topos C, and p respects colimits.
For any covering sieve S of an object X of C, we have

UX)=lim eX’) in Cy
(X'—>X)eS

so pol(X) = |I_I’I1> pol(X')inD

(X'—>X)eS
and Fy(X) = M Fy(X’), which means Fy is a sheaf.

(X'5X)eS
Furthermore, for any sheaf F on C, we have F = |IJE £(X) and so

(X,a)ec/F

Hom(F,Fy) = lim Hom(¢(X),Fy)= lim Hom(po ¢(X),Y) = Hom(p(F),Y).

(X,a)eC/F (X,a)eC/F
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Corollary:

Let & = topos endowed with a ring object O.
For any object F of &, let

OFf =ring object O x F of £/F.
Then any morphism f: F; — F» of £ induces an additive functor
f* =1 Modo,, — Modo,,
which has a right adjoint
f. : Modo,, — Modo,,

and a left adjoint

f1 : ./'\/lOd@F1 — ./\/lOCfoF2 5
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Remark: Suppose € is Cy endowed with ¢ : C %5 C 25 C). Then:

e For any object X of C, the ring object Ox = Oy (x) of £/¢(X) = (C/X)JX

is the sheaf , ,
(X' — X)— O(X").

e For any morphism f: X; — Xz of C,
the functor f* = f~' : Modo,, — Modo,
associates to any Ox,-Module M on C/ Xz the sheaf

(X 25 X)) — M(X 29 x,).

e |ts right adjoint f. :/\/lodox1 — /\/todoX2
associates to any Ox,-Module M on C/X; the sheaf

(X — Xo) — jim MX — Xy).

X' — X 5
_ commutative

4 4 S
quare
Xy = X

e lts left adjoint f : Modo, — Modo,, associates to any Ox,-Module M on C/X;
the sheafification of the presheaf
X—X)— P MxDx).

f
xLxDx)

=factorisation of X—Xp

a ar= al a
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Subtoposes and open subtoposes

Definition:

(i) A morphism of toposes (f~',1,) : & — &
is called an embedding, and &; is called a subtopos of &,
if its push-forward component

f*:€1—)52

is fully faithful.

(ii) A subtopos (f~',f,): & — & is called open
if it identifies with a localisation (o=, p,) : &2/F — &
for some object F of & endowed with p: F — 1.

Remarks:
(i) For any site (C,J), (j*, fi) : @ —~Cisa subtopos.
(if) Conversely, one can prove that any subtopos of C
has the form C, for a unique topology J on C.

(iii) This implies that subtoposes of a topos Cy
correspond to topologies J’ on C which contain J.

v

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 32/151



Lemma: Let £ = topos,
(F L F>) = morphism of £.
Then the morphism of toposes
(FLR):E/F — E/F
is an embedding if and only if the morphism

is a monomorphism. f:Fi — F

Remark: If £ = C, endowed with £: ¢ & C 15 C,
any monomorphism i : X; — X, of C R
yields a monomorphism £(X1) <— £(X2) of Cy

and so an open embedding of toposes

o — -

(C/ X1y, =E/MX) — E/t(X) = (C/Xz)

J)(1 J)(2 ‘

Proof of the lemma: The following conditions are equivalent:
(1) f. is fully faithful.

(2) The morphism f* o f, — id is an isomorphism.

(3) The morphism id — f* o f, is an isomorphism.

@ f:(FLF)—(F o, F>) is fully faithful.

(5) fis a monomorphism of £.
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Remark: .
Suppose € = C, endowed with £: ¢ £ ¢ L5 ¢,
and O = ring object of £
inducing a ring object Ox = Oy(x)

=

of E/U(X) = (C/X)JX for any object X of C.
Then, for any monomorphism i : X; — X5 of C, the functor
i1 : MOd(’)X1 — ./\/lOd(QX2

associates to any Ox,-Module M on C/X;
the sheafification of the presheaf on C/ Xz

M(X — Xq) if X — Xsfactorisesas X — Xi — Xz,

N {0 otherwise.

So the functor iy can be called “extension by 0” as in the case of topological
spaces.
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Derived categories of modules in toposes

Definition:

Let (£, 0) = ringed topos
= topos £ endowed with a ring object O.

Then one denotes

D(Modp),
D (Modo),
D~ (Modo),
D?(Modo)

the derived categories of the abelian category Mody of modules over O in £.

y

Remark:

If £ is written Cy,
the objects of these derived categories
can be seen as complexes of linear sheaves on (C, J).
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The additive functors we have introduced
induce functors between derived categories when they are exact:

Corollary:
(i) For any morphism of toposes (f~',£.): & — &
and any ring object O» of &,
the exact functor f~' : Modp, — Mod; o, defines an additive functor

f~1: D(Modp,) — D(Mod;10,)

which respects distinguished triangles and commutes with each [m].
(ii) For any morphism f: Fy — F»

in a topos £ endowed with a ring object O,

the exact functor f, : Modo, — Modo,,

between the abelian categories of modules over Of, and Ok,

in the localised toposes £/F; and £/F»

defines an additive functor

fi : D(Modo,, ) — D(Modo,,)

which respects distinguished triangles and commutes with each [m].

v
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Flat and injective modules in toposes

We recall:

Definition:
Let £ = topos,
O =ring object of £.
(i) An object M of Mody is called “flat”
if the functor e ® o M is exact.

(if) An object Z of Mod, is called “injective”
if the functor Homg, (e, Z) is exact.

Remark:

These definitions make sense even if O is not necessarily

a commutative ring object of £.

In that case, e ®» M is an additive functor from the abelian category Modoe
of right O-Modules in £ to the category Mod;, of abelian objects of £.

v
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Theorem:

Let £ = topos,
O =ring object of £.
Then:

(i) For any O-Module M in &, there is an epimorphism
Moy - M

from a flat O-Module M.
(if) For any O-Module M in &, there is a monomorphism

M—=T

to an injective O-Module Z.

0. Caramello & L. Lafforgue Cohomology of toposes

Como, Autumn 2019

38/151



Proof of (i):
Let & = CJ for some small site (C, J) endowed with £ : C — CJ
For any object X of C, consider the localisation morphism

(1%, ix,«) : E/U(X) = (C/X) — E£=0y,
the restricted ring object Ox = i O in £/¢(X) and the left adjoint

I.X’I'MOd(QX —  Modp
of iy : Modp — Modo, .

Any section m € M(X) of an O-Module M can be seen as a morphism
ix, Ox — M

and so there is a canonical epimorphism

Mo—@ @ Ianx—»./\/l

X meM(X)
Lastly, the O-Module My is flat because for any X the functor
N +— N ®0 ix,10x
identifies with the composite exact functor
N — ix ixN .
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Proof of (ii):

Choose in Mody a “generator” A in the sense that,

for any monomorphism M’ — M of Mody with M/ M’ £ 0,
there is a morphism A — M which does not factorise through M.
For instance, if £ = C, for some small site (C, J), one can take

A= P ixix0.
We first prove: A

Lemma:

An O-Module 7 in € is injective if and only if,

for any subobject B — A of the generator A,

any morphism B — Z extends to a morphism A — 7.

Proof of the lemma:
The condition is obviously necessary.
In the reverse direction, consider a monomorphism of Modp

M — M

and a morphism f: M’ — 7.
We have to prove that f extends to a morphism M — 7.
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Consider the set / of pairs (M, f;) consisting in a subobject My — M containing M’
and a morphism f; : My — Z which extends f.
For two elements (M, fi), (Mp, ) we say that

(M, fi) < (M2, B)
if My contains M, and £ extends f;. For any totally ordered subset /” of /,
My = m M

(My,f)el’
is a subobject of M and it is endowed with a morphism
f2 ° Mz — T

such that (M, f) < (Mo, ),V (Mi, f) € I'.
According to Zorn’s lemma, / has a maximal element (M, fi).
For any morphism A — M, consider B = M1 x a4 A.
By hypothesis, the composed morphism 5 — M bt extends to a morphism A — 7.
This defines a morphism
B\Mi @A) = Mz 25T
which extends f; : My — Z to M. On the other hand, M5 is a subobject of M.
As (My, f1) is maximal, this implies that M, = M or, equivalently, that A — M

factorises through M.
As A is a generator, this means that M = M.
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We also prove:

Lemma:
For any O-Module M, there is a monomorphism

M = ./\/l1
such that, for any subobject B of the generator A, any morphism
B— M

extends to a morphism
A— ./\/l1 .

Proof of the lemma:

The subobjects of any object of Mod» make up a set.
In particular, the subobjects of A make up a set S.
One can take for M the quotient of

M@(EB o) A)

BeS feHom(B,M)

(& D s

BeS feHom(B,M)

by
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Conclusion of the proof of (ii): Starting from My = M,
let’'s define an inductive system of @-Modules

M; indexed by the ordinals i

and related by monomorphisms M; — M; for i < j.
The construction is by transfinite induction:
o ifj=i+1, M;is deduced from M; by the construction
of the previous lemma.
e if jis the limit of the i < j, we take
M, = I|_>m M;.
i<
Let k be an ordinal whose cardinality is strictly bigger than the cardinality of the set of
subobjects of A and which is the limit of the i < k.
For any morphism f : B — M defined on a subobject 5 of A, the formula
My =lmM;  implies B =lim (M)
i<k i<k
As the cardinality of k is strictly bigger than the cardinality of the set of subobjects of B,
this implies that f : B — M factorises as
B — ./\/l,'
for some i < k and so it extends to some morphism
A— Mk .

The O-Module My is injective according to the first lemma.
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Remark:
Suppose a topos £ has a set P of points x = (x*, x.) : Set — £ which is conservative
in the sense that a morphism of £
F1 — F2
is an isomorphism if and only if x*F1 — x*F» is one-to-one for any x € F.
Then, for any ring object O of £, any O-Module M has the canonical
embedding
Mo [[xoxM.
xeP
Each x* M is a module over the ring Ox = x*© and can be embedded into an injective

Ox-module, for instance
Iy = Hom(My, Q/Z)

for any free Ox-module My endowed with an epimorphism
My — Hom(x* M, Q/Z)).

Then there is an induced embedding
M [ xk.
xepP

The O-Module [T x./x is injective as, for any x € P, I is an injective Ox-module
xXeEP
and the functor x* is exact.
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In order to derive the functors f* and ®, we need to complete the previous
theorem with:

Proposition:

Let £ = topos,
O =ring object of £.

Then, for any short exact sequence of Mody
00— My — My — M3z —0,

we have:
(i) For any Module A, the induced sequence

0 > N®o My —N®o Mz — N®o Mz — 0

is exact if M3 is flat.
(ii) If Mo and M3 are flat, M is flat as well.
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Proof:
(i) For any Module N, we can choose an epimorphism

N >N

from a flat Module A/’ and denote /" = Ker(N' — N).

As N is flat, N/ ® o M1 — N’ ®o M2 is a monomorphism and we deduce from
the commutative square

N" @0 My ——= N" @0 M>

| i

N' ®o M1 ——=N'"®0 M2
that V" @0 M1 — N’ @0 M; factorises through
L=ImN" ®o Mi — N" @0 Mp).
So we have a short exact sequence of complexes
L N" @0 Ma N" @0 Ms
00— 1 — 1 — 1 — 0.
N’ ®@o My N'®@o M; N'®o Ms
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As Mjis flat, N o M3z — N’ ®o M3 is a monomorphism
and the associated long exact sequence of cohomology
yields a short exact sequence
0 > N®oMi — N My — N®o Mz —0.
(ii) If Mo and Ms are flat, we have for any short exact sequence of Modules

0 —N'"—=N —N—0

an associated short exact sequence of complexes

N" @0 Ms N' @0 Ma N ®@o M>
0— 1 — 1 — 1 — 0.
N"®o/\/13 N'®0M3 N®o/\/l3

As M3 is flat, the associated long exact sequence of cohomology
reduces to the short exact sequence

0 —N"® M — N @0 M1 — N ®0 M1 — 0.

This means that M also is flat.
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Corollary:
Let f: (&1,01) — (&2,02)

= morphism of ringed toposes.
Then:

(i) The right-exact functor
f*. M0d02 — ./\/lOd(g1

has a left derived functor
Lf*: D~ (Modp,) — D~ (Modp,)

whose restriction to complexes of flat Modules (or more generally
f*-acyclic Modules) is induced by f*.

(ii) The left-exact functor
f. : ./\/lOd(j1 — M0d02

has a right exact functor
Rf, : D" (M0d01 ) — D+(M0d(92)

whose restriction to complexes of injective Modules (or more generally
f.-acyclic Modules) is induces by f,.

v
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Remarks:

(i) If f* has finite cohomological dimension, it even has a derived functor
Lf*: D(Modp,) — D(Modp,)

whose restriction to complexes of f*-acyclic objects is induced by f*.
It restricts to a functor

Lf*: DY (Modp,) — D' (Modp,)

which is left adjoint to Rf,.
(ii) If £, has finite cohomological dimension, it even has a derived functor

Rf, : D(Modo,) — D(Modo,)

whose restriction to complexes of f.-acyclic objects is induced by f..
It restricts to a functor

Rf, : D~ (Modp,) — D~ (Modp,)

which is right adjoint to Lf*.
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(iii) For any morphisms of ringed toposes

(&1,01) D5 (&2,02) L5 (&3, 03),
the functor
g =0, ®g—10, ®

transforms flat @3-Modules into flat O»-Modules.
Therefore the canonical morphism

LffoLg* — L(gof)*
is an isomorphism.
(iv) In the same situation, the canonical functor

R(go f). — Rg. oRf,

is also an isomorphism.

Indeed, we first remark that this statement is true if O; = f~10; as,
in that case, f* = 1 : Modp, — Modp, is exact and its right adjoint
f. : Modp, — Modp, transforms injective Oy-Modules in injective
O>-Modules.

The general case follows from this remark and the following lemma:
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Lemma:
For any morphism of ringed toposes

(&1,01) L5 (£2,09),

the diagram
D*(Modo,) — D*(Mody,,)

Rf,
Rf. Rf,

D*(Modp,) —= D" (Mody,,)

is commutative up to isomorphism.

Remark:
p.

—1
For any topos £ and its canonical morphism & o) Set and any ring R,
we denote R¢ = p~'R.
In particular, Modg, is the category of abelian objects of £.
We know that any submodule of a flat Z-module is flat.
So the subcategory of Mody, on flat Z¢-Modules has codimension < 1.

v
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Proof of the lemma: The triangle
D* (Modo,)

Rfy
Rfy

D*(Modo,) — D* (Modz,, )
is commutative because the forgetful functor
Modo, — Mods,,

is exact. The functor f~" : Modz,,, — Mod, is exact and the functors
73 /\/lOO'zg2 — /\/lOdo1
O1 Qze, ® - Modzg1 —  Modo,
have finite cohomological dimension. So they have derived functors
L D" (Modz,,) — D"(Modz,, ),
Lf* D*(Modzgz) — D*(Modo,),
L
O ®Zs1 o D+(MOO'ZS1) — D+(./\/l0do1)
and we already know that the canonical morphism
Oy Gz, £ (0) — LI
is an isomorphism. Taking right adjoints, Rf, : D* (Modo,) — D+(Modzgz)
is isomorphic to Rf, : D*(Modz‘€1 ) — D*(Modzgz)
composed with D* (Modo, ) — D*(Modz‘€1 ).
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The previous theorem and proposition also imply:

Corollary:
Let (£, 0) = commutative ringed topos

= topos £ endowed with a commutative ring object O.
Then:

(i) The right-exact additive bifunctor
®o : Modp x Modp — Modp
has a left derived functor
GL@o : D(Modp) x D~ (Modp) — D(Modp)
constructed by factorising
K(Modo) x K~ (Flato) —£2° K(Modp) ~2+ D(Modp)

if Flat» denotes the full additive subcategory of Mody on flat O-Modules.

Furthermore, if e @ e has finite cohomological dimension, it even has a
derived functor

o : D(Modp) x D(Mode) —» D(Mode)
constructed by factorising

K(Modp) x K(Flato) =22°, K(Mody) -2 D(Modp).
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(ii) The left-exact additive bifunctors

Hom : Mody x Modo — Modo,
Hom : Mody x Modo — Ab

have right derived functors

RHom : D(Modo)® x DT (Modo) — D(Modo)
RHom : D(Modo)® x D" (Modp) — D(Ab)

constructed by factorising

K(Modo)™ x K™ (Tnjo) —275 K(Modo) -2 D(Modo),
K(Modo)® x K™ (Injo) ™, K(Ab) 2, D(Ab).

Remarks:
(i) Commutativity: The functors

(My, M2) — M; @LQ Mz and  (My, M2) — Mp <§>M1
from D~ (Modo) x D~ (Modo) to D~ (Modo) are canonically isomorphic.
(ii) Associativity: The functors
1L, L 1L L
(0 ® o)® o and e R(e R o)
from D(Modo) x D™ (Modp) x D~ (Modop) to D~ (Modo)
are canonically isomorphic.
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(iii) Compatibility with pull-back:
For any morphism of commutative ringed toposes

f
the functors (&1,01) — (&, 02),

Lf(e®e) and Lf(e)®LF(e)
from D~ (Modp,) x D~ (Modp,) to D~ (Modp, ) are canonically
isomorphic.

(iv) If M is a flat O-Module and Z an injective O-Module,
then Hom(M,Z) is an injective O-Module.
This follows from the identification between the functors

Hom(e, Hom(M,T)) and Hom(e ®p M, T)
from Modp to Ab.
(v) The previous remark implies that the pairs of functors
RHom(e,RHom(e,e)) and RHom(s & e,e)
or RHom(e,RHom(e,)) and RHom(e & e,e)
or Hom(e,RHom(e,e)) and Hom(e & e,e)

from D(Modp) x D~ (Modp) x D (Modp) to D(Modpn), D(Ab) or Ab

are canonically isomorphic.
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(vi) Remark (iv) also implies that if
(£,0) 25 (Set, 2)
is the canonical morphism of commutative ringed toposes, the functors
RHom and Rp.. o RHom

from D~ (Modp) x D (Mody) to Dt (Ab) are canonically isomorphic.

(vii) If f: (&1,01) — (&2, 02) is a morphism of commutative ringed toposes
such that O is flat over f~105,
then the functors

RHom(f*(e),e) and RHom(e,Rf,(e))

from D(Modp, )P x D (Modo,) to D(Ab)
are canonically isomorphic,
as well as the functors

Rf, o RHom(f*(e), ®) and RHom(e,Rf,(e))

from D(Modp, ) x D (Modp,) to D(Modp, ).
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Application to geometric categories

Suppose G is a geometric category endowed with maps

X — (€x, Ox),
I I
object of G commutative ringed topos
o Oy—0
XLy e [(6x,0x) - =2 (e, 00)]

morphism of G

morphism of commutative ringed toposes
xLyLz) —

[(go £t = og*q,
[

isomorphism which exchanges
flog 107 - 10y - Oxand (gof) 107 — Ox

such that, for any X Ty 4,720, W, the isomorphisms
(hogof)™ =5 (gof) 'oh™ =S (F'og Hoh ',

(hogof) ™" =5 flo(hog) ' = f'o(g'oh™
are equal.
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We also suppose that, for any open embedding of G,
i:U— X,
the morphism of toposes
(7' i) : Eu — Ex

identifies £y with an open subtopos of £x
and the morphism
i'ox — Oy

is an isomorphism.

Then one can associate to any object X of G
the abelian category Modo,

endowed with the functors Hom, Hom, &
and its derived categories

D(Modo, ), D (Mode, ), D~ (Modo,), DP(Modp,)

together with the derived functors

L
RHom, RHom, ®.
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One can also associate to any morphism of G

f: X—Y
a pair of adjoint functors

f*: Modp, — Modp, and f. : Modp, — Modp,
together with derived functors
Lf* and Rf, .

Ifi: U< X is an open immersion,

i* : Modp,, — Modo,,
also has a left adjoint

Iy : Modp, — Modp,
which is exact and induces a functor

D(Modp,) — D(Modp, ) .
All these functors .
RHom, RHom, ®, Lf*, Rf., i

verify the properties stated before
in the context of commutative ringed toposes.
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For any commutative square of G

X XX
b
S'—=-8
such that s*, x* [resp. p., p.] have finite cohomological dimension,
there is a canonical morphism of functors

Ls* oRp, — Rp. o Lx*

from D*(Modo,) to D* (Modo,, )
[resp. from D~ (Modo, ) to D~ (Modo,, )].
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Definition:
A morphism of G
X258  resp. S -358]
is called cohomologically proper [resp. coh. smooth] if:
e itis squarable in G,
o for any cartesian square of G

S —=-8
completingp: X — S[resp. s: S’ — S,

x* always has finite cohomological dimension
or p. always has finite cohomological dimension,

o for any such cartesian square, the canonical morphism

Ls* oRp, — Rp, o Lx*

is an isomorphism.
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The geometric category of schemes

Lemma:
Let A = commutative ring.

(i) For any f € A, the functor
B — {u € Hom(A, B) | u(f) is invertible in B}
is representable by
Ar=AXI/(f-X—1).

(ii) For any A-module M and any element f € A,
elements of Af ®4 M = M; can be written f~"- mwithne N, me M.
Two elements f"-mand f~" - m’ are equal in M; if and only if
there exists N € Nsuch that fN- (f" -m—f"-m’) =0in M.

(iii) For any elements f;, i € I, of Asuch that }_f;- A=A,
i
and any A-module M, the canonical morphism

i

is

is an isomorphism.
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Proof:
(i) is obvious.

(ii) The Ar-module My = A @4 M is the quotient of the A[X]-module
AXI ®a M= @ X" ® M by the submodule (f- X —1) - A[X] ®4 M.

neN
Any element of M; can be represented by an expression
P=1@my+X@m +---+X"®@m;

with mg, my, ..., m, € M. Then " - P is also represented by

flomo+ " mi 4 fompg MM
as f*. XK =1in A forany k € N.
If an element m € M is 0 in M, there exists an expression
P=1@my+X®@m +---+ X"®m, € AIX] 4 M such that

m=(F-X-1)-P in AX @M.

This implies m = mg, f-mo = m,...,f-my_y = mp, f-m, =0 and so 1. m=0.
(iii) The equality >_f,- A= Ais equivalentto1 € ) fi- A
iel iel
S0 we can suppose that / is finite and equal to {1, ..., k}.

It is also equivalent to the property that, for any prime ideal p of A,
there exists / such that f; ¢ p.
So each f; can be replaced by an arbitrary power of f;.
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Consider an element m € M whose image in each M; is 0. Then there exist integers
n; = 1 such that f"-m=0 inMforanyi.
As there are elements a; € A such that

af" +- - tacfk=1,
m=afi" - m+---+af -m=0 in M.
This means we have an embedding

M M.

Then consider a family of elements ff"’ -mj € Mg, 1 <i <k, such that, for any i, j,
£ mi =" myin My,

1

We can suppose all the integers n; to be equal to some n € N.
Then there is an integer N > 0 such that, for any i, j,

(RN my = (N my in M.

Replacing each m; by N - m; and each f; by f¥*", our elements are now written £~ " - m;
and verify the equalities

we conclude

fi-mi="fi-m; inMforanyi,j.
Choosing elements a; € A such that a1 f; + - - - + axfx = 1, we define the element of M
m=ay-m+---+a-Mmg.

f[.m:Zajfi.mj:Zaj);-.mf:mi
J J

which means that f,f‘ -m; = min each M;.
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Corollary:

(i) Any commutative ring A defines a ringed space Spec(A)
(called the spectrum of A) such that

e the underlying set of Spec(A) is the set of ideals p C A which are prime
(meaning: aiaz e p=ajy € pora € p)
e open subsets of Spec(A) are unions of subsets of the form

Spec(Af) ={pprime |f¢&p} withfe A,
e the structure sheaf of Spec(A) is the unique sheaf of rings O4 such that,
for any f € A, Oa(Spec(Ar)) = Ar.
(i) Any morphism u: A — B of commutative rings defines a morphism of

ringed spaces Spec(B) — Spec(A)
such that

e the underlying map Spec(B) — Spec(A) is

(@C B — (p=u(q) CA),

e forany f € A, the pull-back of the open subset Spec(A4y) is the open subset

{q1f¢u"(q)) = Spec(Bu));
e forany f € A, the morphism

Oa(Spec(Ar)) — Og(Spec(By(s)))

is the morphism A; — B induced by u: A — B.
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Remarks:

(i) If Aff denotes the opposite category of the category of commutative rings, this

defines a faithful functor Aff — Sp
to the category Sp of ringed spaces.
(ii) The category Aff, which is called the category of affine schemes,
has a terminal object Spec(Z) and arbitrary fiber products
Spec(B1) Xspec(a) Spec(Bz) = Spec(B1 ®4 Bz) .
(iii) For any point p of some affine scheme Spec(A), the fiber
Opnp = I|_)m A=A

f¢p
has a unique maximal ideal p - A, and the quotient Ay/p - Ap = kp

(called the residue field at p) is the fraction field of the domain A/p.
So Spec(A) is a locally ringed space.

(iv) For any morphism u:A— B inducing Spec(B) — Spec(A) and any point q € Spec(B)
sentto u~'(q) = p € Spec(A), the induced morphism between the fibers

A :OA, HOB‘ =B,
sends p- Ay to g - By. P P ? !

So Spec(B) — Spec(A) is a morphism of locally ringed spaces.

(v) Conversely, one can prove that any morphism of locally ringed spaces

Spec(B) — Spec(A)
is induced by a ring morphism A — B.
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Examples of affine schemes:
(i) For any family of polynomials

P e AlXy,..., Xq]

with coefficients in a commutative ring A, the functor

[Aff/Spec(A)]? —  Set,

(A—=B) — {(bi,...,bs) € B"| Pi(by,...,by) =0, Vi}

is represented by the affine scheme
Spec(AlXi, ..., Xpl/1)

associated to the A-algebra A[Xj, ..., Xnl/!
defined by the ideal I = }_ P; - AlXy,..., Xql.
i

(ii) In particular, the functor

Aff*  —  Set,
A — A"

is represented by the affine scheme
A" = Spec(Z[Xi,..., X)) .

y
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(iii) The functor
Aff®  —  Set,
A — A* =GL¢(A)

is represented by the affine scheme
Gm = GL1 = Spec(ZI[X, X .
(iv) More generally, for any r > 1, the functor

Aff® —  Set,
A — GL/(A)

is represented by the affine scheme

GL; = Spec(ZI[(Xi j)1<ij<r, YI/(Y - det(X;;) —1).
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Corollary:
Let A = commutative ring,
M = A-module.
Then there is a unique O4-Module M on Spec(A) such that, for any f € A,

M(Spec(Ar)) = My = Ar @a M.

Remark:
(i) The functor
Modg, — /l/lOdO;”
M — M

is fully faithful, it is left-adjoint to the functor

MOdOA — MOdA,
M —  M(Spec(A)).

(i) An Os-Module M on Spec(A) is called
“quasi-coherent” [resp. “coherent’]
if it is isomorphic to M for some A-module M
[resp. some finitely presentable A-module M].
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The quasi-coherent sheaf of relative differentials

Proposition:
Let X = Spec(B) — Spec(A) =Y
be a morphism of affine schemes.

Then there is a quasi-coherent Ox-Module on X,
called the sheaf Qv of relative differentials,
such that for any f € B,

Qx,/y(Spec(Byf)) = Qp, /-
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Remarks:
(i) Recall that for any A - B, Qg4 represents the functor

Modg — Set,
d(bi + bp) = dby + dbo,

M +— (d:B—M
du(a) =0,

(ii) If Bis finitely presentable over A, i.e. isomorphic to

Ay X/ (X P ALK X)),

1<i<k

then Qg4 is the quotient of the free module
Ps-ax
J

by the submodule generated by the elements

oP; .
T dx <i<k.
% dx;, 1<i<k

So Qg4 is afinitely presentable B-module
and Qgpec(B) /spec(A) IS @ coherent Og-Module.
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Proof of the proposition:
We just have to check that for any element f € B,
the Bs-module QB,:/A identifies with Br ®g QB/A-
By definition, Qp, /4 represents the functor
Modg, — Set,
by {differentials d:Bi— M }
such thatdu(a) =0,Vac A’

For any differential d : B — M, the composite
B— B — M
is also a differential and uniquely factorises as a morphism

QB/A — M
of B-modules.
As the forgetful functor Modg, — Modg is right adjoint to the functor B ®p e,
this morphism of B-modules corresponds to a morphism of B;-modules

Bf QB QB/A — M.
Conversely, any such morphism Br ®s Qg4 — M defines a differential

d:B— M
which uniquely extends to
d:Br=BX|/(f-X—-1) — M
by the formula f - dX + X - df = 0 or, equivalently, dX = —f~2 . df.
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Definition:
(i) A scheme is aringed space (X, Ox)
which has a covering by open subspaces (U;, Oy,)
which are isomorphic to some affine schemes Spec(A;).

(ii) A morphism of schemes ;
(X) OX) — (YaOY)

is @ morphism of ringed spaces
such that, for any point x € X there are affine open neighborhoods

X € U = Spec(B) and f(x) € V = Spec(A)
with U c (V) and a morphism of affine schemes
Spec(B) — Spec(A)
which corresponds to the restriction (U, Oy) — (V,Oy) of f.

Remarks:
(i) The category Sch of schemes
is a geometric subcategory of the category Sp of ringed spaces.
(ii) Itis a full subcategory of the category of locally ringed spaces.
(iii) For any scheme X, its topology on the underlying set

is called the Zariski topology.
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Lemma:

(i) Any scheme X defines a contravariant functor
Aff* —  Set,
A +—— Hom(Spec(A), X) = X(A).
(ii) This defines a fully faithful functor
Sch — [Aff*®, Set] .

(iii) A contravariant functor F : Aff®® — Set is a scheme if and only if there exist

morphisms X; : Hom(e, Spec(A;)) — F

from representable functors such that:
e each x; is open in the sense that for any morphism
Hom(e, Spec(A)) — F
from a representable functor, the fiber product
Hom(e, Spec(A;)) xr Hom(e, Spec(A))
is representable by an open subspace Spec(A;) xF Spec(A)

of the ringed space Spec(A),
e the family (x;) is a covering in the sense that for any

Hom(e, Spec(A)) — F,
the open subspaces Spec(A;) x £ Spec(A) make up an open
covering of Spec(A).

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 74/151




Remark: The set X(A) = Hom(Spec(A), X) is called the set of points of the scheme X
with coefficients in the commutative ring A.

Corollary:
(i) The category Sch has arbitrary finite limits and disjoint sums.

(ii) The embedding functor
Aff — Sch

preserves finite limits.

Proof:
(ii) The statement follows from the fact that for any scheme (X, Ox) and any affine
scheme Spec(A), the map

is a bijection. Hom (X, Spec(A)) — Hom(A, Ox(X))

(i) It follows from (ii) that the terminal object Spec(Z) of Aff is also a terminal object in

Sch. So it is enough to show that for morphisms of schemes

f:X— S and g:Y— S,
the fiber product X xg Y in [Aff°?, Set] is a scheme.
Let’s consider an open covering of S by affine schemes S; and, for any i, open
coverings of ~'(S;) and g~ '(S;) by affine schemes X;; and Yi .
Then the fiber products X;; xs, Y; in Aff make up an open covering of the
presheaf X xs Y.
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Examples of schemes

(i) For any n, the union of the open affine subschemes
Spec(Z[X1y ..., Xn, X'), 1 <i<n,
of A" = Spec(ZI[Xi,...,Xa]) is an open subscheme
A" —{0}— A",
It is endowed with a free action of G,

Gm x (A"—{0}) — A"—{0},
(a (a1,...,an)) +— (a-a,...,a an).

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 76 /151



(ii) The contravariant functor

Aff®  —  Set,
A — Gpr(ANATT —{0})(A)

is separated for the Zariski topology (in the sense that sections coincide if
they coincide locally).

Its sheafification is representable by a scheme P”

called the projective space of dimension n.

The commutative square

G x (AT —{0}) —— A™T — {0}

| |

An+1 _ {o} - S pn

is both cartesian and cocartesian.
If A" = Spec(Z[Xy, ..., Xp]), the affine schemes
Spec (Z [%, s R K %D make up an open covering of P".
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Definition:

Let (X, Ox) = scheme.

An Ox-Module M is called quasi-coherent [resp. coherent] if,
for any affine open subscheme U = Spec(A) of X,

the restriction of M to U is quasi-coherent [resp. coherent].

Remarks:

(i) An Ox-Module M is quasi-coherent [resp. coherent] if and only if there
exists an open covering of X by schemes U; such that the restriction of
M 1o each U; is quasi-coherent [resp. coherent].

(if) For any morphism of schemes f: X — Y, f* : Modp, — Modo,
transforms quasi-coherent [resp. coherent] Oy-Modules into
quasi-coherent [resp. coherent] Ox-Modules and f, : Modp, — Modo,
transforms quasi-coherent Ox-Modules into quasi-coherent Oy-Modules.

(iii) For any morphism of schemes f: X — Y, the derived functors
LKf* . Modop, — Modo,

transform quasi-coherent Oy-Modules into quasi-coherent Ox-Modules.
Indeed, any quasi-coherent Module on an affine scheme has a resolution
by flat quasi-coherent Modules.
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(iv) One can prove that for any morphism of affine schemes
X = Spec(B) - Spec(A) = Y we have

RKfM =0

for any quasi-coherent Ox-Module M and any k > 1.

One can deduce from this property that for any morphism of schemes
f: X — Y, the derived functors

R¥f, : Mody, — Modp,

transform quasi-coherent Ox-Modules into quasi-coherent Oy-Modules.

(v) One can prove that for any base scheme S and any n > 0 defining the
projective projection
p:P"xS— S,

the derived functors

Rp, : Modp,, , — Modo,, k>0,

transform coherent Opn, s-Modules into coherent Os-Modules.
Moreover we have

Rkp,M =0
for any quasi-coherent Opn, s-Module M and any k > n.
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Example of quasi-coherent Module:

the sheaf of differentials

Definition:
Let f: X — Y be a morphism of schemes.
We denote
Qxy
the unique quasi-coherent Ox-Module such that, for any open subschemes
U = Spec(B) of X and V = Spec(A) of Y with U c f~'(V), we have

Qx/y(U) =Qp/a.

Remark:
The sheaves of higher differentials

Qﬁ(/yz/\k(zx/y

are also quasi-coherent O x-Modules.
The De Rham complex

OHOXLQ}/YL)...L_('I&/YL}...

is a complex of f~1Oy-Modules.
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Lemma:
(i) Any morphisms of schemes

xLy <z
yield an exact sequence of quasi-coherent Ox-Modules
*Qy,7z — Qx,z — Qx,y — 0.
(ii) For any cartesian square of schemes

X —Xs X

1)

y Yoy

Qx. v identifies with x*Qx /y.
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Proof:
(i) Any morphisms of commutative rings

A—B—C
yield an exact sequence of C-modules
C®B QB/A — QC/A — QC/B — 0.

Indeed, for any C-module M, a B-linear differential d: C — M is an
A-linear differential C — M whose composite with B — C is 0.
(ii) For any ring morphisms A — Band A — A’, Qa/g,8/4: identifies with
(A’ ®4 B) ®5 Qp/a = A" @4 Qpya-
Indeed, for any module M over A’ ®4 B,
an A’ ®4 B-linear morphism Qa/g,8/4° — M
corresponds to an A’-linear differential d: A’ 4 B — M
or, equivalently, to an A-linear differential d : B — M.
This corresponds to a B-linear morphism Qg4 — M
or, equivalently, to an A’ ®4 B-linear morphism A’ ®4 Qg/a — M.
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Properties of morphisms of schemes

Definition:
A morphism of schemes X L, vis called

(1) quasi-compact
if, for any open subset V C Y which is quasi-compact
(in the sense that any open covering has a finite subcovering),
f~1(V) c X is quasi-compact,
(2) locally of finite type [resp. locally of finite presentation]
if Y has a covering by affine open subschemes V; = Spec(A;)
and each f~1(V;) has a covering by affine open subschemes U = Spec(B)
such that B is an A;-algebra of finite type [resp. of finite presentation],
(3) of finite type [resp. of finite presentation] if it is quasi-compact
and locally of finite type [resp. locally of finite presentation].
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Remarks:

(i) These properties are universal (i.e. stable by base change),
stable by composition and local on the base.

(ii) The properties (2) are even local on the source.
(iii) An affine scheme Spec(A) is always quasi-compact.
(iv) An affine scheme Spec(A) is called naetherian
if any finitely generated A-module is finitely presentable
(or, equivalently, if any ideal of A is finitely generated).

A scheme is called locally ncetherian if it has a covering by ncetherian
affine open subschemes.

X 15 vis locally of finite type and Y is locally ncetherian,
X is also locally ncetherian and f is locally of finite presentation.
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Definition: A morphism of schemes X L, vis called
(4) affine if for any morphism Spec(A) — Y from an affine scheme, the fiber product
Spec(A) xy X is affine,
(5) finite [resp. a closed immersion] if it is affine and for any morphism Spec(A) — Y
with Spec(A) xy X = Spec(B), B is finitely generated as an A-module
[resp. A — B is surjective],

(6) alocally closed immersion if it is the composite of a closed immersion and an
open embedding.

Remarks:
(i) These properties are universal, stable by composition and local on the base.

(ii) If j: Z — Xis a closed immersion, the induced morphism of Ox-Modules
Ox — Oz is an epimorphism and its kernel is a sheaf of ideals of Oy,
called the defining Ideal of Z.
Conversely, any sheaf of ideals Z <— Ox defines a closed subscheme Z — X.

(iii) If Z — X is a locally closed immersion factorised as the composition

zLudx
of a closed immersion j and an open embedding i, and Z is the defining Ideal of Z
in U, the Oz-Module JT = Nz/x

is called the normal sheaf of Zin X.
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Lemma:
LetX L v
= morphism of schemes.
Then:
(i) The diagonal morphism X — X xy X is a locally closed immersion.

(ii) Its normal sheaf identifies with the Ox-Module Qyy.

Proof:

(i) Itis enough to consider the case when Y = Spec(A).
Consider a covering of X by affine open subschemes Spec(B;).
The morphism X — X xy X factorises through the union of
the open subschemes Spec(B;) Xy Spec(B;j) = Spec(B; ®a B;) and,
by the base changes Spec(B; ®4 B;) — X xy X it becomes
Spec(B;) — Spec(B; ®4 B;)
which are closed immersions as the canonical morphisms

- B B B
are surjective. 1 @A 51— b

(ii) If Y = Spec(A), X = Spec(B) and [ is the kernel of the canonical epimorphism
B ®a B — B, Qg4 identifies with 1/P endowed with the differential
d : B — /P,
b — be1—-—1xb.
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Definition:
A morphism of schemes X ', Yis called
(7) separated
if the diagonal embedding X — X xy X is a closed immersion,

(8) proper if

e it is separated,

e it is of finite type,

e it is universally closed (i.e. for any Y’ — Y, the morphism X xy Y’ — Y’

transforms closed subsets of X xy Y’ in closed subsets of Y’).

Remarks:

(i) These properties are universal, stable by composition
and local on the base.

(ii) One can prove thatif f: X — Y is proper, the derived functors

R¥f, : Modp, — Modp,

transform coherent O x-Modules in coherent Oy-Modules.
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Examples of separated and proper morphisms:
(i) Any locally closed immersion is separated.
(ii) Any affine morphism is separated.
(iii) Any finite morphism (in particular, any closed immersion) is proper.
(iv) For any n, the projection
P" — Spec(Z)
is a proper morphism.
(v) A scheme X over some base scheme S
is called projective [resp. quasi-projective] over S
if the morphism X — S factorises as the composite of a closed
[resp. locally closed] immersion

X—=P"x S
followed by the projection
P"xS— S.
This implies that
X— S

is proper [resp. separated)].
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Definition: A morphism of schemes X L, vis called
(9) flat [resp. faithfully flat]
if Ox is flat as a Module over f~' Oy
[resp. and the underlying map X — Y is surjective],
(10) smooth of dimension d [resp. étale] if

e it is locally of finite presentation,
o itis flat,
o the sheaf of relative differentials Qyx v
is locally free of rank d as on Ox-Module [resp. is 0].

Remarks:

(i) These properties are universal and local on the base and on the source
(except for faithful flatness which is only local on the base).

(ii) The properties (9) are stable by composition.
(iii) ¥ X L, v is smooth of dimension d [resp. étale]

and Y < Z is smooth of dimension d’ [resp. étale],
then g o f is smooth of dimension d + d’ [resp. étale].

(iv) One can prove thatif f: X — Y is smooth of dimension d, x is a point of X,
fi, ..., fp are sections of Ox in an open neighborhood U of x such that dfy,...,df,

is a basis of Qy,y on U, then the morphism they define U — A" x Y is étale.




Examples of flat, étale and smooth morphisms:
(i) Any open immersion is étale.
(ii) The schemes A" and P are smooth of dimension n over Spec(Z).
The group scheme GL, is smooth of dimension r?.
(iii) For any commutative ring A and any polynomial P of the form
P=X%+tag+ X'+ +a-X+a in AX,
with B = A[X]/(P), the morphism

Spec(B) — Spec(A)
is finite and flat.

It is étale if and only if P and P’ generate the full ideal A[X].
(iv) More generally, if B=AlX,..., X/l
for some ideal / of A[Xj, ..., Xa] generated by polynomials
Pi(X1,..., X)), 1<j<k,
then Spec(B) is smooth of dimension n— k over Spec(A)
if and only if the ideal of B generated by the k-minors of the matrix
op,
(aX/ (Xt Xn)) 1<i<n

1</<k

is the whole B.
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Proposition:

(i) If Mis an A-module, the quasi-coherent O4-Module M on Spec(A) is flat
if and only if M is flat.

(ii) A finitely generated A-module M is flat if it is locally free on Spec(A).
The converse is true if A is ncetherian.

(iii) In particular, a finite morphism X L Yisflatif £.0x is locally free as an
Oy-Module, and the converse is true if Y is locally ncetherian.

(iv) If a scheme morphism f: X — Y is locally of finite type, Qx,y =0
if and only if X — X xy X is an open immersion.

(v) A finite morphism X 1 ¥ such that f*Ox is locally free of rank d over Oy
is étale if and only if there exists a finite étale surjective
[resp. quasi compact faithfully flat] morphism Y’ — Y
suchthat X xy Y/ — Y’
is isomorphic to the trivial cover

]_[ Y — Y.

1<i<d
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Proof of (i):
If M is a flat A-module, M; = Ar ®4 M is flat over A;
forany f € A, so M is a flat O4-Module.
The functors ~
M +— M
and M —  M(Spec(A))

define an equivalence between the abelian category of A-modules
and the abelian category of quasi-coherent O4-Modules.

In particular, they are exact.

Furthermore, they commute with tensor products.

So, M is a flat A-module if M is a flat O4-Module.

Proof of (iv):

We can suppose that X = Spec(B) and Y = Spec(A).

Let’s denote / the kernel of B®4 B — B so that Qp, 4 identifies with /2.

As B is of finite type over A, | is finitely generated.

If X - X xy X is an open immersion, / is 0 in an open neighborhood of
X = Spec(B) and a fortiori Qg,4 = 0.

Conversely, I = I? implies that / = 0 in an open neighborhood of Spec(B) as
follows from the lemma:
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Lemma:
Let / = ideal of a commutative ring A,

M = finitely generated A-module such that /- M = M.
Then there exists an element a € [ such that

(1+a-m=0, VmeM.

In particular, M is 0 in the open neighborhood Spec(A (1 a))
of Spec(A/I) in Spec(A).

Proof of the lemma:
Consider a finite family of generators my, ..., my of M.
Any m;, 1 < i < k, can be written

m; = Z a; ;- mj

- 1<j<k
for some coefficients a;; € /.

The determinant of the matrix

Id — (@ij)1<i,j<k
has the form

1+a forsome ac /,
and we have

(1+a-m=0, 1<i<k.
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Proof of (ii) and (iii):

(iii) is a particular case of (ii).

(if) According to (i), the property of flatness is local

so M is flat if it is locally free.

Conversely, suppose M is finitely generated and flat and A is ncetherian.
Consider a point x € Spec(A) corresponding to a prime ideal p

and the residue field k, = Ap/p - Ap.

Choose a finite basis over k, of the vector space k, ®4 M and lift is to a family
of sections my, ..., mg of M in an open neighborhood of x.

They induce a morphlsm (’)d — M whose cokernel has the form N for some
f|n|tely generated N such that kp ® N = 0. Accordlng to the previous lemma
N =0inan open nelghborhood of x and 0§ — M is an epimorphism there.

lts kernel has the form K for some module K which is finitely generated as A
is noetherian. B B

As M is flat, the exact sequence 0 — K — O§ — M — 0 yields an exact

sequence d

p—>|<p®l\~ﬂ—>0.

0—>Kp®i~(—>|<

It means that k, © K = 0 as K3 — Kp ® M is an isomorphism.
According to the previous lemma, K=0isan open neighborhood of x
and 0% — M is an isomorphism there.
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Proof of (v):

Suppose X 1, vis étale.
The diagonal morphism X — X xy X is an open embedding and also a closed
immersion as the finite morphism X — Y is separated.

The scheme X xy X over X can be written as the disjoint union of X M, x

and a finite étale morphism
fi: X —Yi=X

such that (f1),. Oy, is locally free of rank d — 1.
We get by induction on the rank d that there exist a finite étale morphism
such that the morphism Yo — Y

X Xy Yd — Yd

is isomorphic to
IT Yo — Ya.
1<i<d
Conversely, suppose that there exists a quasi-compact and faithfully flat

morphism Y’ — Y such that X xy Y’ — Y’isisomorphicto [] Y’ — Y'.
1<i<d

We can suppose that Y = Spec(A) and Y’ = Spec(B).
The conclusion follows from the lemma:
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Lemma:
Let Spec(B) — Spec(A)
= faithfully flat morphism of affine schemes.
Then:
(i) For any A-module, the canonical morphism
M— BosM
is @ monomorphism. In particular, M is 0 if and only if B ®4 M is 0.

(ii) A complex of A-modules My —s Mo — Ms

is exact if and only if the complex of B-modules

is exact. BosMy — BRa M — B®a Ms

Proof:
(i) A non zero element m of M can be seen as a non zero morphism
A— M.
Its kernel / is an ideal contained in a prime ideal p and, by hypothesis, there
exists a prime ideal g of Bsuch thatp=u~"(q) foru: A— B. Then B/gis a
quotient of B®a A/l. As uis flat, B&a A/l — B ®4 M is a monomorphism.

So the image of min B ®4 M is non zero.
(ii) Let H = Ker(M> — Ms)/Im(M; — M,). As A — Biis flat, we also have
B®aH =Ker(B®a My — B®a Ms)/Im(B®@4 My — B4 Ms) .
According to (i), H is 0 if and only if B®4 H is 0.
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Definition:

(i) A sieve on an object X of Sch is called a covering sieve for the “étale” topology
[resp. for the faithfully flat quasi-compact (fpgc) topology]

if it contains a family of morphisms
)(f — X) / € /)
[T — X
iel
is quasi-compact, étale [resp. flat] and surjective.

such that the morphism

(ii) The “big” étale [resp. fppf] site of a scheme X
consists in the essentially small category
Schy,/x
of morphisms X’ — X of finite presentation, endowed with the étale [resp. fpqc]
topology. The “big” étale [resp. fpgc] topos of X is the associated topos.
It can be denoted Ety [resp. Flx].
(iii) The “small” étale [resp. fppf] site of a scheme X consists in the subcategory of
Schy,/x on étale [resp. flat] morphisms X’ — X endowed with the étale
[resp. fpqgc] topology.
The “small” étale [resp. flat] topos of X is the associated topos.
It can be denoted étx [resp. flx].
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Remarks:

(i) For any scheme X, there is a commutative square

of morphisms of toposes
Fly ——flx

|

Etx — éty
whose push-forward components are restriction functors.
Furthermore, Fly — Ety is a subtopos.
(ii) For any morphism of schemes X LR Y, the functor
Y —=Y)— (Y xy X — X)
respects finite limits and disjoint sums.
It preserves the property of morphisms to be étale, flat, quasi-compact,

surjective or of finite presentation.
So it induces morphisms of toposes

(f*,f*) : FIX — F]y,
ﬂx — ﬂy,
Et)( — Ety,
éty — éty.
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Proposition:

(i) For any scheme X, the associated presheaf

Sch® —  Set
) Y +—— Hom(Y,X)
is a sheaf for the fpgc topology.
(ii) All properties (1)—(10) of morphisms of schemes
X—Y
are local on the base for the fpqc topology.
(iii) For any quasi-compact faithfully flat morphism
X — X,
the category of quasi-coherent Ox-Modules on X is equivalent to the category of
quasi-coherent Ox.-Modules M’ on X’ endowed with an isomorphism
~ /7 . . I I P ’
o:piM" — ps M’ for the two projections X' xx X =X ,
such that the triangle associated with the three projections P2
G, G2, @3 : X' xx X' xx X' —= X’
——

gr M’ GM'

~ 7

GM’

is commutative.
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The proof follows from the previous lemma completed with:
Lemma:
Let Spec(B) — Spec(A)

= faithfully flat morphism of affine schemes.
Then:

(i) Any A-module M identifies with
Eq(BaM=B®osBxsM).
(ii) Any B-module M’ endowed with an isomorphism
0:(B®aB)®p,gM — (B®aB) ®p, 58 M’
such that the triangle
(BeaB®aB) ®q1,BM/ (BoaB®aB) ®q3,BM,

\/’

(B®aB®aB) ®q,5 M’

is commutative, identifies with

BoaM
for M = Eq (M’ = Bas M').
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Proof:

(i) The morphism M — Eq (B®a M = B®4 B®4 M) is an isomorphism
because the functor B ® 4 e transforms it into an isomorphism.
Indeed, the sequence

0—B—B®sB—B®sB®sB

consisting in the morphisms
b—bolandbeb' —mbeb' ®1—-Dbx1xb’
is split exact, with the splitting

BoaB — B
beb +— bb'.

(ii) The morphism B®4Eq (M’ = B®a M’) — M’ is an isomorphism
because, according to (i), B ®4 e transforms it into an isomorphism.
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Points of small étale sites

Proposition: If Y = Spec(k) for an algebraically closed field k,
any quasi-compact étale morphism B

is isomorphic to some X — Y = Spec(k)
H Spec(k) — Spec(k) .

1<i<d

Proof: Let’s consider a k-algebra of finite presentation
B A=K[Xqy...,Xal/(Py,...,Px)
which is étale over k.
For any maximal ideal m of A, the morphism
k— A/m

is an isomorphism as k is algebraically closed and A is finitely generated.
Furthermore, the closed embedding

Spec(k) = Spec(A/m) — Spec(A)
is also an open embedding as A is étale.
For distinct maximal ideals my, ..., ng, A decomposes as a product

A= (A/my) x - x (A/mg) x A”.
As Ais generated by n elements, it yields d < n. If d is maximal, we get

A= (A/my) % - x (A/mg) = K°.
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Corollary:

(i) If X = Spec(k) for an algebraically closed field,
the topos éty identifies with Set.

(ii) For any scheme X, any “geometric point” of X
X : Spec(k) — X

(where k is an algebraically closed field)
defines a point
(X", X.) : Set — éty

of the small étale topos of X.

Proof:
(i) follows from the previous proposition.
(ii) follows from (i).
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The étale fundamental group

Theorem:
Let X = connected scheme endowed with a geometric point

X : Spec(k) — X,

Covyx = category of finite étale morphisms X’ — X
such that p. Oy is locally free over Oy,
71 (X, X) = group of automorphisms of the functor

Covx — Sets = category of finite sets,

(X" —= X) +— Homg(Spec(k), X') = Fx(X")

endowed with the smallest topology

for which its action on each finite set Fx(X’)

is continuous.
Then the functor

(X" —= X) — Fx(X")

is an equivalence from the category Covx
to the category of finite sets endowed with
a continuous action of the profinite group 71 (X, X).

y

Remark: If X = Spec(k) for some field k, this equivalence is Galois theory. J
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Sketch of proof:

For any object p: X’ — X of Covy, the locally free

Ox-Module p,Ox: has a constant rank d as X is

connected, and there is a finite étale surjective morphism
Y — X

such that X’ xx Y — Y is isomorphic to
[Tr—v.
1<i<d
In the other direction, for any finite étale surjective morphism
Y — X,

let Cov )} = full subcategory of Covy

on objects X’ — X such that

X' xx Y = Yisisomorphictosome ] Y —Y.

1<i<d
So, Covy is the filtering union of its full subcategories Cov}? and we have
m (X, x) = imf (X, %)
Y

where, for any Y, nrf' (X, ) is the automorphism group of the restricted functor

Fy : Covl — Set;.

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 105/ 151



For any such Y, there exists a finite étale surjective
morphism Y’ — Y such that
Yxxvy= ][] VY.

1<i<d
Furthermore, Y’ can be constructed as Y’ = Yy where
Yo —» Yoo1 — -+ — Y7 — Yy is the sequence of finite étale morphisms

defined by Yo = Y and, for any i < @,

Yiri=Yixx Y=Y,
as Y; — X; xx Y is a closed and open subscheme.
So Y’ = Yy is a closed and open subscheme of Y xx --- xx Y (d times)
and Y’ xx Y’ is a closed and open subscheme of Y’ xx Y xx --- xx Y
which is a disjoint sum of copies of Y.
So we are reduced to the study of functors

F: Cov}; — Sety

Yxx Y= H Y.

1<i<d

We can even suppose that Y is connected.
Then Y xx Y is the sum of the graphs of the automorphisms

o€ G=Autx(Y).
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The category ol

is equivalent to the category of finite sets /
endowed with an isomorphism over Y xx Y

TZYX)((I_[Y)%(UY>X)(Y
iel iel
such that the triangle € '

YXxYXx( = ( Y>><xY><Xy
iel

iel >
Y X x (H Y) X x Y
i€l
is commutative. ©
As Y xx Y is the sum of the graphs of the automorphisms
o€ @G,

Cov} is equivalent to the category
[G, Sety]

of finite sets / endowed with an action of G.
We conclude by observing that the group of automorphisms of the forgetful functor

[G, Setf] — Sety

identifies with G.
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Locally constant and constructible étale sheaves

Definition: Let X = scheme.

(i) An étale sheaf F over X is called locally constant and finite

if it is representable by a finite étale morphism
p: X — X

such that p.Ox: is locally free as an Ox-Module.

(ii) An étale sheaf F on X is called constructible if, on any quasi-compact open
subscheme U of X, there exists a finite sequence of closed subschemes of U

@IXd+1 HXd‘—)---HX1 HX():U

such that the restriction of F on each locally closed subscheme

is locally constant and finite. A= <0 K

Remarks:

(i) If X is connected and X is a geometric point of X, a locally constant finite étale
sheaf F on X corresponds to a finite set endowed with an action of 71 (X, X).

(if) If X is a noetherian scheme, any decreasing sequence of closed subschemes of
X is finite.
(iii) Any finite limit or colimit of locally constant and finite [resp. constructible] sheaves

is locally constant and finite [resp. constructible].
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Etale cohomology

Definition: Let R = commutative ring.
For any scheme X, let

Modk, = Mod§'  [resp. Mods , resp. ModZ™

be the abelian category of Modules on the constant ring object Ry defined by
R in the topos

étx [resp. ftx, resp. the topos Zary of sheaves on the topological space X].

Remarks:

(i) The categories Modk, [resp. Modlgx, resp. Mod%ir] have arbitrary limits
and colimits.
They are endowed with functors ®, Hom and Hom.
They have enough injective objects and enough Rx-flat objects so that ®,

IL,
‘Hom and Hom have derived functors ®, RHom and RHom.
(ii) These categories are related by restriction functors
Mod  — Modk, — Moadg™

which have exact left adjoint functors.
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(iii) Any morphism of schemes X Iy
induces direct image functors f,
which are compatible in the sense that the diagram

Modf —— Modk, — Modi™

‘| lf* |-

Mody, —— Modk, — Modi™

is commutative.
They have exact left adjoint functors f*
and they have derived functors Rf,
which are right adjoint to f*.

(iv) If f: X — Y is an étale morphism

[resp. is flat and finitely presentable, resp. is an open embedding],
the functor f* also has an exact left adjoint

fi : Modg x Modk y
[resp. fi : Modi — Modf ,
resp. fi : Modf" — Modg¥ ].
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Quick presentation of Cech cohomology

Proposition:

Let (C,J) = site endowed with a sheaf of rings O,
X = object of C,

(Ui — X)ic = J-covering family of X such that each U; — X is squarable in C,
M = sheaf of modules over O.

Then:

(i) In the derived category D" (Modo x)),
there is a canonical morphism from the complex

[IMmWw) = T MW,y xxUy) == T MU xx-xxUy,) = -+

o€l in,i1 €l foy---yin€l

to the object RT'( X, M).
(ii) This morphism is an isomorphism if

RT (U xx -+ xx Upy M) =0, VYk>1,Vip,...,in€ .

v
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Remarks:
(i) Part (ii) applies in particular if

C is the category O(X) of open subsets of a topological space X,
J is the usual notion of open covering,
any connected component of any intersection U, n---n U;, n > 0,
is contractible.

(ii) Part (ii) also applies if
C is the category of open subschemes of a scheme X
which is separated over Spec(Z),
J is the usual notion of open covering,
M is a quasi-coherent Ox-Module,
the Uj’s are affine open subschemes of X
(so that, as X is separated over Spec(Z),
all intersections Uj, xx - -- xx U;, are also affine).
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Proof of the proposition:
(i) For any morphismi: U — X of C, denote Oy = iii*©. The complex of O-Modules

°o — @ OUfOXX"'XXUin —) 000 —) @ OUiUXXUi1 — @OU’O — Ox
i0y--yin€l i,y €1 el

is exact: indeed, its restriction to any U; is homotopic to 0.
So, for any injective O-Module Z, the morphism from the complex Z(X)
(concentrated in degree 0) to the complex

]_[IU,O —>HIU,O><XU,1)—> - — 1_[ Z(Uy xx - xx Up) — -+

ipsi foseeesi

is a quasi-isomorphism.
Therefore, if Zo — Zy — Zo — - - - is an injective resolution of M, RT'(X, M) is
represented by the simple complex associated to the double complex

[1Z0(Uy) — TIZo(Uy xx Uy) — - — 1 Zo(Ug xx---xx U)) — -
o

fosit ios--->in
1 l 1
[IT:(Uy) — TITUy xx Uy) — - — T1 Ti(Ug xx - xx Uj)) — -
lo lo>h Ips-+sIn

1 l l
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It is endowed with a canonical morphism from the simple complex:

HM(U;O) — [[M(U, xx U,)) — -+ — ‘ 1_['./\/1(U,'[J Xx o XxU)— -

Io fo,i1 Ioy...yln

(ii) This morphism of complexes is a quasi-isomorphism
if, for any o, ..., i, the morphism of complexes from

MU, xx - xx Up,) concentrated in degree 0
to
To(Upxx---xxU;,)) — L1 (U x x- - -xxU;)) — Do(Upyxx---xxU;,) — -

is a quasi-isomorphism.
It is equivalent to ask that

RT (U xx - xx Uy, M) =0,  Vk>1.
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Proposition:
Let C = small category with arbitrary fiber products,
J = topology on C,
O = sheaf of rings on (C, J),
M = O-Module in (?J,
X = object of C.
For any J-covering family U, = (U; — X)e, note
H"(Us, M)
the cohomology modules of the complex:
HM(U,‘O) — H ./\/I(U,‘0 X x U,‘1) — cco — H M(U,‘O Xx -+ Xx Uin) — coo
el i\ €l 0yeeerin€l

Then:

(i) Each H"(U., M) only depends on the sieve S € J(X) generated by U, and can
be denoted H"(S, M).
(ii) The canonical morphism
li
Se

H"(S, M) — R"T(X, M)

<[5

(X)

—_

is an isomorphism for n =

Remark: As M is a sheaf, .
H*(Usy M) — T(X, M)

is an isomorphism for any U,.
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Proof of the proposition:

(i) If Sis the sieve generated by U,, the canonical morphism
from the complex

[IMUy) — TI MU, xx Uy) — -

el o €l
to the complex

[[ M(Uo) — TI MU xxUi) — -+
UpeS U(),U1€S

is an homotopy equivalence.

(if) Let M — 7 be an embedding into an injective O-Module
and M’ =T/ M.
Then the short exact sequence 0 4 M —-Z — M’ — 0
yields an isomorphism Coker(M (X) — Z(X)) — R'T(X, M).
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On the other ha

nd, we have a commutative diagram

0 — lm [I M) — lim [1Z(W) —
S UpeS S Upes
lim T im TT
0o — < Up,Ujes - < Up,Ujes -
M(UpxgUr) Z(UpxxU)
lim lim II
0 — s’ UpoUi Upes — 7 Up, Uy, UpeS —
M (Upx x Uy X xUp) Z(Upx x Ui X xUz)

whose lines are

exact as the colimit I|_>m is filtering.
S

The middle column is also exact as Z is injective.

As T(X) = Ker(

I1Z(U) = 1 Z(Upxx Uh)),

UpeS UQ,U1ES
M’(X):Ker( [T M'(Up) —» [I M'(Up xx Ur)
Uo€S Uo,U1ES

lim M’ (Uy)
S UpEeS

lim TI
o Up,Ujes
M (Ugx xUy)

lim
< Up,Uy,UpeS

M (Upx x Uy x xUz)

) forany S

and M’(X) is contained in the image of |I_I’I]> 1T Z(W),

s WS

we get an isomorphism

Coker(Z(X) — M'(X)) = limH' (S, M).

-
s
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Corollary:

Let (C, J) = site endowed with a sheaf of commutative rings O,
X = object of C.

Then the cohomology group

H'(X,0*) =R'T(X,0*)
of the sheaf of abelian groups
0% : X' — O(X")*
identifies with the abelian group of isomorphism classes
of O-Modules £ on (C/X, Jx)

which are locally isomorphic to O,
endowed with the group law defined by ®.

Proof:

For any J-covering family U, = (U; — X);¢/, the group
H'(Us, 0*)

identifies with the group of O-Modules £ on (C/X, Jx)

whose restriction to any C/U; is isomorphic to O.

Indeed, for any object X’ of C, O*(X’) is the automorphism group
of the restriction of the sheaf O to the relative category C/X".
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Corollary:
Let X = scheme endowed with the sheaf
Oy =Hom(e,Gpp)

for the fppf, étale or Zariski topology.
Then the canonical morphisms
are isomorphisms.
Proof: We have to prove that any Ox-Module £ for the fppf [resp. étale]
topology which is locally isomorphic to Ox is also isomorphic to Ox for the
Zariski topology.

We can suppose X is an affine scheme Spec(A).

First, £ is locally quasi-coherent for the fppf [resp. étale] topology so it is quasi-
coherent: there exists an A-module L such that, for any X’ £, X, L(X")
identifies with p*L(X").

Secondly, L is a flat A-module and it is finitely generated as it is so locally.
Lastly, as BeaL is isomorphic to B for some faithfully flat [resp. étale] A-algebra
B of finite presentation, we can suppose that L has the form A®4. L’ for some
ring A’ finitely generated over Z, some morphism A’ — A and some A’-module
L’ locally isomorphic to A’ for the fppf [resp. étale] topology.

As A’ is ncetherian, L' is locally isomorphic to A’ for the Zariski topology.
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The expression of arbitrary HX(X, M) = RKT(X, M) in terms of
Cech cohomology requires the notion of hypercovering. It is based on:
Lemma:
Let & = category with finite limits,
A = simplicial category whose objects are denoted [n], n € N,
and whose morphisms [m] — [n] are increasing maps

{0,1,...,m} —{0,1,...,n},

Ap = full subcategory of A on objects [0], [1],..., [n].
Then the restriction functor
skp i [AP, E] — [AY, €]
has a right adjoint
coskp, : [AYPE] — [A% €],
Fe +—— coskpFe = F/]
defined by the formula

Fl = L Fmiy VmeN,
(oczIm’]—[m])
where the limit is computed on the category A,/[m] of

objects [m’] of A, endowed with a morphism [m’] — [m].
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Definition: .

Let (C,J) = small site endowed with ¢: ¢ - C 2— C,
X = object of C.

An hypercovering of X is a simplicial object

such that P : A® — C/y(X)

e for any n, the presheaf P, has the form
Pp =11 y(X)

il
where each X; is an object of C endowed with a morphism X; — X,

e for any n, the transform by j* of the canonical morphism
Prni1 — [coskn o skn(Ps)]

N +1
is an epimorphism of C,/¢(X). !

Remarks:

(i) If K is an infinite cardinal containing the cardinal of C, one can restrict to sums
Pn =TT y(X;) indexed by subsets / of K.
iel
(ii) If C has finite limits and any J-covering family of an object of C has a finite
subcovering (which is the case for the fppf, étale or Zariski topology over a
quasi-compact scheme), one can restrict to finite sums

Pr= [T y(X).

1<i<k
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Theorem:

Let (C,J) = small site,
O = sheaf of rings on (C, J),
M = sheaf of O-modules on (C, J),
X = object of C.

Then there are canonical isomorphisms

lim HE(Pyy M) — HK(X, M) =RFT(X, M), VYk>0,
where: P

o the colimits are taken on the filtered category of hypercoverings P, of X,
e for any hypercovering P, of X, the H(P,, M) are the cohomology
modules of the complex:

Hom(Py, M) — Hom(Py, M) — --- — Hom(Px, M) — - --

Remark: For any P, = | [ y(X;), Hom(P,, M) identifies with
iel
[T M(X).

i€l

v

Proof: See Chapter VI. )
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Corollary:
Let C = essentially small category with finite limits,
J = topology on C such that any J-covering family
contains a finite subcovering,
O = sheaf of rings on (C, J),
X = object of C.
Then the functors
Modo — MOd@(X) 9
M —  HK(X, M)

respect arbitrary filtered colimits.

Remark: This corollary applies in particular to the fppf, étale or Zariski topology
of quasi-compact schemes.

Proof: We know H*(X, M) = lim Hk(P,, M) where the filtered colimit is taken

Pl
over hypercoverings P, such that each P, is a finite sum [] y(X),
1<i<k
and, therefore, the functor M — Hom(P,, M) = ] M(X;) respects colimits.

1<i<k
As colimits respect colimits and filtered colimits are exact functors,
the conclusion follows.
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The notion of geometric dimension

Definition:
(i) The dimension (or Krull dimension) of a scheme X is
dim(X) =sup {¢ € N| 3 xo, X1,...,X € X suchthatXo & X1 & ... & X¢}.
(ii) The (relative) dimension of a scheme morphism X — Y is
dim(X/Y) = sup {dim X, | y = Spec(k) = pointof y, X, = X xy y}.

Remarks:

(i) A topological space is called irreducible if intersections of pairs of non empty
open subsets are non empty.
For any point x of a topological space X, its closure X is irreducible.

A topological space is called sober if any irreducible closed subset of the closure
of a unique point. Any scheme is sober.

(ii) If a scheme X is a union of open subschemes U;, i € |,
dim(X) = sup dim(U;).

iel
(iii) If X = Spec(A) is a scheme, dim(X) = dim(A) is
sup{t € N| 3 po,...,pe = prime ideals of Asuchthatpo 2 p1 2 --- 2 pe}.
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Basic facts about dimensions

(i) Spec(Z) has dimension 1 and, for any field k, Spec(k) has dimension 0.
(ii) If Spec(A) is an affine scheme of dimension d,
Spec(AlXi, ..., Xy]) has dimension n+ d.
(iii) If Z — X is a locally closed subscheme,

dim(Z) <dim(X).

Therefore, any scheme of finite type over a scheme of finite dimension
has finite dimension.
(iv) If U c X is a dense open subscheme,

dim(X) =dim(U).
(v) For any morphism X — Y,
dim(X) <dim(Y) +dim(X/Y).
(vi) For any scheme X over a field k and any field k' containing k,
dim(X) = dim(X Xgpec(k) Spec(k’)).
Therefore, for any morphisms X — Yand Y/ — Y,
dim(X xy Y'/Y’) <dim(X/Y)
and one even has an equality if Y’ — Y is surjective.
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(vii) For any finitely presented and flat morphism
X—Y,

the map
y +— dim(Xy)
| |

point of Y fiber X xy y of X over y
is locally constanton Y.

(viii) For any finitely presented morphism X 1, ¥ of relative dimension d,
the Zariski topology derived functors

M — RFfLM

are 0 on all quasi-coherent Ox-Modules M for all k > d.
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Relative curves

Definition:
A relative curve over a base scheme Y
is a finitely presented and flat morphism

X—Y
such that, for any point y = Spec(k) of Y, the fiber
X, =X xyy =X xy Spec(k)
has dimension 1.

Remark:
One can prove that a relative curve X — Y
is proper if and only if, for any affine open subscheme

Spec(A)=V CY,
the curve X xy V over V = Spec(A) is projective,

in the sense that X xy V — V factorises as the
composition of some closed immersion

XxyVoP'xV

and the projection P" x V — V.
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Relative jacobians

Proposition: Let X -2, Y be a relative curve such that

e pis proper and smooth (of dimension 1),
o the fibers of p are “geometrically connected”

in the sense that, for any morphismy = Spec(k) — Y
from an algebraically closed field k, the fiber X; = X xy ¥ is connected.

Then the images R¥p. G, of the étale sheaf G, on X

by the étale direct image cohomology functors are:
(i) Rkp,Gis 0if k > 2,

(ii) p.Gp, is the étale sheaf G, on Y,

(iii) R'p,.G, associates to any étale morphism Y’ — Y
the cokernel of the morphism:

H%M(Y’,Oé,) — Hl (X xy Y’,O)X(ny,)
|
group of Oy.-Modules group of Ox, y.-Modules
locally isomorphic to Oy locally isomorphic to Ox, v

v
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Theorem: In the same situation, the functor
Sch/Y —— Set

(Y'=Y) — HuXxy Y05, )/ HuY',05,)
is representable by a locally finitely presented scheme over Y

Picx,y — Y (called the Picard scheme of X over Y)
endowed with an abelian group scheme structure and a short sequence of abelian
group schemes over Y ]

00— jaCX/y — PiCX/y i) Ly —0

such that
e this sequence is exact for the étale topology,

e Jacx,y is proper (even projective over any affine open subscheme of Y) and
smooth over Y, and its fibers are geometrically connected.

Remark:
e Jacx,y is called the relative jacobian of the relative curve X/,

o the relative dimension g of Jacx,y over Y is locally constant,
it is called the “genus” of the relative curve X over Y,

. . d .
e the morphism Picx,y —— Zy is called the degree map.
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Etale cohomology of relative curves

Definition:
On any scheme X, one denotes w, the étale sheaf of Z/nZ-modules defined

as the kernel of
Gn — Gp,

A — AT,

Remark:

If nis invertible on X or, equivalently,

if X is a scheme over Z,) = Z[X]/(n- X —1) =Z[1],

the (Z/nZ)-Module w, is isomorphic to the constant Module (Z/nZ)
on the finite étale cover

X XSpec(Z(n)) SPCC(Z(n) [X]/(Xn - 1))

of X.
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Proposition:

Suppose n is invertible on a scheme Y.

Let X — Y be a smooth and proper curve with geometrically connected fibers
such that the smooth proper morphism

L730)(/\/ —Y

has constant relative dimension g.
Then the scheme over Y defined as the kernel of the morphism

n jaCX/y — jaCX/Y»
L — LO®0

is a finite étale scheme over Y

Jacx,yln|

which is locally isomorphic to the constant (Z/nZ)-Module (Z/n7Z)?9.
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Corollary:
In the same situation of a smooth proper curve

p:X—Y

with geometrically connected fibers and constant genus g,
the étale direct images
Rkp* Hn
of the locally constant étale Z/nZ-Module u, are:
(i) R¥p,u, is O for any k > 3,
(ii) R2p,u, identifies with the constant sheaf Z/nZ,
(iii) R'p,u, identifies with the locally constant finite étale Z/nZ-Module

Jacx,y[n|

which is locally isomorphic to (Z/n7Z)?9,
(iv) p.u, identifies with the locally constant étale sheaf p, on Y.
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Grothendieck’s six operations

for étale cohomology

Definition:

A morphism of schemes X — S is called “compactifiable” if it factorises as the
composite

x4Lx2s
of an open embedding i and a proper morphism p.

Remarks:

(i) Any compactifiable morphism is locally of finite type.
(ii) If Sis a base scheme, let’s denote

Schs/S

the full subcategory of Sch/S on compactifiable morphisms X — S.

(iii) If Sis quasi-compact, all objects X — S of Sch./S have finite relative

dimension and, more generally, all morphisms X — Y of Sch./S have
finite relative dimension.

v
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Choice of torsion coefficients

Let n = integer which is invertible in Og(S). We consider:
e for any object X — S of Sch./S the category

Mod(z,/nz),
of étale (Z/nZ) x-Modules on X, together with the functors ®, Hom, Hom

and their derived functors QLb RHom, RHom,
e for any morphism f: X — Y of Sch./S the pair of adjoint functors
f+ =1, f. between Mod(z,n7), and Mod(z,nz),
and their derived functors f* = f~1 Rf,,
o for any étale morphism j: X — Y of Sch./S, the exact left adjoint i, of i*.

Remark:
ifn=2e"-- -€k’"k is the prime decomposition of n,
we have for any X a canonical decomposition

Modz/nz), = Mod -+ x Mod

(Z/e" Z)x (Z/¢)% Z)x
So there is no restriction in supposing that

n=1{"

is a power of a prime £.
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The main theorems

Theorem:
Let S = quasi-compact base scheme,

n = integer which is invertible in Og(S).
Consider a proper morphism of Schy/S

Then: f:X—>Y.

(i) (Proper base change theorem)
For any cartesian square of Sch completing f

X X< X

1)

y Loy
the canonical morphisms
y*of, — flox*,
y*oRf, — Rf/ox*

of functors from Mod(z,nz), t0 Modz/nz,,, or from D" (Modz,nz),) to
D*(Modz/nz),,) are isomorphisms.

v
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(ii) If d is the relative dimension of X A Y,
f. has cohomological dimension < 2d.
In other words,
R¥f, =0

for any k > 2d.

(iii) The functors
fo,R¥f, : Mod(z/nz),, — Mod(z/nz),

transform constructible (Z/nZ)x-Modules
into constructible (Z/nZ)y-Modules.

Remark:

(i) implies that Rf, is well-defined as a functor

from D(MOd (Z/nZ)x ) to D(MOd (Z/nZ)y )

In the situation of (i), there is a morphism of functors
from D(MOd (Z/nZ)x ) to D(MOd (Z/nZ)y )

y* oRf, — Rf! o x*

and it is an isomorphism.

4
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Corollary (of the proper base change theorem):
We can associate to any morphism of Schy/S

f:X—>Y
a functor
Rf, : D" (Modz/nz),) — D" (Modz/nz),)
(or even: D(Modz/nz),) — D(Modz/nz),))
such that:

o for any factorisation of f
X4LX 2y
as the composite of an open embedding / and a proper morphism p,
there is a canonical isomorphism
Rfi =Rp,. o,
e for any pair of morphisms of Sch,/S
xLyd z
there is a canonical isomorphism
R(gof), =Rg, oRf.

4
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Remarks:

(i) Any morphism f: X — Y of Sch,/S factorises as the composite of an
open embedding followed by a proper morphism.
Indeed, X — S has such a factorisation

xLXx2s.

Then, X xs Y — Y is proper as well as X; — Y if X; is the smallest
closed subscheme of X x g Y containing the image of

xoB X gy.

So X X P v is a factorisation of f as the composite of an
open embedding iy and a proper morphism p;.
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(i) If X o X; 2~ ¥ and X —2>X, %~ ¥ are two such
factorisations, there is a commutative diagram

such that
i3 is an open embedding, just as iy, o,

Ps, G1, Q2 are proper, just as py, pe,
ay (i1 (X)) = (X)) = g5 ' ((X)).
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(iif) The corollary formally follows from the proper base change theorem
combined with remarks (i) and (ii),
just as in the case of ringed topological spaces.

(iv) The functors Rfi commute with base change.
(v) We can associate to any morphism f: X — Y of Sch./S a functor

fi: Mod(z/nz), — M0odiz/nz),
such that:

e for any factorisation of f as X é L Y, f identifies with p, o iy,
e for any pair of morphisms of Sch,/S

XLy 9z,
(g o f), is canonically isomorphic to g, o f,.

Nevertheless, in general, Rf, is not the derived functor of f,.
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The Kiunneth formula

Proposition:

(i) For any morphism f: X — Y of Schs/S
and objects M of D (Modz,/nz),), N of D" (Modz/nz),),

RAM®F'N) and REM SN

are canonically isomorphic.
(ii) For any cartesian square of Sch¢/S

X1 ><yX2 L>X2

| |

X, — oy

W|th r:q1 0,01 ZQ2OP2,
and objects M of D+(Mod(z/nz)x1 ), My of D+(Mod(z/nz)xz),

L L
Rri(p;'Mi®@p; " Mz) and R(p1)iMy @ R(p2)i Mz

are canonically isomorphic.

V.
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Sketch of proof of the proposition:

It is similar to the case of topological spaces.

(ii) is a formal consequence of (i).

(i) is obvious when f is an open immersion.

So we can suppose that f is proper and Rf, = Rf,.
For any M and A/, the canonical morphism

f1oREM — M
yields a morphism

(FoREM)GFIN — MSF'N
[12
IL;
' (Rf. @ N)
and by adjunction, a morphism

RLON — RE(M & F'N).

We have to check that this morphism is an isomorphism.

As Rf, commutes with base change, we can suppose that Y is a geometric point.
We can also suppose that N is a flat (Z/nZ)-module.

Then e ® A is an exact functor.

So, for any (Z/n7Z)x-Module M, U — M(U) ® N'is a (Z/nZ)x-Module

(in particular a sheaf) and it is f.-acyclic if M is f.-acyclic.

The conclusion follows.

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 142/ 151



The exceptionnal inverse image functor

Theorem:
Letf: X —Y

= morphism of Sch./S.
Then:

(i) The functor

Rfi: D+(M0d(Z/nZ)X) i D+(M0d(Z/nZ)Y)

has a right adjoint

e D+(M0d(z/nz)y) — D+(M0d(Z/nZ)X) .

(if) The two functors

D*(Mod(z/nz),) x DY (Modiz/nz),) — D(Modiz/nz),),
(M,N) +— RfRHom(M,f'N),
(M,N) +— RHom(RfM,N)

are canonically isomorphic.

o
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Remarks:

(i) Composing the isomorphism of (ii) with RT'( Y, e),
we get that the two functors

D (Mod(z/nz),) x DT (Modiz/nz),) — D(Modznz),
(M,N) — RHom(M,f'N),
(M,N) +~—— RHom(RfiM,N)
are canonically isomorphic.
(ii) The isomorphism of (ii) also means that,
for any object N of D (Modz,n7),), the square

RHom(e,f'N)

D*(Modiz/nz)y) D(Modz/nz),)
Rf!l in*
RHom(e,N)

D* (Mod(znz),) —— D(Mod(z/nz),)

is commutative up to canonical isomorphism.

(iif) For any morphisms X Ly 9 7 of Sche/S, (g o f)' is canonically
isomorphic to f' o g*.
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(iv) If f: X — Y is an open immersion,
Rf, is the extension by 0 functor f; and so
f* is the restriction functor f* = 1.
More generally, if f: X — Y is étale, Rf; is fi and so f' is f* = .

(v) For any object N of D" (Modz/nz),),
the identity morphism N — N/
corresponds by adjunction to a morphism

Tr:Rfio N — N

called the “trace morphism”.
(vi) For any such object NV, the morphism

RA(F(Z/NT)y & N = Rf, 0 f(Z/nZ)y SN — N

corresponds by adjunction to a morphism

F(Z/nZ)y & FIN — N

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 145/ 151



Principles of the construction

They are very similar to the case of topological spaces.
e We can suppose that f: X — Y is proper of relative dimension d so that
Rfi = Rf, has dimension < 2d.
e There exists a finite resolution

0—(Z/nZ)x — S*—8 — ... — 89 _,0

of (Z/nZ)x by objects S of the full additive subcategory Sx of
Modz,/nz), on (Z/nZ)x-Modules S which are flat and such that,

for any étale morphism U — X, Sy = iji*S'is f.-acyclic.
For this we denote | X|; the set of points x of X which are closed in their
fiber over Y and lift any x € | X|s to a geometric point X of X.
We define

Co = (Z/nZ)x,

Ci=S5_1/Ci_qfor1 <j<2d,

Sj= J] X.ox"Cifor0<j<2d—1,

x€|X|y

Sag = Cog

so that there is an exact sequence
0— (Z/nZ)x — S* — 8" — ... — 89 0.
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We prove by induction on j that each C; and S; is flat over (Z/nZ)x.
For any étale morphism U — X, the (Z/nZ)x-Modules
(Slu=ihoi*§, 0<j<2d—1,
are f,-acyclic because they are products
H Y* 9] Y* Cj .
xe| Xy (x—U)
= liftof X — X

Lastly, each (Syq)y is f.-acyclic because the (S;)y, 0 < j < 2d, are f.-acyclic
and f, has cohomological dimension < 2d.

e For any object S of Sx and for any injective (Z/n7Z) x-Module Z,
the presheaf
(U— X) — Homz,/nz), (K((Z/NZ)y ®z/nz), S),T)
is an injective (Z/nZ)y-Module (in particular an étale sheaf)
denoted f5(Z).
e If \is an object of D* (Mod|z,/nz),), and N' — T is an injective resolution
of N by Z = (Z¥), we define f'\ as the complex
(@ )

k—j=n nez’
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Theorem:
Let S = quasi-compact base scheme,
n = integer which is invertible in Og(S).
Consider a morphism of Sch,/S
y:Y —Y
which is smooth of dimension d.
Then:

(i) (Smooth base change theorem)
For any cartesian square of Sch./S completing y

X XS X

1]

y Loy
the canonical morphisms
y*of, — flox*
y*oRf, — Rf/ox*

of functors from Mod(z,/nz), to Mod(z,nz),
or from D+(M0d (Z/nZ)x ) to DT (MOd (Z/nZ)y )
are isomorphisms

y
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(ii) The object of D*(Modz,/nz),,)
f(Z/nZ)y

is concentrated in degree 2d
and quasi-isomorphic to

d times

(u§9)[—2d] = (un ®z/nz)y, = Bz/nZ)y un) [—2d].

Furthermore, the functor
f! : D+(M0d(Z/nZ)y) — D+(M0d(z/nz)y,)
is canonically isomorphic to the functor

N — f(Z/nZ)y @ TN .

Remark:
In particular, if y : Y’ — Y is étale, (ii) means that f* = f~1 = f*
or, equivalently, that Ry, = y, is the exact functor of extension by 0.

v
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Corollary:

Let X 1 Y
= smooth morphism of dimension d in Sch./S.
Then the square

RHom(e,u$?[—2d])
D+(M0d(2/nz)x) D(Mod(z/nz),)

Rf[l inx
RHom(e(Z/nZ)y)
D*(Mod(z/nz),) me D(Modz,/nz),)

is commutative up to canonical isomorphism.

<

Remark: If Y = Spec(k) is a base field k, Modz,,z), is the category of

(Z/nZ)-linear representations of the Galois group Gal, = Autx(k) for some
algebraic closure k of k.
For any object M of D*(Mod(z,/nz), ),

R2If, (RHom(M, u29))
RAM

by the duality functor R"Hom(e, (Z/nZ)y)
in the category of (Z/nZ)-linear representations of Gal.
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The case of proper and smooth morphisms

Theorem:
LetX 15 Y

= morphism of Sch,/S which is both proper and smooth.
Then the functors

R¥fi = Rf, = Mod(z,/n2), — Mod(z/nz),

transform locally constant constructible (Z/nZ)x-Modules into locally constant
constructible (Z/nZ)y-Modules.

v

Remark:
In other words, if X and Y are connected,
X is a geometric point of X and y its composite with f : X — Y, the functors

R¥f, = RKf,
transform (Z/nZ)-linear representations of the profinite group
71 (X, X)
into (Z/nZ)-linear representations of the profinite group
(Y, y).

w
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