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Chapter VII:

Operations on linear sheaves on sites

and Grothendieck’s six operations

for étale cohomology
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Reminder on sheaves on Grothendieck sites

Definition: Let C = (essentially) small category.

(i) A sieve S on an object X of C is a subobject

S ↪→ Hom(•,X ) in Ĉ = [Cop, Set] .

In other words it is a collection of arrows

X ′ −→ X

such that, for any X ′′
g−−→ X ′ f−→ X ,

f ∈ S ⇒ f ◦ g ∈ S .

(ii) For any morphism X f−→ Y of C
and any sieve S on Y , f−1S is the sieve on X

S ×Hom(•,Y) Hom(•,X ) ↪→ Hom(•,X ) .

In other words, an arrow X ′ a−→ X is in f−1S if and only if f ◦ a : X ′ → Y is in S.

Remarks:

• Any intersection of sieves on X is a sieve on X .

• Any family of arrows Xi
fi−−→ X generates a sieve on X . It consists in the

morphisms X ′ → X which factorise through at least one of the fi ’s.
O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 3 / 151



Definition:
Let C = (essentially) small category.
A topology J on C is a map

X 7−→ J(X )
‖ ‖

object of C set of sieves on X
which verifies the following axioms:

(Maximality) Fo any X , the maximal sieve

Hom(•,X ) consisting of all arrows X ′ → X
is an element of J(X ).
(Stability) For any morphism f : X → Y , the map

S 7−→ f−1S
sends J(Y ) into J(X ).
(Transitivity) If X is an object and S ∈ J(X ), a sieve S ′ on X
such that f−1S ′ ∈ J(X ′), ∀ (X ′ f−→ X ) ∈ S, necessarily belongs to J(X ).

Remark: A family of morphisms Xi
f−→ X

is called “J-covering” if the sieve it generates belongs to J(X ).
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Definition:
(i) A site is a pair (C, J) consisting in

C = (essentially) small category,
J = topology on C.

(ii) A sheaf on a site (C, J) is a presheaf
F : Cop −→ Set

such that, for any X and S ∈ J(X ), the canonical map

F (X ) −→ lim←−
(X ′

a−→X)∈S

F (X ′)

is one-to-one.
(iii) The category of sheaves on (C, J), denoted

ĈJ = Sh(C, J) ,
is the full subcategory of

Ĉ = [Cop,Set] (= category of presheaves on C)

on presheaves F which are sheaves.
In other words, a morphism of sheaves is a morphism of presheaves.
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The sheafification functor

Proposition: Let (C, J) = site.
Then the canonical embedding functor

j∗ : ĈJ ↪→ Ĉhas a left adjoint
j∗ : Ĉ −→ ĈJ

P 7−→ j∗P

characterized by the property that any morphism
P −→ F

from a presheaf P to a sheaf F uniquely factorises as
P −→ j∗P −→ F .

Remarks:

(i) The sheafification j∗P of P can be constructed by the formula

j∗P = (P+)+

where (P+)(X ) = lim−→
S∈J(X)

lim←−
(X ′

a−→X)∈S

P(X ′).

(ii) There is a canonical composed functor

` : C y−−→ Ĉ j∗−−→ ĈJ .
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Exactness properties

Proposition:
(i) The category Ĉ has arbitrary limits and colimits

and they are computed component-wise, i.e.(
lim←−
D

Pd

)
(X ) = lim←−

D

Pd (X ) ,(
lim−→
D

Pd

)
(X ) = lim−→

D

Pd (X ) .

(ii) The category ĈJ has arbitrary limits and colimits with(
lim←−
D

Fd

)
(X ) = lim←−

D

Fd (X ) ,

lim−→
D

Fd = j∗
(

lim−→
D

j∗Fd

)
.

(iii) The functor j∗ : ĈJ ↪→ Ĉ
respects arbitrary limits, while its left adjoint

j∗ : Ĉ → ĈJ

respects arbitrary colimits and finite limits.
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Corollary:
(i) A group object [resp. ring object, resp. module object over a ring object]

of ĈJ is a sheaf of sets
X 7−→ G(X ) [resp. O(X ), resp.M(X ) ]

endowed with a structure of group [resp. ring, resp. module over the ring
O(X )] on each

G(X ) [resp. O(X ), resp.M(X ) ]

such that all restriction maps induced by morphisms X f−→ Y of C

G(Y )→ G(X ) [resp. O(Y )→ O(X ), resp.M(Y )→M(X ) ]

are group [resp. ring, resp. module] morphisms.
(ii) A morphism of group objects [resp. ring objects, resp. module objects

over some ring object O] is a morphism of sheaves

G1 → G2 [resp. O1 → O2, resp.M1 →M2 ]

such that all maps

G1(X )→ G2(X ) [resp. O1(X )→ O2(X ), resp.M1(X )→M2(X ) ]

are group [resp. ring, resp. module] morphisms.
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The abelian categories of Modules

Definition:
Let (C, J,O) = ringed site

= site (C, J)
+ ring object O of ĈJ .

Then module objects over O in ĈJ
are called O-Modules and their category is denoted

ModO .

Proposition:
For any ringed site (C, J,O),

ModO

is an abelian category
with arbitrary limits and colimits.
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Change of structure ring-sheaf

Proposition:
Let (C, J) = site,

(O1 → O2) = morphism of ring objects in ĈJ .
Then the forgetful functor

ModO2 −→ ModO1 ,
M 7−→ M ,

has a left adjoint denoted
ModO1 −→ ModO2 ,
M 7−→ O2 ⊗O1 M .

Remarks:
(i) For any objectM ofModO1 ,

O2 ⊗O1 M
is constructed as the sheafification of the presheaf

X 7−→ O2(X )⊗O1(X)M(X ) .

(ii) The forgetful functor respects arbitrary limits and colimits
while its left adjoint

M 7−→ O2 ⊗O1 M
respects arbitrary colimits.
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Exponentials (or “inner Hom”) and tensor
products

Definition:
(i) For any object S of any category C,

the relative category C/S is the category
whose objects are morphisms X

p−−→ S of C
and whose morphisms (X1

p1−−→ S)→ (X2
p2−−→ S)

are commutative triangles of C:

X1

p1 ��

// X2

p2��
S
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(ii) For any topology J on a (ess.) small category C
and any object X of C,
the induced topology JX on C/X is defined by the property
that a sieve on an object of C/X belongs to JX
if its image by the forgetful functor

C/X −→ C ,
(X ′ → X ) 7−→ X ′

belongs to J.
(iii) In this situation, composition with C/X → C

defines a functor Ĉ → Ĉ/X
which restricts to a functor called the restriction functor

rX : ĈJ −→ (̂C/X )JX
,

F 7−→ F|X = FX .
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Remarks:
(i) Restriction functors respect arbitrary limits and colimits.

In particular, they transform any ring object O of ĈJ
into ring objects OX of each C/X
and induce additive exact functors

ModO −→ModOX .

(ii) For any sheaves F1 and F2 on (C, J), the presheaf

X 7−→ Hom(F1|X ,F2|X )

is a sheaf denoted F F1
2 or Hom(F1,F2).

It is characterized by the property that, for any sheaf G,

Hom(G,Hom(F1,F2)) = Hom(G × F1,F2) .

(iii) In the same way, for any ring object O of ĈJ
and any O-ModulesM1,M2,
the presheaf

X 7−→ HomOX (F1|X ,F2|X )

is a sheaf denoted HomO(M1,M2).
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Proposition:
Let (C, J,O) = commutative ringed site

= site (C, J)+ commutative ring object O of ĈJ ,
N = O-Module in ĈJ .

Then the functor
ModO −→ ModO ,

L 7−→ HomO(N ,L)
has a left adjoint denoted

ModO −→ ModO ,
M 7−→ M⊗O N .

Furthermore, ⊗ extends as a double functor

ModO ×ModO −→ ModO ,
(M,N ) 7−→ M⊗O N

such that the two triple functors

Modop
O ×Modop

O ×ModO −→ O(X )-modules
(M,N ,L) 7−→ HomO(M⊗O N ,L) ,
(M,N ,L) 7−→ HomO(M,HomO(N ,L))

are isomorphic.
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Remarks:
(i) The tensor productM⊗O N is constructed

as the sheafification of the functor

X 7−→M(X )⊗O(X) N (X ) .

(ii) The two functorsModO ×ModO →ModO

(M,N ) 7−→ M⊗O N
and (M,N ) 7−→ N ⊗OM

are canonically isomorphic.
(iii) The double functor

(M,N ) 7−→M⊗O N
respects arbitrary colimits inM or N ,
while the double functor

(N ,L) 7−→ HomO(N ,L)

respects arbitrary limits in L
and transforms arbitrary colimits in N into limits.
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Push-forward and pull-back functors

Definition:

(i) A category E is called a topos
if it is equivalent to the category ĈJ of sheaves on some site (C, J).

(ii) A (geometric) morphism of toposes E1 → E2

is a pair of adjoint functors
(
E2

f−1
−−−→ E1, E1

f∗−−→ E2
)

whose left component f−1 respects finite limits (as well as arbitrary colimits).

(iii) A morphism between two morphisms of toposes E1 ⇒ E2

(f−1, f∗) −→ (g−1, g∗)
is a natural transformation of functors

α : f−1 −→ g−1 .

Remarks:

(i) If (f−1, f∗) is a topos morphism, f−1 is called the pull-back component and f∗ the
push-forward component.

(ii) The composite of two morphisms of toposes

E1
(f−1, f∗)−−−−−−→ E2

(g−1, g∗)−−−−−−−→ E3

is defined as the pair (f−1 ◦ g−1, g∗ ◦ f∗).
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(iii) Morphisms from a topos E1 to a topos E2 make up a category denoted

Geom(E1, E2) .
(iv) Any morphism of toposes

E ′1 −→ E1 [resp. E2 −→ E ′2 ]

induces a functor defined by composition
Geom(E1, E2) −→ Geom(E ′1 , E2)

[resp. Geom(E1, E2) −→ Geom(E1, E ′2) ].

(v) If E is a topos and 1 denotes its terminal object, there is a unique morphism of

toposes E (p−1, p∗)−−−−−−→ Set defined by

p−1I =
∐
i∈I

1 (“constant” objects of E)

and p∗F = Hom(1,F ) (“global sections” functor).

(vi) A morphism of toposes Set
(x−1, x∗)−−−−−−→ E is called a “point” of E and its left

component x−1 : E → Set the “fiber functor” at the point.

(vii) Points of a topos E make up a category Pt(E) = Geom(Set, E).
(viii) Any morphisms of toposes E1 → E2 induces a functor

Pt(E1) −→ Pt(E2) .
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Lemma: For any morphism of toposes
(f−1, f∗) : E1 → E2 ,

both functors f−1 and f∗ transform
group objects into group objects,
ring objects into ring objects
and module objects over a ring object into module objects over the transform
of this ring object.

Sketch of proof:
This is because both functors f−1 and f∗
respect finite limits, in particular finite products.

Definition:
(i) A ringed topos is a topos E endowed with a ring object O.
(ii) A morphism of ringed toposes

(E1,O1) −→ (E2,O2)
is a morphism of toposes

(f−1, f∗) : E1 −→ E2

completed with a morphism of ring objects
f−1O2 −→ O1 or, equivalently, O2 −→ f∗O1 .
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Corollary:
Let (E1,O1)→ (E2,O2)

= morphism of ringed toposes

consisting in E1
(f−1, f∗)−−−−−−→ E2

and f−1O2 −→ O1.
Then:
(i) The composition of the functor

f∗ :ModO1 −→Modf∗O1

and of the forgetful functor defined by O2 → f∗O1

Modf∗O1 −→ModO2defines a functor
f∗ :ModO1 −→ModO2 .

(ii) This functor f∗ :ModO1 −→ModO2 has a left adjoint functor

f ∗ :ModO2 −→ModO1

constructed as the composite of the functors
f−1 :ModO2 −→Modf−1O2

and
Modf−1O2

−→ ModO1 ,
M 7−→ O1 ⊗f−1O2

M .

O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 19 / 151



Remark:

f∗ :ModO1 −→ModO2 respects limits,

f ∗ :ModO2 −→ModO1 respects colimits.
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A concrete process to generate some morphisms of toposes

Proposition:
Let E1, E2

= two toposes defined by two sites (C1, J1), (C2, J2)
such that C2 has arbitrary finite limits,

and ρ : C2 → C1

= functor such that
• ρ respects finite limits,
• ρ transforms J2-covering families

into J1-covering families.
Then ρ defines a toposes morphism

(f ∗, f∗) : E1 −→ E2in the following way:

• For any sheaf F1 on (C1, J1), f∗F1 is the sheaf on (C2, J2)

X2 7−→ F1(ρ(X2)) .

• For any sheaf F2 on (C2, J2), f ∗F2 is the sheafification of the presheaf

X1 7−→ lim−→
X2∈(X1\ρC2)

F2(X2)

where X1\ρ C2 is the category of objects X2 of C2 endowed with a morphism
X1 → ρ(X2) in C1.
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Remarks:
(i) This generalises the construction of the topos morphism

(f ∗, f∗) : Sh(X1) −→ Sh(X2)

associated to a continuous maps f : X1 → X2
between topological spaces X1,X2.
Indeed, f defines ρ = f−1 : 0(X2)→ 0(X1).

(ii) Even if E1, E2 are two toposes defined by sites (C1, J1), (C2, J2)
such that C2 has finite limits,
not all morphisms of toposes E1 → E2 are constructed in this way.

(iii) Nevertheless, it will be enough for the étale toposes of schemes.
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Sketch of proof of the proposition:
• If F1 is a sheaf on (C1, J1),

X2 7−→ F1(ρ(X2))

is a sheaf on (C2, J2)
because ρ transforms J2-covering families into J1-covering families.

• It is clear that f ∗ is left adjoint to f∗.
We only need to prove that it respects finite limits.
For this it is enough to prove that for any X1 the functor

F2 7−→ lim−→
X2∈(X1\ρ C2)

F2(X2)

respects finite limits.
This is because the category X1\ρ C2 is filtering,
as C2 has finite limits and they are respected by ρ.
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Corollary:

For E1 = (̂C1)J1
, E2 = (̂C2)J2

and (f−1, f∗) : E1 → E2 defined by ρ : C2 → C1
as in the previous proposition,
let O1,O2 = ring objects of E1, E2 related by a morphism
f−1O2 → O1 or, equivalently, O2 → f∗O1
consisting in a compatible family of ring morphisms

O2(X2) −→ O1(ρ(X2)) , X2 ∈ Ob(C2) .

Then (f−1, f∗) : E1 → E2 defines adjoint additive functors

f∗ :ModO1 −→ModO2

and
f ∗ : ModO2 −→ ModO1 ,

M 7−→ O1 ⊗f−1O2
M .
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Localisation of toposes

Proposition:
Let E = topos.

(i) For any object F of E , the relative category

E/F

is a topos, called the localisation of E at F .
More precisely, if E = ĈJ , then E/F = (̂C/F )JF

where:
• C/F is the category whose objects are pairs

(X , a) with X ∈ Ob(C) , a ∈ F (X ) ,

and whose morphisms (X1, a1)→ (X2, a2) are morphisms of C

f : X1 −→ X2 such that F (f )(a2) = a1 ,

• JF is the “induced” topology on C/F such that

a family of morphisms (Xi , ai)
fi−−→ (X , a) is JF -covering

if and only if the family Xi
fi−−→ X is J-covering.
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(ii) For any morphism f : F1 → F2 of E , the functor

f−1 : E/F2 −→ E/F1 ,
(F → F2) 7−→ (F ×F2 F1 → F1)

has a left adjoint

f! : E/F1 −→ E/F2

(F
g−→ F1) 7−→ (F

f◦g−−→ F2)
and a right adjoint

f∗ : E/F1 −→ E/F2

so it defines a morphism of toposes

(f−1, f∗) : E/F1 −→ E/F2 .

Remarks:
(i) If 1 is the terminal object of E , E/1 identifies with E .

(ii) If E = ĈJ and ` : C y−→ Ĉ j∗−→ ĈJ is the canonical functor,
then for any object X of C, the restriction functor

E/`(X ) = ̂(C/`(X ))J(`(X)) −→ (̂C/X )JX

is an equivalence, so that E/`(X ) and (̂C/X )JX
identify.
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Sketch of proof of the proposition:

(i) It is enough to prove that for any presheaf P on C,

Ĉ/P and Ĉ/P are equivalent.

A natural equivalence is defined by the two functors
Ĉ/P −→ Ĉ/P

(p : P ′ → P) 7−→ Pp =

 (X , a) 7−→ fiber of P ′(X)
pX−−→ P(X)

3

Ob(C/P) over the element a ∈ P(X)


and Ĉ/P −→ Ĉ/P

Q 7−→ (PQ → P) =

 X 7−→ ∐
a∈P(X)

Q((X , a))

3

Ob(C)

 .
(ii) The functor f! : (F → F1) 7→ (F → F2) is left adjoint to

f−1 : (F → F2) 7→ (F ×F2 F1 → F1) by definition of fiber products.
In a topos, functors F 7→ F ×F2 F1 respect arbitrary colimits.

Indeed, this is true in Set, therefore in Ĉ and lastly in ĈJ

as j∗ : Ĉ → ĈJ respects arbitrary colimits and finite limits.
So f−1 has a right adjoint functor f∗
(and defines a topos morphism (f−1, f∗) : E/F1 → E/F2)
according to the following theorem:
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Theorem:

Let ρ : E → D
= functor from a topos E to a category D.

Then ρ has a right adjoint if and only if it respects colimits.

Furthermore, if E = ĈJ endowed with ` : C y−→ Ĉ j∗−→ ĈJ ,
the right adjoint of ρ is

D −→ ĈJ

Y 7−→ FY =

 X 7−→ Hom(ρ ◦ `(X ),Y )

3
Ob(C)

 .

Remark:

It can also be proved that if E is a topos, a functor ρ : E → D has a left adjoint
if and only if it respects limits.
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Proof of the theorem:

The condition is necessary for any functor between categories.
Conversely, suppose E is a topos ĈJ and ρ respects colimits.
For any covering sieve S of an object X of C, we have

`(X ) = lim−→
(X ′→X)∈S

`(X ′) in ĈJ

so ρ ◦ `(X ) = lim−→
(X ′→X)∈S

ρ ◦ `(X ′) in D

and FY (X ) = lim←−
(X ′→X)∈S

FY (X ′), which means FY is a sheaf.

Furthermore, for any sheaf F on C, we have F = lim−→
(X ,a)∈C/F

`(X ) and so

Hom(F ,FY ) = lim←−
(X ,a)∈C/F

Hom(`(X ),FY ) = lim←−
(X ,a)∈C/F

Hom(ρ ◦ `(X ),Y ) = Hom(ρ(F ),Y ) .
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Corollary:

Let E = topos endowed with a ring object O.
For any object F of E , let

OF = ring object O × F of E/F .

Then any morphism f : F1 → F2 of E induces an additive functor

f ∗ = f−1 :ModOF2
−→ModOF1

which has a right adjoint

f∗ :ModOF1
−→ModOF2

and a left adjoint
f! :ModOF1

−→ModOF2
.
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Remark: Suppose E is ĈJ endowed with ` : C y−→ Ĉ j∗−→ ĈJ . Then:

• For any object X of C, the ring object OX = O`(X) of E/`(X ) ∼= (̂C/X )JX

is the sheaf
(X ′ −→ X ) 7−→ O(X ′) .

• For any morphism f : X1 → X2 of C,
the functor f ∗ = f−1 :ModOX2

→ModOX1

associates to any OX2 -ModuleM on C/X2 the sheaf

(X
g−−→ X1) 7−→M(X

f◦g−−→ X2) .

• Its right adjoint f∗ :ModOX1
→ModOX2

associates to any OX1 -ModuleM on C/X1 the sheaf

(X −→ X2) 7−→ lim←−X ′ → X↓ ↓
X1 → X2

 =
commutative

square

M(X ′ −→ X1) .

• Its left adjoint f! :ModOX1
→ModOX2

associates to any OX1 -ModuleM on C/X1

the sheafification of the presheaf

(X −→ X2) 7−→ ⊕
(X

g−→X1
f−→X2)

=factorisation of X→X2

M(X
g−−→ X1) .

So the functor f! is exact.
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Subtoposes and open subtoposes

Definition:
(i) A morphism of toposes (f−1, f∗) : E1 → E2

is called an embedding, and E1 is called a subtopos of E2,
if its push-forward component

f∗ : E1 −→ E2

is fully faithful.
(ii) A subtopos (f−1, f∗) : E1 → E2 is called open

if it identifies with a localisation (p−1,p∗) : E2/F → E2
for some object F of E2 endowed with p : F → 1.

Remarks:
(i) For any site (C, J), (j∗, j∗) : ĈJ → Ĉ is a subtopos.

(ii) Conversely, one can prove that any subtopos of Ĉ
has the form ĈJ for a unique topology J on C.

(iii) This implies that subtoposes of a topos ĈJ
correspond to topologies J ′ on C which contain J.
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Lemma: Let E = topos,
(F1

f−→ F2) = morphism of E .
Then the morphism of toposes

(f−1, f∗) : E/F1 −→ E/F2

is an embedding if and only if the morphism

f : F1 −→ F2is a monomorphism.

Remark: If E = ĈJ endowed with ` : C y−→ Ĉ j∗−→ ĈJ ,
any monomorphism i : X1 ↪→ X2 of C
yields a monomorphism `(X1) ↪→ `(X2) of ĈJ

and so an open embedding of toposes

(̂C/X1)JX1
= E/`(X1) −→ E/`(X2) = (̂C/X2)JX2

.

Proof of the lemma: The following conditions are equivalent:

(1) f∗ is fully faithful.

(2) The morphism f ∗ ◦ f∗ → id is an isomorphism.

(3) The morphism id→ f ∗ ◦ f! is an isomorphism.

(4) f! : (F
g−→ F1) 7→ (F

f◦g−−→ F2) is fully faithful.

(5) f is a monomorphism of E .
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Remark:
Suppose E = ĈJ endowed with ` : C y−→ Ĉ j∗−→ ĈJ

and O = ring object of E
inducing a ring object OX = O`(X)

of E/`(X ) ∼= (̂C/X )JX
for any object X of C.

Then, for any monomorphism i : X1 ↪→ X2 of C, the functor

i! :ModOX1
−→ModOX2

associates to any OX1 -ModuleM on C/X1
the sheafification of the presheaf on C/X2

(X −→ X2) 7−→ {M(X → X1) if X → X2 factorises as X → X1 ↪→ X2 ,
0 otherwise.

So the functor i! can be called “extension by 0” as in the case of topological
spaces.
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Derived categories of modules in toposes

Definition:

Let (E ,O) = ringed topos
= topos E endowed with a ring object O.

Then one denotes
D(ModO),
D+(ModO),
D−(ModO),
Db(ModO)

the derived categories of the abelian categoryModO of modules over O in E .

Remark:

If E is written ĈJ ,
the objects of these derived categories
can be seen as complexes of linear sheaves on (C, J).
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The additive functors we have introduced
induce functors between derived categories when they are exact:

Corollary:
(i) For any morphism of toposes (f−1, f∗) : E1 → E2

and any ring object O2 of E2,
the exact functor f−1 :ModO2 →Modf−1O2

defines an additive functor

f−1 : D(ModO2) −→ D(Modf−1O2
)

which respects distinguished triangles and commutes with each [m].
(ii) For any morphism f : F1 → F2

in a topos E endowed with a ring object O,
the exact functor f! :ModOF1

→ModOF2
between the abelian categories of modules over OF1 and OF2

in the localised toposes E/F1 and E/F2
defines an additive functor

f! : D(ModOF1
) −→ D(ModOF2

)

which respects distinguished triangles and commutes with each [m].

O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 36 / 151



Flat and injective modules in toposes

We recall:

Definition:
Let E = topos,
O = ring object of E .

(i) An objectM ofModO is called “flat”
if the functor • ⊗OM is exact.

(ii) An object I ofModO is called “injective”
if the functor HomO(•, I) is exact.

Remark:
These definitions make sense even if O is not necessarily
a commutative ring object of E .
In that case, • ⊗OM is an additive functor from the abelian categoryModOop

of right O-Modules in E to the categoryModZE of abelian objects of E .
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Theorem:

Let E = topos,
O = ring object of E .

Then:
(i) For any O-ModuleM in E , there is an epimorphism

M0 �M

from a flat O-ModuleM0.
(ii) For any O-ModuleM in E , there is a monomorphism

M ↪→ I
to an injective O-Module I.
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Proof of (i):
Let E = ĈJ for some small site (C, J) endowed with ` : C → ĈJ .
For any object X of C, consider the localisation morphism

(i∗X , iX ,∗) : E/`(X ) = (̂C/X )JX
−→ E = ĈJ ,

the restricted ring object OX = i∗XO in E/`(X ) and the left adjoint

iX ,! · ModOX −→ ModO
of i∗X :ModO −→ ModOX .

Any section m ∈M(X ) of an O-ModuleM can be seen as a morphism

iX ,!OX −→M
and so there is a canonical epimorphism

M0 =
⊕

X

⊕
m∈M(X)

iX ,!OX �M .

Lastly, the O-ModuleM0 is flat because for any X the functor

N 7−→ N ⊗O iX ,!OX

identifies with the composite exact functor

N 7−→ iX ,!i∗XN .
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Proof of (ii):
Choose inModO a “generator” A in the sense that,
for any monomorphismM ′ ↪→M ofModO withM/M ′ 6= 0,
there is a morphism A→M which does not factorise throughM ′.
For instance, if E = ĈJ for some small site (C, J), one can take

A =
⊕

X∈Ob(C)

iX ,!i∗XO .

We first prove:

Lemma:
An O-Module I in E is injective if and only if,
for any subobject B → A of the generator A,
any morphism B → I extends to a morphism A→ I.

Proof of the lemma:
The condition is obviously necessary.
In the reverse direction, consider a monomorphism ofModO

M ′ ↪→M
and a morphism f :M ′ → I.
We have to prove that f extends to a morphismM→ I.
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Consider the set I of pairs (M1, f1) consisting in a subobjectM1 ↪→M containingM ′

and a morphism f1 :M1 → I which extends f .
For two elements (M1, f1), (M2, f2) we say that

(M1, f1) ≤ (M2, f2)

ifM2 containsM1 and f2 extends f1. For any totally ordered subset I ′ of I,

M2 = lim−→
(M1,f1)∈I ′

M1

is a subobject ofM and it is endowed with a morphism

f2 :M2 → I
such that (M1, f1) ≤ (M2, f2), ∀ (M1, f1) ∈ I ′.
According to Zorn’s lemma, I has a maximal element (M1, f1).
For any morphism A→M, consider B =M1 ×M A.

By hypothesis, the composed morphism B →M1
f1−→ I extends to a morphism A→ I.

This defines a morphism

B\(M1 ⊕A) =M2
f2−−→ I

which extends f1 :M1 → I toM2. On the other hand,M2 is a subobject ofM.
As (M1, f1) is maximal, this implies that M2 = M1 or, equivalently, that A → M
factorises throughM1.
As A is a generator, this means thatM1 =M.
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We also prove:

Lemma:
For any O-ModuleM, there is a monomorphism

M ↪→M1

such that, for any subobject B of the generator A, any morphism
B −→M

extends to a morphism
A −→M1 .

Proof of the lemma:
The subobjects of any object ofModO make up a set.
In particular, the subobjects of A make up a set S.
One can take forM1 the quotient of

M⊕
(⊕
B∈S

⊕
f∈Hom(B,M)

A
)

by (⊕
B∈S

⊕
f∈Hom(B,M)

B
)
.
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Conclusion of the proof of (ii): Starting fromM0 =M,
let’s define an inductive system of O-Modules

Mi indexed by the ordinals i

and related by monomorphismsMi ↪→Mj for i ≤ j .
The construction is by transfinite induction:
• if j = i + 1,Mj is deduced fromMi by the construction

of the previous lemma.
• if j is the limit of the i < j , we take

Mj = lim−→
i<j

Mi .

Let k be an ordinal whose cardinality is strictly bigger than the cardinality of the set of
subobjects of A and which is the limit of the i < k .
For any morphism f : B →Mk defined on a subobject B of A, the formula

Mk = lim−→
i<k

Mi implies B = lim−→
i<k

f−1(Mi) .

As the cardinality of k is strictly bigger than the cardinality of the set of subobjects of B,
this implies that f : B →Mk factorises as

B −→Mi

for some i < k and so it extends to some morphism
A −→Mk .

The O-ModuleMk is injective according to the first lemma.
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Remark:
Suppose a topos E has a set P of points x = (x∗, x∗) : Set→ E which is conservative
in the sense that a morphism of E

F1 −→ F2

is an isomorphism if and only if x∗F1 → x∗F2 is one-to-one for any x ∈ F .
Then, for any ring object O of E , any O-ModuleM has the canonical
embedding

M ↪→∏
x∈P

x∗ ◦ x∗M .

Each x∗M is a module over the ring Ox = x∗O and can be embedded into an injective
Ox -module, for instance

Ix = Hom(Mx ,Q/Z)
for any free Ox -module Mx endowed with an epimorphism

Mx � Hom(x∗M,Q/Z)) .

Then there is an induced embedding

M ↪→∏
x∈P

x∗Ix .

The O-Module
∏
x∈P

x∗Ix is injective as, for any x ∈ P, Ix is an injective Ox -module

and the functor x∗ is exact.
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In order to derive the functors f ∗ and ⊗, we need to complete the previous
theorem with:

Proposition:
Let E = topos,
O = ring object of E .

Then, for any short exact sequence ofModO

0 −→M1 −→M2 −→M3 −→ 0 ,

we have:
(i) For any Module N , the induced sequence

0 −→ N ⊗OM1 −→ N ⊗OM2 −→ N ⊗OM3 −→ 0

is exact ifM3 is flat.
(ii) IfM2 andM3 are flat,M1 is flat as well.
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Proof:

(i) For any Module N , we can choose an epimorphism

N ′ � N

from a flat Module N ′ and denote N ′′ = Ker(N ′ → N ).
As N ′ is flat, N ′ ⊗OM1 → N ′ ⊗OM2 is a monomorphism and we deduce from
the commutative square

N ′′ ⊗OM1

��

// N ′′ ⊗OM2

��
N ′ ⊗OM1 // N ′ ⊗OM2

that N ′′ ⊗OM1 → N ′ ⊗OM1 factorises through

L = Im(N ′′ ⊗OM1 −→ N ′′ ⊗OM2) .

So we have a short exact sequence of complexes

0 −→
 L↓
N ′ ⊗OM1

 −→
N ′′ ⊗OM2↓
N ′ ⊗OM2

 −→
N ′′ ⊗OM3↓
N ′ ⊗OM3

 −→ 0 .
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AsM3 is flat, N ′′ ⊗OM3 → N ′ ⊗OM3 is a monomorphism
and the associated long exact sequence of cohomology
yields a short exact sequence

0 −→ N ⊗OM1 −→ N ⊗OM2 −→ N ⊗OM3 −→ 0 .

(ii) IfM2 andM3 are flat, we have for any short exact sequence of Modules

0 −→ N ′′ −→ N ′ −→ N −→ 0

an associated short exact sequence of complexes

0 −→
N ′′ ⊗OM2↓
N ′′ ⊗OM3

 −→
N ′ ⊗OM2↓
N ′ ⊗OM3

 −→
N ⊗OM2↓
N ⊗OM3

 −→ 0 .

AsM3 is flat, the associated long exact sequence of cohomology
reduces to the short exact sequence

0 −→ N ′′ ⊗OM1 −→ N ′ ⊗OM1 −→ N ⊗OM1 −→ 0 .

This means thatM1 also is flat.
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Corollary:
Let f : (E1,O1)→ (E2,O2)

= morphism of ringed toposes.
Then:
(i) The right-exact functor

f ∗ :ModO2 →ModO1

has a left derived functor

Lf ∗ : D−(ModO2) −→ D−(ModO1)

whose restriction to complexes of flat Modules (or more generally
f ∗-acyclic Modules) is induced by f ∗.

(ii) The left-exact functor
f∗ :ModO1 −→ModO2

has a right exact functor

Rf∗ : D+(ModO1) −→ D+(ModO2)

whose restriction to complexes of injective Modules (or more generally
f∗-acyclic Modules) is induces by f∗.
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Remarks:
(i) If f ∗ has finite cohomological dimension, it even has a derived functor

Lf ∗ : D(ModO2) −→ D(ModO1)

whose restriction to complexes of f ∗-acyclic objects is induced by f ∗.
It restricts to a functor

Lf ∗ : D+(ModO2) −→ D+(ModO1)

which is left adjoint to Rf∗.
(ii) If f∗ has finite cohomological dimension, it even has a derived functor

Rf∗ : D(ModO1) −→ D(ModO2)

whose restriction to complexes of f∗-acyclic objects is induced by f∗.
It restricts to a functor

Rf∗ : D−(ModO1) −→ D−(ModO2)

which is right adjoint to Lf ∗.
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(iii) For any morphisms of ringed toposes

(E1,O1)
f−→ (E2,O2)

g−−→ (E3,O3) ,

the functor
g∗ = O2 ⊗g−1O3

•

transforms flat O3-Modules into flat O2-Modules.
Therefore the canonical morphism

Lf ∗ ◦ Lg∗ −→ L(g ◦ f )∗

is an isomorphism.
(iv) In the same situation, the canonical functor

R(g ◦ f )∗ −→ Rg∗ ◦ Rf∗

is also an isomorphism.
Indeed, we first remark that this statement is true if O1 = f−1O2 as,
in that case, f ∗ = f−1 :ModO2 →ModO1 is exact and its right adjoint
f∗ :ModO1 →ModO2 transforms injective O1-Modules in injective
O2-Modules.

The general case follows from this remark and the following lemma:
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Lemma:
For any morphism of ringed toposes

(E1,O1)
f−→ (E2,O2) ,

the diagram
D+(ModO1)

Rf∗
��

//

Rf∗

''

D+(ModZE1
)

Rf∗
��

D+(ModO2)
// D+(ModZE2

)

is commutative up to isomorphism.

Remark:
For any topos E and its canonical morphism E (p−1, p∗)−−−−−−−→ Set and any ring R,
we denote RE = p−1R.
In particular,ModZE is the category of abelian objects of E .
We know that any submodule of a flat Z-module is flat.
So the subcategory ofModZE on flat ZE -Modules has codimension ≤ 1.
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Proof of the lemma: The triangle
D+(ModO1)

Rf∗

��

Rf∗

''
D+(ModO2)

// D+(ModZE2
)

is commutative because the forgetful functor
ModO2 −→ModZE2

is exact. The functor f−1 :ModZE2
→ModZE1

is exact and the functors

f ∗ : ModZE2
−→ ModO1

O1 ⊗ZE1
• : ModZE1

−→ ModO1

have finite cohomological dimension. So they have derived functors
f−1 : D+(ModZE2

) −→ D+(ModZE1
) ,

Lf ∗ : D+(ModZE2
) −→ D+(ModO1) ,

O1
L
⊗ZE1

• : D+(ModZE1
) −→ D+(ModO1)

and we already know that the canonical morphism

O1
L
⊗ZE1

f−1(•) −→ Lf ∗

is an isomorphism. Taking right adjoints, Rf∗ : D+(ModO1)→ D+(ModZE2
)

is isomorphic to Rf∗ : D+(ModZE1
)→ D+(ModZE2

)

composed with D+(ModO1)→ D+(ModZE1
).
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The previous theorem and proposition also imply:

Corollary:
Let (E ,O) = commutative ringed topos

= topos E endowed with a commutative ring object O.
Then:
(i) The right-exact additive bifunctor

⊗O :ModO ×ModO −→ModO
has a left derived functor

L
⊗O : D(ModO)× D−(ModO) −→ D(ModO)

constructed by factorising

K (ModO)× K−(FlatO)
•⊗O •−−−−−→ K (ModO)

Q−−→ D(ModO)

if FlatO denotes the full additive subcategory ofModO on flat O-Modules.
Furthermore, if • ⊗O • has finite cohomological dimension, it even has a
derived functor

L
⊗O : D(ModO)× D(ModO) −→ D(ModO)

constructed by factorising

K (ModO)× K (FlatO)
•⊗O •−−−−−→ K (ModO)

Q−−→ D(ModO) .
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(ii) The left-exact additive bifunctors

Hom : Modop
O ×ModO −→ ModO ,

Hom : Modop
O ×ModO −→ Ab

have right derived functors

RHom : D(ModO)op × D+(ModO) −→ D(ModO)
RHom : D(ModO)op × D+(ModO) −→ D(Ab)

constructed by factorising

K (ModO)op × K+(InjO)
Hom−−−→ K (ModO)

Q−−→ D(ModO) ,
K (ModO)op × K+(InjO)

Hom−−−→ K (Ab) Q−−→ D(Ab) .

Remarks:

(i) Commutativity: The functors

(M1,M2) 7−→M1
L
⊗M2 and (M1,M2) 7−→M2

L
⊗M1

from D−(ModO)× D−(ModO) to D−(ModO) are canonically isomorphic.

(ii) Associativity: The functors

(•
L
⊗ •)

L
⊗ • and •

L
⊗ (•

L
⊗ •)

from D(ModO)× D−(ModO)× D−(ModO) to D−(ModO)
are canonically isomorphic.
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(iii) Compatibility with pull-back:
For any morphism of commutative ringed toposes

(E1,O1)
f−→ (E2,O2) ,the functors

Lf ∗(•
L
⊗ •) and Lf ∗(•)

L
⊗ Lf ∗(•)

from D−(ModO2)× D−(ModO2) to D−(ModO1) are canonically
isomorphic.

(iv) IfM is a flat O-Module and I an injective O-Module,
then Hom(M, I) is an injective O-Module.
This follows from the identification between the functors

Hom(•,Hom(M, I)) and Hom(• ⊗OM, I)
fromModO to Ab.

(v) The previous remark implies that the pairs of functors
RHom(•,RHom(•, •)) and RHom(•

L
⊗ •, •)

or RHom(•,RHom(•, •)) and RHom(•
L
⊗ •, •)

or Hom(•,RHom(•, •)) and Hom(•
L
⊗ •, •)

from D(ModO)× D−(ModO)× D+(ModO) to D(ModO), D(Ab) or Ab
are canonically isomorphic.
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(vi) Remark (iv) also implies that if

(E ,O) p−−→ (Set,Z)

is the canonical morphism of commutative ringed toposes, the functors

RHom and Rp∗ ◦ RHom

from D−(ModO)× D+(ModO) to D+(Ab) are canonically isomorphic.
(vii) If f : (E1,O1)→ (E2,O2) is a morphism of commutative ringed toposes

such that O1 is flat over f−1O2,
then the functors

RHom(f ∗(•), •) and RHom(•,Rf∗(•))

from D(ModO2)
op × D+(ModO1) to D(Ab)

are canonically isomorphic,
as well as the functors

Rf∗ ◦ RHom(f ∗(•), •) and RHom(•,Rf∗(•))

from D(ModO2)
op × D+(ModO1) to D(ModO1).
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Application to geometric categories
Suppose G is a geometric category endowed with maps

X 7−→ (EX ,OX ) ,
‖ ‖

object of G commutative ringed topos

(X f−→ Y ) 7−→ [
(EX ,OX )

(f−1,f∗,f−1OY→OX )−−−−−−−−−−−−−→ (EY ,OY )
]
,

‖ ‖
morphism of G morphism of commutative ringed toposes
(X f−→ Y

g−−→ Z ) 7−→ [
(g ◦ f )−1 ∼−−→ f−1 ◦ g−1

]
,

‖
isomorphism which exchanges

f−1 ◦ g−1OZ → f−1OY → OX and (g ◦ f )−1OZ → OX

such that, for any X f−→ Y
g−−→ Z h−−→W , the isomorphisms

(h ◦ g ◦ f )−1 ∼−−→ (g ◦ f )−1 ◦ h−1 ∼−−→ (f−1 ◦ g−1) ◦ h−1 ,

(h ◦ g ◦ f )−1 ∼−−→ f−1 ◦ (h ◦ g)−1 ∼−−→ f−1 ◦ (g−1 ◦ h−1)

are equal.
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We also suppose that, for any open embedding of G,

i : U −→ X ,

the morphism of toposes

(i−1, i∗) : EU −→ EX

identifies EU with an open subtopos of EX
and the morphism

i−1OX −→ OU

is an isomorphism.

Then one can associate to any object X of G
the abelian categoryModOX

endowed with the functors Hom, Hom, ⊗
and its derived categories

D(ModOX ) , D+(ModOX ) , D−(ModOX ) , Db(ModOX )

together with the derived functors

RHom , RHom ,
L
⊗ .
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One can also associate to any morphism of G

f : X −→ Y
a pair of adjoint functors

f ∗ :ModOY −→ModOX and f∗ :ModOX −→ModOY

together with derived functors

Lf ∗ and Rf∗ .

If i : U ↪→ X is an open immersion,

i∗ :ModOX −→ModOU

also has a left adjoint
i! :ModOU −→ModOX

which is exact and induces a functor

D(ModOU ) −→ D(ModOX ) .

All these functors
RHom , RHom ,

L
⊗ , Lf ∗ , Rf∗ , i!

verify the properties stated before
in the context of commutative ringed toposes.
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For any commutative square of G

X ′

p ′

��

x // X

p
��

S ′ s // S

such that s∗, x∗ [resp. p∗,p ′∗] have finite cohomological dimension,
there is a canonical morphism of functors

Ls∗ ◦ Rp∗ −→ Rp ′∗ ◦ Lx∗

from D+(ModOX ) to D+(ModOS ′ )

[resp. from D−(ModOX ) to D−(ModOS ′ )].
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Definition:
A morphism of G

X
p−−→ S [resp. S ′ s−−→ S ]

is called cohomologically proper [resp. coh. smooth] if:
• it is squarable in G,
• for any cartesian square of G

X ′

p ′

��

x // X

p
��

S ′ s // S

completing p : X → S [resp. s : S ′ → S],
x∗ always has finite cohomological dimension

or p ′∗ always has finite cohomological dimension,
• for any such cartesian square, the canonical morphism

Ls∗ ◦ Rp∗ −→ Rp ′∗ ◦ Lx∗

is an isomorphism.
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The geometric category of schemes

Lemma:
Let A = commutative ring.

(i) For any f ∈ A, the functor

B 7−→ {u ∈ Hom(A,B) | u(f ) is invertible in B}

is representable by
Af = A[X ]/(f · X − 1) .

(ii) For any A-module M and any element f ∈ A,
elements of Af ⊗A M = Mf can be written f−n ·m with n ∈ N, m ∈ M.
Two elements f−n ·m and f−n ′ ·m ′ are equal in Mf if and only if
there exists N ∈ N such that f N · (f n ′ ·m − f n ·m ′) = 0 in M.

(iii) For any elements fi , i ∈ I, of A such that
∑

i
fi · A = A,

and any A-module M, the canonical morphism

M −→ Eq

(∏
i

Mfi ⇒
∏
i,j

Mfi fj

)
is an isomorphism.
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Proof:

(i) is obvious.

(ii) The Af -module Mf = Af ⊗A M is the quotient of the A[X ]-module
A[X ]⊗A M =

⊕
n∈N

X n ⊗M by the submodule (f · X − 1) · A[X ]⊗A M.

Any element of Mf can be represented by an expression
P = 1⊗m0 + X ⊗m1 + · · · + X n ⊗mn

with m0,m1, . . . ,mn ∈ M. Then f n · P is also represented by
f n ·m0 + f n−1 ·m1 + · · · + f ·mn−1 + mn ∈ M

as f k · X k = 1 in Af for any k ∈ N.
If an element m ∈ M is 0 in Mf , there exists an expression
P = 1⊗m0 + X ⊗m1 + · · · + X n ⊗mn ∈ A[X ]⊗A M such that

m = (f · X − 1) · P in A[X ]⊗A M .

This implies m = m0, f ·m0 = m1, . . . , f ·mn−1 = mn, f ·mn = 0 and so f n+1 ·m = 0.

(iii) The equality
∑
i∈I

fi · A = A is equivalent to 1 ∈
∑
i∈I

fi · A

so we can suppose that I is finite and equal to {1, . . . , k }.
It is also equivalent to the property that, for any prime ideal p of A,
there exists i such that fi /∈ p.
So each fi can be replaced by an arbitrary power of fi .
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Consider an element m ∈ M whose image in each Mfi is 0. Then there exist integers
ni ≥ 1 such that f ni

i ·m = 0 in M for any i .
As there are elements ai ∈ A such that

a1 f n1
1 + · · · + ak f nk

k = 1 ,
we conclude

m = a1f n1
1 ·m + · · · + ak f nk

k ·m = 0 in M .

This means we have an embedding
M ↪→∏Mfi .

Then consider a family of elements f−ni
i ·mi ∈ Mfi , 1 ≤ i ≤ k , such that, for any i , j ,

f−ni
i ·mi = f

−nj
j ·mj in Mfi fj .

We can suppose all the integers ni to be equal to some n ∈ N.
Then there is an integer N ≥ 0 such that, for any i , j ,

(fi fj)N f n
j ·mi = (fi fj)N f n

i ·mj in M .

Replacing each mi by f N
i ·mi and each fi by f N+n

i , our elements are now written f−1
i ·mi

and verify the equalities
fj ·mi = fi ·mj in M for any i , j .

Choosing elements ai ∈A such that a1f1 + · · · + ak fk = 1, we define the element of M
m = a1 ·m1 + · · · + ak ·mk .For any i , we have in M

fi ·m =
∑

j

aj fi ·mj =
∑

j

aj fj ·mi = mi

which means that f−1
i ·mi = m in each Mfi .
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Corollary:
(i) Any commutative ring A defines a ringed space Spec(A)

(called the spectrum of A) such that
• the underlying set of Spec(A) is the set of ideals p ⊂ A which are prime

(meaning: a1a2 ∈ p ⇒ a1 ∈ p or a2 ∈ p)
• open subsets of Spec(A) are unions of subsets of the form

Spec(Af ) = {p prime | f /∈ p} with f ∈ A ,

• the structure sheaf of Spec(A) is the unique sheaf of rings OA such that,
for any f ∈ A, OA(Spec(Af )) = Af .

(ii) Any morphism u : A→ B of commutative rings defines a morphism of
ringed spaces Spec(B) −→ Spec(A)
such that
• the underlying map Spec(B)→ Spec(A) is

(q ⊂ B) 7−→ (p = u−1(q) ⊂ A) ,

• for any f ∈ A, the pull-back of the open subset Spec(Af ) is the open subset
{q | f /∈ u−1(q)} = Spec(Bu(f)),

• for any f ∈ A, the morphism

OA(Spec(Af )) −→ OB(Spec(Bu(f)))

is the morphism Af → Bu(f) induced by u : A→ B.
O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 65 / 151



Remarks:

(i) If Aff denotes the opposite category of the category of commutative rings, this
defines a faithful functor Aff −→ Sp
to the category Sp of ringed spaces.

(ii) The category Aff, which is called the category of affine schemes,
has a terminal object Spec(Z) and arbitrary fiber products

Spec(B1)×Spec(A) Spec(B2) = Spec(B1 ⊗A B2) .

(iii) For any point p of some affine scheme Spec(A), the fiber
OA,p = lim−→

f /∈p

Af = Ap

has a unique maximal ideal p · Ap and the quotient Ap/p · Ap = κp

(called the residue field at p) is the fraction field of the domain A/p.
So Spec(A) is a locally ringed space.

(iv) For any morphism u :A→B inducing Spec(B)→Spec(A) and any point q ∈ Spec(B)
sent to u−1(q) = p ∈ Spec(A), the induced morphism between the fibers

Ap = OA,p −→ OB,q = Bq
sends p · Ap to q · Bq .
So Spec(B)→ Spec(A) is a morphism of locally ringed spaces.

(v) Conversely, one can prove that any morphism of locally ringed spaces
Spec(B) −→ Spec(A)

is induced by a ring morphism A→ B.
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Examples of affine schemes:
(i) For any family of polynomials

Pi ∈ A[X1, . . . ,Xn]

with coefficients in a commutative ring A, the functor

[Aff/Spec(A)]op −→ Set ,
(A→ B) 7−→ {(b1, . . . ,bn) ∈ Bn | Pi(b1, . . . ,bn) = 0 , ∀ i}

is represented by the affine scheme

Spec(A[X1, . . . ,Xn]/I)

associated to the A-algebra A[X1, . . . ,Xn]/I
defined by the ideal I =

∑
i

Pi · A[X1, . . . ,Xn].

(ii) In particular, the functor

Affop −→ Set ,
A 7−→ An

is represented by the affine scheme

An = Spec(Z[X1, . . . ,Xn]) .
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(iii) The functor
Affop −→ Set ,

A 7−→ A× = GL1(A)

is represented by the affine scheme

Gm = GL1 = Spec(Z[X ,X−1]) .

(iv) More generally, for any r ≥ 1, the functor

Affop −→ Set ,
A 7−→ GLr (A)

is represented by the affine scheme

GLr = Spec(Z[(Xi,j)1≤i,j≤r ,Y ]/(Y · det(Xi,j) − 1) .
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Corollary:
Let A = commutative ring,

M = A-module.
Then there is a unique OA-Module M̃ on Spec(A) such that, for any f ∈ A,

M̃(Spec(Af )) = Mf = Af ⊗A M .

Remark:
(i) The functor

ModA −→ ModOA ,

M 7−→ M̃

is fully faithful, it is left-adjoint to the functor

ModOA −→ ModA ,
M 7−→ M(Spec(A)) .

(ii) An OA-ModuleM on Spec(A) is called
“quasi-coherent” [resp. “coherent”]
if it is isomorphic to M̃ for some A-module M
[resp. some finitely presentable A-module M].
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The quasi-coherent sheaf of relative differentials

Proposition:

Let X = Spec(B)→ Spec(A) = Y
be a morphism of affine schemes.

Then there is a quasi-coherent OX -Module on X ,
called the sheaf ΩX/Y of relative differentials,
such that for any f ∈ B,

ΩX/Y (Spec(Bf )) = ΩBf/A .
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Remarks:
(i) Recall that for any A u−−→ B, ΩB/A represents the functor

ModB −→ Set ,

M 7−→
d : B → M

∣∣∣∣∣ d(b1 + b2) = db1 + db2 , ∀b1,b2 ,
d(b1 · b2) = b1 · db2 + b2 · db1 , ∀b1,b2 ,
du(a) = 0 , ∀a ∈ A

 .
(ii) If B is finitely presentable over A, i.e. isomorphic to

A[X1, . . . ,Xn]/
(∑

1≤i≤k

Pi · A[X1, . . . ,Xn]
)
,

then ΩB/A is the quotient of the free module⊕
j

B · dXj

by the submodule generated by the elements∑
j

∂Pi

∂Xj
· dXj , 1 ≤ i ≤ k .

So ΩB/A is a finitely presentable B-module
and ΩSpec(B)/Spec(A) is a coherent OB-Module.
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Proof of the proposition:
We just have to check that for any element f ∈ B,
the Bf -module ΩBf /A identifies with Bf ⊗B ΩB/A.
By definition, ΩBf /A represents the functor

ModBf −→ Set ,

M 7−→ {
differentials d : Bf → M
such that du(a) = 0, ∀ a ∈ A

}
.

For any differential d : Bf → M, the composite

B −→ Bf −→ M

is also a differential and uniquely factorises as a morphism

ΩB/A −→ M
of B-modules.
As the forgetful functor ModBf → ModB is right adjoint to the functor Bf ⊗B •,
this morphism of B-modules corresponds to a morphism of Bf -modules

Bf ⊗B ΩB/A −→ M .

Conversely, any such morphism Bf ⊗B ΩB/A → M defines a differential

d : B −→ M
which uniquely extends to

d : Bf = B[X ]/(f · X − 1) −→ M

by the formula f · dX + X · df = 0 or, equivalently, dX = −f−2 · df .
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Definition:

(i) A scheme is a ringed space (X ,OX )

which has a covering by open subspaces (Ui ,OUi )

which are isomorphic to some affine schemes Spec(Ai).

(ii) A morphism of schemes
(X ,OX )

f−→ (Y ,OY )

is a morphism of ringed spaces
such that, for any point x ∈ X there are affine open neighborhoods

x ∈ U ∼= Spec(B) and f (x) ∈ V ∼= Spec(A)

with U ⊂ f−1(V ) and a morphism of affine schemes

Spec(B) −→ Spec(A)

which corresponds to the restriction (U,OU)→ (V ,OV ) of f .

Remarks:

(i) The category Sch of schemes
is a geometric subcategory of the category Sp of ringed spaces.

(ii) It is a full subcategory of the category of locally ringed spaces.

(iii) For any scheme X , its topology on the underlying set
is called the Zariski topology.
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Lemma:

(i) Any scheme X defines a contravariant functor
Affop −→ Set ,

A 7−→ Hom(Spec(A),X ) = X (A) .

(ii) This defines a fully faithful functor
Sch −→ [Affop, Set] .

(iii) A contravariant functor F : Affop → Set is a scheme if and only if there exist
morphisms xi : Hom(•, Spec(Ai)) −→ F

from representable functors such that:

• each xi is open in the sense that for any morphism
Hom(•, Spec(A)) −→ F

from a representable functor, the fiber product
Hom(•, Spec(Ai))×F Hom(•, Spec(A))

is representable by an open subspace Spec(Ai)×F Spec(A)
of the ringed space Spec(A),

• the family (xi) is a covering in the sense that for any
Hom(•, Spec(A)) −→ F ,

the open subspaces Spec(Ai)×F Spec(A) make up an open
covering of Spec(A).
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Remark: The set X (A) = Hom(Spec(A),X ) is called the set of points of the scheme X
with coefficients in the commutative ring A.

Corollary:

(i) The category Sch has arbitrary finite limits and disjoint sums.

(ii) The embedding functor
Aff −→ Sch

preserves finite limits.

Proof:

(ii) The statement follows from the fact that for any scheme (X ,OX ) and any affine
scheme Spec(A), the map

Hom(X , Spec(A)) −→ Hom(A,OX (X ))
is a bijection.

(i) It follows from (ii) that the terminal object Spec(Z) of Aff is also a terminal object in
Sch. So it is enough to show that for morphisms of schemes

f : X −→ S and g : Y −→ S ,

the fiber product X ×S Y in [Affop, Set] is a scheme.
Let’s consider an open covering of S by affine schemes Si and, for any i , open
coverings of f−1(Si) and g−1(Si) by affine schemes Xi,j and Yi,k .
Then the fiber products Xi,j ×Si Yi,k in Aff make up an open covering of the
presheaf X ×S Y .
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Examples of schemes

(i) For any n, the union of the open affine subschemes

Spec(Z[X1, . . . ,Xn,X−1
i ]) , 1 ≤ i ≤ n ,

of An = Spec(Z[X1, . . . ,Xn]) is an open subscheme

An − {0} ↪→ An .

It is endowed with a free action of Gm

Gm × (An − {0}) −→ An − {0} ,
(a, (a1, . . . ,an)) 7−→ (a · a1, . . . ,a · an) .
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(ii) The contravariant functor

Affop −→ Set ,
A 7−→ Gm(A)\(An+1 − {0})(A)

is separated for the Zariski topology (in the sense that sections coincide if
they coincide locally).
Its sheafification is representable by a scheme Pn

called the projective space of dimension n.
The commutative square

Gm × (An+1 − {0})

��

// An+1 − {0}

��
An+1 − {0} // Pn

is both cartesian and cocartesian.
If An+1 = Spec(Z[X0, . . . ,Xn]), the affine schemes
Spec

(
Z
[

X0
Xi
, . . . , Xi−1

Xi
, Xi+1

Xi
, . . . , Xn

Xi

])
make up an open covering of Pn.
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Definition:
Let (X ,OX ) = scheme.
An OX -ModuleM is called quasi-coherent [resp. coherent] if,
for any affine open subscheme U = Spec(A) of X ,
the restriction ofM to U is quasi-coherent [resp. coherent].

Remarks:
(i) An OX -ModuleM is quasi-coherent [resp. coherent] if and only if there

exists an open covering of X by schemes Ui such that the restriction of
M to each Ui is quasi-coherent [resp. coherent].

(ii) For any morphism of schemes f : X → Y , f ∗ :ModOY →ModOX

transforms quasi-coherent [resp. coherent] OY -Modules into
quasi-coherent [resp. coherent] OX -Modules and f∗ :ModOX →ModOY

transforms quasi-coherent OX -Modules into quasi-coherent OY -Modules.
(iii) For any morphism of schemes f : X → Y , the derived functors

Lk f ∗ :ModOY −→ModOX

transform quasi-coherent OY -Modules into quasi-coherent OX -Modules.
Indeed, any quasi-coherent Module on an affine scheme has a resolution
by flat quasi-coherent Modules.
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(iv) One can prove that for any morphism of affine schemes
X = Spec(B)

f−→ Spec(A) = Y we have

Rk f∗M = 0

for any quasi-coherent OX -ModuleM and any k ≥ 1.
One can deduce from this property that for any morphism of schemes
f : X → Y , the derived functors

Rk f∗ :ModOX −→ModOY

transform quasi-coherent OX -Modules into quasi-coherent OY -Modules.
(v) One can prove that for any base scheme S and any n ≥ 0 defining the

projective projection
p : Pn × S −→ S ,

the derived functors

Rk p∗ :ModOPn×S
−→ModOS , k ≥ 0 ,

transform coherent OPn×S-Modules into coherent OS-Modules.
Moreover we have

Rk p∗M = 0

for any quasi-coherent OPn×S-ModuleM and any k > n.
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Example of quasi-coherent Module:
the sheaf of differentials

Definition:
Let f : X → Y be a morphism of schemes.
We denote

ΩX/Y

the unique quasi-coherent OX -Module such that, for any open subschemes
U = Spec(B) of X and V = Spec(A) of Y with U ⊂ f−1(V ), we have

ΩX/Y (U) = ΩB/A .

Remark:
The sheaves of higher differentials

Ωk
X/Y = ΛkΩX/Y

are also quasi-coherent OX -Modules.
The De Rham complex

0 −→ OX
d−→ Ω1

X/Y
d−→ · · · d−→ Ωk

X/Y
d−→ · · ·

is a complex of f−1OY -Modules.
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Lemma:
(i) Any morphisms of schemes

X f−→ Y
g−−→ Z

yield an exact sequence of quasi-coherent OX -Modules

f ∗ΩY/Z −→ ΩX/Z −→ ΩX/Y −→ 0 .

(ii) For any cartesian square of schemes

X ′

f ′

��

x // X

f
��

Y ′
y // Y

ΩX ′/Y ′ identifies with x∗ΩX/Y .

O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 81 / 151



Proof:
(i) Any morphisms of commutative rings

A −→ B −→ C

yield an exact sequence of C-modules

C ⊗B ΩB/A −→ ΩC/A −→ ΩC/B −→ 0 .

Indeed, for any C-module M, a B-linear differential d : C → M is an
A-linear differential C → M whose composite with B → C is 0.

(ii) For any ring morphisms A→ B and A→ A ′, ΩA ′⊗AB/A ′ identifies with
(A ′ ⊗A B)⊗B ΩB/A = A ′ ⊗A ΩB/A.
Indeed, for any module M over A ′ ⊗A B,
an A ′ ⊗A B-linear morphism ΩA ′⊗AB/A ′ → M
corresponds to an A ′-linear differential d : A ′ ⊗A B → M
or, equivalently, to an A-linear differential d : B → M.
This corresponds to a B-linear morphism ΩB/A → M
or, equivalently, to an A ′ ⊗A B-linear morphism A ′ ⊗A ΩB/A → M.
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Properties of morphisms of schemes

Definition:
A morphism of schemes X f−→ Y is called
(1) quasi-compact

if, for any open subset V ⊂ Y which is quasi-compact
(in the sense that any open covering has a finite subcovering),
f−1(V ) ⊂ X is quasi-compact,

(2) locally of finite type [resp. locally of finite presentation]
if Y has a covering by affine open subschemes Vi = Spec(Ai)
and each f−1(Vi) has a covering by affine open subschemes U = Spec(B)
such that B is an Ai -algebra of finite type [resp. of finite presentation],

(3) of finite type [resp. of finite presentation] if it is quasi-compact
and locally of finite type [resp. locally of finite presentation].
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Remarks:
(i) These properties are universal (i.e. stable by base change),

stable by composition and local on the base.
(ii) The properties (2) are even local on the source.

(iii) An affine scheme Spec(A) is always quasi-compact.
(iv) An affine scheme Spec(A) is called nœtherian

if any finitely generated A-module is finitely presentable
(or, equivalently, if any ideal of A is finitely generated).
A scheme is called locally nœtherian if it has a covering by nœtherian
affine open subschemes.
If X f−→ Y is locally of finite type and Y is locally nœtherian,
X is also locally nœtherian and f is locally of finite presentation.
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Definition: A morphism of schemes X f−→ Y is called

(4) affine if for any morphism Spec(A)→ Y from an affine scheme, the fiber product
Spec(A)×Y X is affine,

(5) finite [resp. a closed immersion] if it is affine and for any morphism Spec(A)→ Y
with Spec(A)×Y X = Spec(B), B is finitely generated as an A-module
[resp. A→ B is surjective],

(6) a locally closed immersion if it is the composite of a closed immersion and an
open embedding.

Remarks:

(i) These properties are universal, stable by composition and local on the base.

(ii) If j : Z ↪→ X is a closed immersion, the induced morphism of OX -Modules
OX → j∗OZ is an epimorphism and its kernel is a sheaf of ideals of OX ,
called the defining Ideal of Z .
Conversely, any sheaf of ideals I ↪→ OX defines a closed subscheme Z ↪→ X .

(iii) If Z ↪→ X is a locally closed immersion factorised as the composition

Z
j
↪→ U

i
↪→ X

of a closed immersion j and an open embedding i , and I is the defining Ideal of Z
in U, the OZ -Module j∗I = NZ/X

is called the normal sheaf of Z in X .
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Lemma:
Let X f−→ Y

= morphism of schemes.
Then:

(i) The diagonal morphism X → X ×Y X is a locally closed immersion.

(ii) Its normal sheaf identifies with the OX -Module ΩX/Y .

Proof:

(i) It is enough to consider the case when Y = Spec(A).
Consider a covering of X by affine open subschemes Spec(Bi).
The morphism X → X ×Y X factorises through the union of
the open subschemes Spec(Bi)×Y Spec(Bi) = Spec(Bi ⊗A Bi) and,
by the base changes Spec(Bi ⊗A Bi)→ X ×Y X it becomes

Spec(Bi) −→ Spec(Bi ⊗A Bi)

which are closed immersions as the canonical morphisms
Bi ⊗A Bi −→ Biare surjective.

(ii) If Y = Spec(A), X = Spec(B) and I is the kernel of the canonical epimorphism
B ⊗A B → B, ΩB/A identifies with I/I2 endowed with the differential

d : B −→ I/I2 ,

b 7−→ b ⊗ 1 − 1⊗ b .
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Definition:
A morphism of schemes X f−→ Y is called
(7) separated

if the diagonal embedding X ↪→ X ×Y X is a closed immersion,
(8) proper if

• it is separated,
• it is of finite type,
• it is universally closed (i.e. for any Y ′ → Y , the morphism X ×Y Y ′ → Y ′

transforms closed subsets of X ×Y Y ′ in closed subsets of Y ′).

Remarks:
(i) These properties are universal, stable by composition

and local on the base.
(ii) One can prove that if f : X → Y is proper, the derived functors

Rk f∗ :ModOX −→ModOY

transform coherent OX -Modules in coherent OY -Modules.
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Examples of separated and proper morphisms:
(i) Any locally closed immersion is separated.
(ii) Any affine morphism is separated.

(iii) Any finite morphism (in particular, any closed immersion) is proper.
(iv) For any n, the projection

Pn −→ Spec(Z)
is a proper morphism.

(v) A scheme X over some base scheme S
is called projective [resp. quasi-projective] over S
if the morphism X → S factorises as the composite of a closed
[resp. locally closed] immersion

X ↪→ Pn × S

followed by the projection
Pn × S −→ S .

This implies that
X −→ S

is proper [resp. separated].

O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 88 / 151



Definition: A morphism of schemes X f−→ Y is called

(9) flat [resp. faithfully flat]
if OX is flat as a Module over f−1OY

[resp. and the underlying map X → Y is surjective],

(10) smooth of dimension d [resp. étale] if

• it is locally of finite presentation,
• it is flat,
• the sheaf of relative differentials ΩX/Y

is locally free of rank d as on OX -Module [resp. is 0].

Remarks:

(i) These properties are universal and local on the base and on the source
(except for faithful flatness which is only local on the base).

(ii) The properties (9) are stable by composition.

(iii) If X f−→ Y is smooth of dimension d [resp. étale]

and Y
g−→ Z is smooth of dimension d ′ [resp. étale],

then g ◦ f is smooth of dimension d + d ′ [resp. étale].

(iv) One can prove that if f : X → Y is smooth of dimension d, x is a point of X ,
f1, . . . , fn are sections of OX in an open neighborhood U of x such that df1, . . . , dfn
is a basis of ΩX/Y on U, then the morphism they define U → An × Y is étale.

O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 89 / 151



Examples of flat, étale and smooth morphisms:

(i) Any open immersion is étale.

(ii) The schemes An and Pn are smooth of dimension n over Spec(Z).
The group scheme GLn is smooth of dimension n2.

(iii) For any commutative ring A and any polynomial P of the form

P = X d + ad−1 · X d−1 + · · · + a1 · X + a0 in A[X ] ,

with B = A[X ]/(P), the morphism

Spec(B) −→ Spec(A)
is finite and flat.
It is étale if and only if P and P ′ generate the full ideal A[X ].

(iv) More generally, if B = A[X1, . . . ,Xn]/I

for some ideal I of A[X1, . . . ,Xn] generated by polynomials

Pj(X1, . . . ,Xn) , 1 ≤ j ≤ k ,

then Spec(B) is smooth of dimension n − k over Spec(A)
if and only if the ideal of B generated by the k -minors of the matrix(

∂Pj

∂Xi
(X1, . . . ,Xn)

)
1≤i≤n
1≤j≤k

is the whole B.
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Proposition:

(i) If M is an A-module, the quasi-coherent OA-Module M̃ on Spec(A) is flat
if and only if M is flat.

(ii) A finitely generated A-module M is flat if it is locally free on Spec(A).
The converse is true if A is nœtherian.

(iii) In particular, a finite morphism X f−→ Y is flat if f∗OX is locally free as an
OY -Module, and the converse is true if Y is locally nœtherian.

(iv) If a scheme morphism f : X → Y is locally of finite type, ΩX/Y = 0
if and only if X → X ×Y X is an open immersion.

(v) A finite morphism X f−→ Y such that f ∗OX is locally free of rank d over OY
is étale if and only if there exists a finite étale surjective
[resp. quasi compact faithfully flat] morphism Y ′ → Y
such that X ×Y Y ′ −→ Y ′

is isomorphic to the trivial cover∐
1≤i≤d

Y ′ −→ Y ′ .
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Proof of (i):
If M is a flat A-module, Mf = Af ⊗A M is flat over Af
for any f ∈ A, so M̃ is a flat OA-Module.
The functors

M 7−→ M̃
and M 7−→ M(Spec(A))

define an equivalence between the abelian category of A-modules
and the abelian category of quasi-coherent OA-Modules.
In particular, they are exact.
Furthermore, they commute with tensor products.
So, M is a flat A-module if M̃ is a flat OA-Module.

Proof of (iv):
We can suppose that X = Spec(B) and Y = Spec(A).
Let’s denote I the kernel of B ⊗A B → B so that ΩB/A identifies with I/I2.
As B is of finite type over A, I is finitely generated.
If X → X ×Y X is an open immersion, I is 0 in an open neighborhood of
X = Spec(B) and a fortiori ΩB/A = 0.
Conversely, I = I2 implies that I = 0 in an open neighborhood of Spec(B) as
follows from the lemma:
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Lemma:
Let I = ideal of a commutative ring A,

M = finitely generated A-module such that I ·M = M.
Then there exists an element a ∈ I such that

(1 + a) ·m = 0 , ∀m ∈ M .

In particular, M is 0 in the open neighborhood Spec(A(1+a))
of Spec(A/I) in Spec(A).

Proof of the lemma:
Consider a finite family of generators m1, . . . ,mk of M.
Any mi , 1 ≤ i ≤ k , can be written

mi =
∑

1≤j≤k

ai,j ·mj

for some coefficients ai,j ∈ I.
The determinant of the matrix

Id − (ai,j)1≤i,j≤k
has the form

1 + a for some a ∈ I ,
and we have

(1 + a) ·mi = 0 , 1 ≤ i ≤ k .
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Proof of (ii) and (iii):
(iii) is a particular case of (ii).
(ii) According to (i), the property of flatness is local
so M is flat if it is locally free.
Conversely, suppose M is finitely generated and flat and A is nœtherian.
Consider a point x ∈ Spec(A) corresponding to a prime ideal p
and the residue field κp = Ap/p · Ap.
Choose a finite basis over κp of the vector space κp ⊗A M and lift is to a family
of sections m1, . . . ,md of M̃ in an open neighborhood of x .
They induce a morphism Od

X → M̃ whose cokernel has the form Ñ for some
finitely generated N such that κp ⊗ N = 0. According to the previous lemma
Ñ = 0 in an open neighborhood of x and Od

X → M̃ is an epimorphism there.
Its kernel has the form K̃ for some module K which is finitely generated as A
is nœtherian.
As M is flat, the exact sequence 0 → K̃ → Od

X → M̃ → 0 yields an exact
sequence

0 −→ κp ⊗ K̃ −→ κd
p −→ κp ⊗ M̃ −→ 0 .

It means that κp ⊗ K̃ = 0 as κd
p → κp ⊗ M̃ is an isomorphism.

According to the previous lemma, K̃ = 0 is an open neighborhood of x
and Od

X → M̃ is an isomorphism there.
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Proof of (v):
Suppose X f−→ Y is étale.
The diagonal morphism X → X ×Y X is an open embedding and also a closed
immersion as the finite morphism X → Y is separated.
The scheme X ×Y X over X can be written as the disjoint union of X id−−→ X
and a finite étale morphism

f1 : X1 −→ Y1 = X

such that (f1)∗OX1 is locally free of rank d − 1.
We get by induction on the rank d that there exist a finite étale morphism

Yd −→ Y
such that the morphism

X ×Y Yd −→ Yd

is isomorphic to ∐
1≤i≤d

Yd −→ Yd .

Conversely, suppose that there exists a quasi-compact and faithfully flat
morphism Y ′ → Y such that X ×Y Y ′ → Y ′ is isomorphic to

∐
1≤i≤d

Y ′ → Y ′.

We can suppose that Y = Spec(A) and Y ′ = Spec(B).
The conclusion follows from the lemma:
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Lemma:
Let Spec(B)→ Spec(A)

= faithfully flat morphism of affine schemes.
Then:

(i) For any A-module, the canonical morphism
M −→ B ⊗A M

is a monomorphism. In particular, M is 0 if and only if B ⊗A M is 0.

(ii) A complex of A-modules M1 −→ M2 −→ M3

is exact if and only if the complex of B-modules
B ⊗A M1 −→ B ⊗A M2 −→ B ⊗A M3is exact.

Proof:
(i) A non zero element m of M can be seen as a non zero morphism

A −→ M .

Its kernel I is an ideal contained in a prime ideal p and, by hypothesis, there
exists a prime ideal q of B such that p = u−1(q) for u : A→ B. Then B/q is a
quotient of B ⊗A A/I. As u is flat, B ⊗A A/I → B ⊗A M is a monomorphism.
So the image of m in B ⊗A M is non zero.

(ii) Let H = Ker(M2 → M3)/Im(M1 → M2). As A→ B is flat, we also have
B ⊗A H = Ker(B ⊗A M2 −→ B ⊗A M3)/Im(B ⊗A M1 −→ B ⊗A M2) .

According to (i), H is 0 if and only if B ⊗A H is 0.
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Definition:

(i) A sieve on an object X of Sch is called a covering sieve for the “étale” topology
[resp. for the faithfully flat quasi-compact (fpqc) topology]
if it contains a family of morphisms

Xi −→ X , i ∈ I ,
such that the morphism ∐

i∈I

Xi −→ X

is quasi-compact, étale [resp. flat] and surjective.

(ii) The “big” étale [resp. fppf] site of a scheme X
consists in the essentially small category

Schfp/X

of morphisms X ′ → X of finite presentation, endowed with the étale [resp. fpqc]
topology. The “big” étale [resp. fpqc] topos of X is the associated topos.
It can be denoted ÉtX [resp. FlX ].

(iii) The “small” étale [resp. fppf] site of a scheme X consists in the subcategory of
Schfp/X on étale [resp. flat] morphisms X ′ → X endowed with the étale
[resp. fpqc] topology.
The “small” étale [resp. flat] topos of X is the associated topos.
It can be denoted étX [resp. flX ].

O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 97 / 151



Remarks:
(i) For any scheme X , there is a commutative square

of morphisms of toposes
FlX_�

��

// flX

��
ÉtX // étX

whose push-forward components are restriction functors.
Furthermore, FlX ↪→ ÉtX is a subtopos.

(ii) For any morphism of schemes X f−→ Y , the functor
(Y ′ −→ Y ) 7−→ (Y ′ ×Y X −→ X )

respects finite limits and disjoint sums.
It preserves the property of morphisms to be étale, flat, quasi-compact,
surjective or of finite presentation.
So it induces morphisms of toposes

(f ∗, f∗) : FlX −→ FlY ,
flX −→ flY ,

ÉtX −→ ÉtY ,
étX −→ étY .

O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 98 / 151



Proposition:

(i) For any scheme X , the associated presheaf
Schop −→ Set

Y 7−→ Hom(Y ,X )
is a sheaf for the fpqc topology.

(ii) All properties (1)–(10) of morphisms of schemes
X −→ Y

are local on the base for the fpqc topology.

(iii) For any quasi-compact faithfully flat morphism
X ′ −→ X ,

the category of quasi-coherent OX -Modules on X is equivalent to the category of
quasi-coherent OX ′ -ModulesM ′ on X ′ endowed with an isomorphism

σ : p∗1M ′ ∼−−→ p∗2M ′ for the two projections X ′ ×X X ′
p1
⇒
p2

X ′ ,

such that the triangle associated with the three projections
q1, q2, q3 : X ′ ×X X ′ ×X X ′ ////// X

′

q∗1M ′

∼

##

∼ // q∗3M ′

q∗2M ′

∼

;;

is commutative.
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The proof follows from the previous lemma completed with:

Lemma:
Let Spec(B) −→ Spec(A)

= faithfully flat morphism of affine schemes.
Then:
(i) Any A-module M identifies with

Eq (B ⊗A M ⇒ B ⊗A B ⊗A M) .

(ii) Any B-module M ′ endowed with an isomorphism
σ : (B ⊗A B)⊗p1,B M ′ ∼−−→ (B ⊗A B)⊗p2,B M ′

such that the triangle

(B ⊗A B ⊗A B)⊗q1,B M ′

**

// (B ⊗A B ⊗A B)⊗q3,B M ′

(B ⊗A B ⊗A B)⊗q2,B M ′

44

is commutative, identifies with
B ⊗A M

for M = Eq (M ′ ⇒ B ⊗A M ′).
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Proof:
(i) The morphism M → Eq (B ⊗A M ⇒ B ⊗A B ⊗A M) is an isomorphism

because the functor B ⊗A • transforms it into an isomorphism.
Indeed, the sequence

0 −→ B −→ B ⊗A B −→ B ⊗A B ⊗A B

consisting in the morphisms
b 7→ b ⊗ 1 and b ⊗ b ′ 7→ b ⊗ b ′ ⊗ 1 − b ⊗ 1⊗ b ′

is split exact, with the splitting

B ⊗A B −→ B
b ⊗ b ′ 7−→ bb ′ .

(ii) The morphism B ⊗A Eq (M ′ ⇒ B ⊗A M ′)→ M ′ is an isomorphism
because, according to (i), B ⊗A • transforms it into an isomorphism.
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Points of small étale sites

Proposition: If Y = Spec(k) for an algebraically closed field k ,
any quasi-compact étale morphism

X −→ Y = Spec(k)is isomorphic to some ∐
1≤i≤d

Spec(k) −→ Spec(k) .

Proof: Let’s consider a k -algebra of finite presentation
A = k [X1, . . . ,Xn]/(P1, . . . ,Pk )

which is étale over k .
For any maximal ideal m of A, the morphism

k −→ A/m
is an isomorphism as k is algebraically closed and A is finitely generated.
Furthermore, the closed embedding

Spec(k) = Spec(A/m) ↪→ Spec(A)
is also an open embedding as A is étale.
For distinct maximal ideals m1, . . . , nd , A decomposes as a product

A ∼= (A/m1)× · · · × (A/md )× A ′ .
As A is generated by n elements, it yields d ≤ n. If d is maximal, we get

A ∼= (A/m1)× · · · × (A/md ) ∼= k
d
.
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Corollary:
(i) If X = Spec(k) for an algebraically closed field,

the topos étX identifies with Set.
(ii) For any scheme X , any “geometric point” of X

x : Spec(k) −→ X

(where k is an algebraically closed field)
defines a point

(x∗, x∗) : Set −→ étX

of the small étale topos of X .

Proof:
(i) follows from the previous proposition.
(ii) follows from (i).
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The étale fundamental group

Theorem:
Let X = connected scheme endowed with a geometric point

x : Spec(k) −→ X ,

CovX = category of finite étale morphisms X ′ → X
such that p∗OX ′ is locally free over OX ,

π1(X , x) = group of automorphisms of the functor

CovX −→ Setf = category of finite sets,
(X ′ → X ) 7−→ Homx (Spec(k),X ′) = Fx (X ′)

endowed with the smallest topology
for which its action on each finite set Fx (X ′)
is continuous.

Then the functor
(X ′ → X ) 7−→ Fx (X

′)

is an equivalence from the category CovX

to the category of finite sets endowed with
a continuous action of the profinite group π1(X , x).

Remark: If X = Spec(k) for some field k , this equivalence is Galois theory.
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Sketch of proof:
For any object p : X ′ → X of CovX , the locally free
OX -Module p∗OX ′ has a constant rank d as X is
connected, and there is a finite étale surjective morphism

Y −→ X
such that X ′ ×X Y → Y is isomorphic to∐

1≤i≤d

Y −→ Y .

In the other direction, for any finite étale surjective morphism
Y −→ X ,

let CovY
X = full subcategory of CovX

on objects X ′ → X such that
X ′ ×X Y → Y is isomorphic to some

∐
1≤i≤d

Y → Y .

So, CovX is the filtering union of its full subcategories CovY
X and we have

π1(X , x) = lim←−
Y

πY
1 (X , x)

where, for any Y , πY
1 (X , x) is the automorphism group of the restricted functor

Fx : CovY
X −→ Setf .
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For any such Y , there exists a finite étale surjective
morphism Y ′ → Y such that

Y ′ ×X Y ∼=
∐

1≤i≤d

Y ′ .

Furthermore, Y ′ can be constructed as Y ′ = Yd where
Yd → Yd−1 → · · · → Y1 → Y0 is the sequence of finite étale morphisms
defined by Y0 = Y and, for any i < d ,

Yi+1 = Yi ×X Y − Yi

as Yi ↪→ Xi ×X Y is a closed and open subscheme.
So Y ′ = Yd is a closed and open subscheme of Y ×X · · · ×X Y (d times)
and Y ′ ×X Y ′ is a closed and open subscheme of Y ′ ×X Y ×X · · · ×X Y
which is a disjoint sum of copies of Y ′.
So we are reduced to the study of functors

Fx : CovY
X −→ Setf

when
Y ×X Y ∼=

∐
1≤i≤d

Y .

We can even suppose that Y is connected.
Then Y ×X Y is the sum of the graphs of the automorphisms

σ ∈ G = AutX (Y ) .
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The category CovY
X

is equivalent to the category of finite sets I
endowed with an isomorphism over Y ×X Y

τ : Y ×X

(∐
i∈I

Y
)

∼−−→ (∐
i∈I

Y
)
×X Y

such that the triangle

Y ×X Y ×X

(∐
i∈I

Y
)

∼

''

∼ //
(∐

i∈I
Y
)
×X Y ×X Y

Y ×X

(∐
i∈I

Y
)
×X Y

∼

77

is commutative.
As Y ×X Y is the sum of the graphs of the automorphisms

σ ∈ G ,
CovY

X is equivalent to the category
[G, Setf ]

of finite sets I endowed with an action of G.
We conclude by observing that the group of automorphisms of the forgetful functor

[G, Setf ] −→ Setfidentifies with G.
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Locally constant and constructible étale sheaves

Definition: Let X = scheme.

(i) An étale sheaf F over X is called locally constant and finite
if it is representable by a finite étale morphism

p : X ′ −→ X

such that p∗OX ′ is locally free as an OX -Module.

(ii) An étale sheaf F on X is called constructible if, on any quasi-compact open
subscheme U of X , there exists a finite sequence of closed subschemes of U

∅ = Xd+1 ↪→ Xd ↪→ · · · ↪→ X1 ↪→ X0 = U

such that the restriction of F on each locally closed subscheme
Xi − Xi+1 ↪→ X

is locally constant and finite.

Remarks:

(i) If X is connected and x is a geometric point of X , a locally constant finite étale
sheaf F on X corresponds to a finite set endowed with an action of π1(X , x).

(ii) If X is a nœtherian scheme, any decreasing sequence of closed subschemes of
X is finite.

(iii) Any finite limit or colimit of locally constant and finite [resp. constructible] sheaves
is locally constant and finite [resp. constructible].
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Etale cohomology

Definition: Let R = commutative ring.
For any scheme X , let

ModRX =Mod ét
RX

[resp. Modfl
RX
, resp.ModZar

RX
]

be the abelian category of Modules on the constant ring object RX defined by
R in the topos

étX [resp. ftX , resp. the topos ZarX of sheaves on the topological space X ].

Remarks:
(i) The categoriesModRX [resp. Modfl

RX
, resp. ModZar

RX
] have arbitrary limits

and colimits.
They are endowed with functors ⊗, Hom and Hom.
They have enough injective objects and enough RX -flat objects so that ⊗,

Hom and Hom have derived functors
L
⊗, RHom and RHom.

(ii) These categories are related by restriction functors

Modfl
RX
−→ModRX −→ModZar

RX

which have exact left adjoint functors.
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(iii) Any morphism of schemes X f−→ Y
induces direct image functors f∗
which are compatible in the sense that the diagram

Modfl
RX

f∗
��

//ModRX

f∗
��

//ModZar
RX

f∗
��

Modfl
RY

//ModRY
//ModZar

RY

is commutative.
They have exact left adjoint functors f ∗

and they have derived functors Rf∗
which are right adjoint to f ∗.

(iv) If f : X → Y is an étale morphism
[resp. is flat and finitely presentable, resp. is an open embedding],
the functor f ∗ also has an exact left adjoint

f! : ModRX −→ ModRY

[resp. f! : Modfl
RX

−→ Modfl
RY
,

resp. f! : ModZar
RX

−→ ModZar
RY

].
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Quick presentation of Čech cohomology

Proposition:
Let (C, J) = site endowed with a sheaf of rings O,

X = object of C,
(Ui → X )i∈I = J-covering family of X such that each Ui → X is squarable in C,

M = sheaf of modules over O.
Then:
(i) In the derived category D+(ModO(X)),

there is a canonical morphism from the complex

∏
i0∈I

M(Ui0)→ ∏
i0,i1∈I

M(Ui0 ×X Ui1)→ · · ·→ ∏
i0,...,in∈I

M(Ui0 ×X · · · ×X Uin)→ · · ·
to the object RΓ(X ,M).

(ii) This morphism is an isomorphism if

RkΓ(Ui0 ×X · · · ×X Uin ,M) = 0 , ∀ k ≥ 1 , ∀ i0, . . . , in ∈ I .
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Remarks:
(i) Part (ii) applies in particular if
C is the category O(X ) of open subsets of a topological space X ,
J is the usual notion of open covering,
any connected component of any intersection Ui0 ∩ · · · ∩ Uin , n ≥ 0,
is contractible.

(ii) Part (ii) also applies if
C is the category of open subschemes of a scheme X
which is separated over Spec(Z),
J is the usual notion of open covering,
M is a quasi-coherent OX -Module,
the Ui ’s are affine open subschemes of X
(so that, as X is separated over Spec(Z),
all intersections Ui0 ×X · · · ×X Uin are also affine).
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Proof of the proposition:

(i) For any morphism i : U → X of C, denote OU = i!i∗O. The complex of O-Modules

· · · −→ ⊕
i0,...,in∈I

OUi0
×X ···×X Uin

−→ · · · −→ ⊕
i0,i1∈I

OUi0
×X Ui1

−→⊕
i0∈I

OUi0
−→ OX

is exact: indeed, its restriction to any Ui is homotopic to 0.
So, for any injective O-Module I, the morphism from the complex I(X )
(concentrated in degree 0) to the complex∏

i0

I(Ui0) −→ ∏
i0,i1

I(Ui0 ×X Ui1) −→ · · · −→ ∏
i0,...,in

I(Ui0 ×X · · · ×X Uin ) −→ · · ·
is a quasi-isomorphism.
Therefore, if I0 → I1 → I2 → · · · is an injective resolution ofM, RΓ(X ,M) is
represented by the simple complex associated to the double complex∏

i0

I0(Ui0) −→ ∏
i0,i1

I0(Ui0 ×X Ui1) −→ · · · −→ ∏
i0,...,in

I0(Ui0 ×X · · · ×X Uin ) −→ · · ·
↓ ↓ ↓∏

i0

I1(Ui0) −→ ∏
i0,i1

I1(Ui0 ×X Ui1) −→ · · · −→ ∏
i0,...,in

I1(Ui0 ×X · · · ×X Uin ) −→ · · ·
↓ ↓ ↓
...

...
...
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It is endowed with a canonical morphism from the simple complex:∏
i0
M(Ui0) −→ ∏

i0,i1
M(Ui0 ×X Ui1) −→ · · · −→ ∏

i0,...,in
M(Ui0 ×X · · · ×X Uin) −→ · · ·

(ii) This morphism of complexes is a quasi-isomorphism
if, for any i0, . . . , in, the morphism of complexes from

M(Ui0 ×X · · · ×X Uin) concentrated in degree 0

to

I0(Ui0×X · · ·×X Uin) −→ I1(Ui0×X · · ·×X Uin) −→ I2(Ui0×X · · ·×X Uin) −→ · · ·
is a quasi-isomorphism.
It is equivalent to ask that

RkΓ(Ui0 ×X · · · ×X Uin ,M) = 0 , ∀ k ≥ 1 .
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Proposition:
Let C = small category with arbitrary fiber products,

J = topology on C,
O = sheaf of rings on (C, J),
M = O-Module in ĈJ ,
X = object of C.

For any J-covering family U• = (Ui → X )i∈I , note
Hn(U•,M)

the cohomology modules of the complex:∏
i0∈I
M(Ui0) −→ ∏

i0,i1∈I
M(Ui0 ×X Ui1) −→ · · · −→ ∏

i0,...,in∈I
M(Ui0 ×X · · · ×X Uin ) −→ · · ·

Then:

(i) Each Hn(U•,M) only depends on the sieve S ∈ J(X ) generated by U• and can
be denoted Hn(S,M).

(ii) The canonical morphism
lim−→

S∈J(X)

Hn(S,M) −→ RnΓ(X ,M)

is an isomorphism for n = 1.

Remark: AsM is a sheaf,
H0(U•,M) −→ Γ(X ,M)

is an isomorphism for any U•.
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Proof of the proposition:
(i) If S is the sieve generated by U•, the canonical morphism

from the complex∏
i0∈I
M(Ui0) −→ ∏

i0,i1∈I
M(Ui0 ×X Ui1) −→ · · ·

to the complex∏
U0∈S
M(U0) −→ ∏

U0,U1∈S
M(U0 ×X U1) −→ · · ·

is an homotopy equivalence.
(ii) LetM ↪→ I be an embedding into an injective O-Module

andM ′ = I/M.
Then the short exact sequence 0→M→ I →M ′ → 0
yields an isomorphism Coker(M(X )→ I(X ))

∼−−→ R1Γ(X ,M).
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On the other hand, we have a commutative diagram

0 → lim−→
S

∏
U0∈S
M(U0) → lim−→

S

∏
U0∈S
I(U0) → lim−→

S

∏
U0∈S
M ′(U0)↓ ↓ ↓

0 → lim−→
S

∏
U0,U1∈S

M(U0×SU1)
→ lim−→

S

∏
U0,U1∈S

I(U0×X U1)
→ lim−→

S

∏
U0,U1∈S

M ′(U0×X U1)↓ ↓ ↓
0 → lim−→

S

∏
U0,U1,U2∈S

M(U0×X U1×X U2)
→ lim−→ ∏

U0,U1,U2∈S

I(U0×X U1×X U2)
→ lim−→

S

∏
U0,U1,U2∈S

M ′(U0×X U1×X U2)

whose lines are exact as the colimit lim−→
S

is filtering.

The middle column is also exact as I is injective.
As I(X ) = Ker

( ∏
U0∈S
I(U0)→ ∏

U0,U1∈S
I(U0 ×X U1)

)
,

M ′(X ) = Ker
( ∏

U0∈S
M ′(U0)→ ∏

U0,U1∈S
M ′(U0 ×X U1)

)
for any S

andM ′(X ) is contained in the image of lim−→
S

∏
U0∈S

I(U0),

we get an isomorphism

Coker(I(X ) −→M ′(X ))
∼−−→ lim−→

S

H1(S,M) .
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Corollary:
Let (C, J) = site endowed with a sheaf of commutative rings O,

X = object of C.
Then the cohomology group

H1(X ,O×) = R1Γ(X ,O×)
of the sheaf of abelian groups

O× : X ′ 7−→ O(X ′)×
identifies with the abelian group of isomorphism classes
of O-Modules L on (C/X , JX )
which are locally isomorphic to O,
endowed with the group law defined by ⊗.

Proof:
For any J-covering family U• = (Ui → X )i∈I , the group

H1(U•,O×)
identifies with the group of O-Modules L on (C/X , JX )
whose restriction to any C/Ui is isomorphic to O.
Indeed, for any object X ′ of C, O×(X ′) is the automorphism group
of the restriction of the sheaf O to the relative category C/X ′.
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Corollary:
Let X = scheme endowed with the sheaf

O×X = Hom(•,Gm)

for the fppf, étale or Zariski topology.
Then the canonical morphisms

H1
Zar(X ,O×X ) −→ H1

ét(O
×
X ) −→ H1

fppf(O×X )
are isomorphisms.

Proof: We have to prove that any OX -Module L for the fppf [resp. étale]
topology which is locally isomorphic to OX is also isomorphic to OX for the
Zariski topology.
We can suppose X is an affine scheme Spec(A).
First, L is locally quasi-coherent for the fppf [resp. étale] topology so it is quasi-
coherent: there exists an A-module L such that, for any X ′

p−−→ X , L(X ′)
identifies with p∗L̃(X ′).
Secondly, L is a flat A-module and it is finitely generated as it is so locally.
Lastly, as B⊗AL is isomorphic to B for some faithfully flat [resp. étale] A-algebra
B of finite presentation, we can suppose that L has the form A⊗A ′ L ′ for some
ring A ′ finitely generated over Z, some morphism A ′ → A and some A ′-module
L ′ locally isomorphic to A ′ for the fppf [resp. étale] topology.
As A ′ is nœtherian, L ′ is locally isomorphic to A ′ for the Zariski topology.
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The expression of arbitrary Hk (X ,M) = RkΓ(X ,M) in terms of
Čech cohomology requires the notion of hypercovering. It is based on:

Lemma:
Let E = category with finite limits,

∆ = simplicial category whose objects are denoted [n], n ∈ N,
and whose morphisms [m]→ [n] are increasing maps

{0,1, . . . ,m} −→ {0,1, . . . ,n} ,

∆n = full subcategory of ∆ on objects [0], [1], . . . , [n].
Then the restriction functor

skn : [∆op, E ] −→ [∆op
n , E ]

has a right adjoint

coskn : [∆op
n , E ] −→ [∆op, E ] ,

F• 7−→ cosknF• = F ′•
defined by the formula

F ′m = lim←−
(α:[m ′]→[m])

Fm ′ , ∀m ∈ N ,

where the limit is computed on the category ∆n/[m] of
objects [m ′] of ∆n endowed with a morphism [m ′]→ [m].
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Definition:
Let (C, J) = small site endowed with ` : C y−−→ Ĉ j∗−−→ ĈJ ,

X = object of C.
An hypercovering of X is a simplicial object

P• : ∆op −→ Ĉ/y(X )such that

• for any n, the presheaf Pn has the form
Pn ∼=

∐
i∈I

y(Xi)

where each Xi is an object of C endowed with a morphism Xi → X ,

• for any n, the transform by j∗ of the canonical morphism
Pn+1 −→ [

coskn ◦ skn(P•)
]

n+1
is an epimorphism of ĈJ/`(X ).

Remarks:

(i) If K is an infinite cardinal containing the cardinal of C, one can restrict to sums
Pn ∼=

∐
i∈I

y(Xi) indexed by subsets I of K .

(ii) If C has finite limits and any J-covering family of an object of C has a finite
subcovering (which is the case for the fppf, étale or Zariski topology over a
quasi-compact scheme), one can restrict to finite sums

Pn ∼=
∐

1≤i≤k
y(Xi) .
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Theorem:
Let (C, J) = small site,
O = sheaf of rings on (C, J),
M = sheaf of O-modules on (C, J),
X = object of C.

Then there are canonical isomorphisms

lim−→
P•

Hk (P•,M)
∼−−→ Hk (X ,M) = RkΓ(X ,M) , ∀ k ≥ 0 ,

where:
• the colimits are taken on the filtered category of hypercoverings P• of X ,
• for any hypercovering P• of X , the Hk (P•,M) are the cohomology

modules of the complex:

Hom(P0,M) −→ Hom(P1,M) −→ · · · −→ Hom(Pk ,M) −→ · · ·
Remark: For any Pn ∼=

∐
i∈I

y(Xi), Hom(Pn,M) identifies with∏
i∈I
M(Xi) .

Proof: See Chapter VI.
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Corollary:
Let C = essentially small category with finite limits,

J = topology on C such that any J-covering family
contains a finite subcovering,

O = sheaf of rings on (C, J),
X = object of C.

Then the functors
ModO −→ ModO(X) ,

M 7−→ Hk (X ,M)

respect arbitrary filtered colimits.

Remark: This corollary applies in particular to the fppf, étale or Zariski topology
of quasi-compact schemes.

Proof: We know Hk (X ,M) ∼= lim−→
P•

Hk (P•,M) where the filtered colimit is taken

over hypercoverings P• such that each Pn is a finite sum
∐

1≤i≤k
y(Xi),

and, therefore, the functorM 7→ Hom(Pn,M) =
∏

1≤i≤k
M(Xi) respects colimits.

As colimits respect colimits and filtered colimits are exact functors,
the conclusion follows.
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The notion of geometric dimension
Definition:

(i) The dimension (or Krull dimension) of a scheme X is

dim(X ) = sup {` ∈ N | ∃ x0, x1, . . . , x` ∈ X such that x0  x1  . . .  x`}.

(ii) The (relative) dimension of a scheme morphism X → Y is

dim(X/Y ) = sup {dim Xy | y = Spec(k) = point of y , Xy = X ×Y y }.

Remarks:

(i) A topological space is called irreducible if intersections of pairs of non empty
open subsets are non empty.
For any point x of a topological space X , its closure x is irreducible.
A topological space is called sober if any irreducible closed subset of the closure
of a unique point. Any scheme is sober.

(ii) If a scheme X is a union of open subschemes Ui , i ∈ I,

dim(X ) = sup
i∈I

dim(Ui) .

(iii) If X = Spec(A) is a scheme, dim(X ) = dim(A) is

sup {` ∈ N | ∃ p0, . . . , p` = prime ideals of A such that p0 ! p1 ! · · · ! p`} .

O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 124 / 151



Basic facts about dimensions
(i) Spec(Z) has dimension 1 and, for any field k , Spec(k) has dimension 0.
(ii) If Spec(A) is an affine scheme of dimension d ,

Spec(A[X1, . . . ,Xn]) has dimension n + d .
(iii) If Z ↪→ X is a locally closed subscheme,

dim(Z ) ≤ dim(X ) .

Therefore, any scheme of finite type over a scheme of finite dimension
has finite dimension.

(iv) If U ⊂ X is a dense open subscheme,

dim(X ) = dim(U) .

(v) For any morphism X → Y ,
dim(X ) ≤ dim(Y ) + dim(X/Y ) .

(vi) For any scheme X over a field k and any field k ′ containing k ,

dim(X ) = dim(X ×Spec(k) Spec(k ′)).
Therefore, for any morphisms X → Y and Y ′ → Y ,

dim(X ×Y Y ′/Y ′) ≤ dim(X/Y )

and one even has an equality if Y ′ → Y is surjective.
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(vii) For any finitely presented and flat morphism

X −→ Y ,

the map
y 7−→ dim(Xy )
‖ ‖

point of Y fiber X ×Y y of X over y

is locally constant on Y .

(viii) For any finitely presented morphism X f−→ Y of relative dimension d ,
the Zariski topology derived functors

M 7−→ Rk f∗M

are 0 on all quasi-coherent OX -ModulesM for all k > d .
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Relative curves

Definition:
A relative curve over a base scheme Y
is a finitely presented and flat morphism

X −→ Y
such that, for any point y = Spec(k) of Y , the fiber

Xy = X ×Y y = X ×Y Spec(k)
has dimension 1.

Remark:
One can prove that a relative curve X → Y
is proper if and only if, for any affine open subscheme

Spec(A) = V ⊂ Y ,

the curve X ×Y V over V = Spec(A) is projective,
in the sense that X ×Y V → V factorises as the
composition of some closed immersion

X ×Y V ↪→ Pn × V

and the projection Pn × V −→ V .
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Relative jacobians

Proposition: Let X
p−−→ Y be a relative curve such that

• p is proper and smooth (of dimension 1),
• the fibers of p are “geometrically connected”

in the sense that, for any morphism y = Spec(k)→ Y
from an algebraically closed field k , the fiber Xy = X ×Y y is connected.

Then the images Rk p∗Gm of the étale sheaf Gm on X
by the étale direct image cohomology functors are:
(i) Rk p∗Gm is 0 if k ≥ 2,
(ii) p∗Gm is the étale sheaf Gm on Y ,

(iii) R1p∗Gm associates to any étale morphism Y ′ → Y
the cokernel of the morphism:

H1
Zar(Y

′,O×Y ′) −→ H1
Zar(X ×Y Y ′,O×X×Y Y ′)

‖ ‖
group of OY ′ -Modules group of OX×Y Y ′ -Modules

locally isomorphic to OY ′ locally isomorphic to OX×Y Y ′
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Theorem: In the same situation, the functor
Sch/Y −→ Set

(Y ′ → Y ) 7−→ H1
Zar(X ×Y Y ′,O×X×Y Y ′)/H

1
Zar(Y ′,O×Y ′)

is representable by a locally finitely presented scheme over Y
PicX/Y −→ Y (called the Picard scheme of X over Y )

endowed with an abelian group scheme structure and a short sequence of abelian
group schemes over Y

0 −→ JacX/Y −→ PicX/Y
deg−−−→ ZY −→ 0

‖∐
d∈Z

Y
such that

• this sequence is exact for the étale topology,

• JacX/Y is proper (even projective over any affine open subscheme of Y ) and
smooth over Y , and its fibers are geometrically connected.

Remark:

• JacX/Y is called the relative jacobian of the relative curve X/Y ,

• the relative dimension g of JacX/Y over Y is locally constant,
it is called the “genus” of the relative curve X over Y ,

• the morphism PicX/Y
deg−−−→ ZY is called the degree map.
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Étale cohomology of relative curves

Definition:
On any scheme X , one denotes µn the étale sheaf of Z/nZ-modules defined
as the kernel of

Gm −→ Gm ,
λ 7−→ λn .

Remark:
If n is invertible on X or, equivalently,
if X is a scheme over Z(n) = Z[X ]/(n · X − 1) = Z

[ 1
n

]
,

the (Z/nZ)-Module µn is isomorphic to the constant Module (Z/nZ)
on the finite étale cover

X ×Spec(Z(n)) Spec(Z(n)[X ]/(X n − 1))

of X .

O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 130 / 151



Proposition:
Suppose n is invertible on a scheme Y .
Let X → Y be a smooth and proper curve with geometrically connected fibers
such that the smooth proper morphism

JacX/Y −→ Y

has constant relative dimension g.

Then the scheme over Y defined as the kernel of the morphism

n : JacX/Y −→ JacX/Y ,
L 7−→ L⊗n

is a finite étale scheme over Y

JacX/Y [n]

which is locally isomorphic to the constant (Z/nZ)-Module (Z/nZ)2g .
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Corollary:
In the same situation of a smooth proper curve

p : X −→ Y

with geometrically connected fibers and constant genus g,
the étale direct images

Rk p∗µn

of the locally constant étale Z/nZ-Module µn are:
(i) Rk p∗µn is 0 for any k ≥ 3,
(ii) R2p∗µn identifies with the constant sheaf Z/nZ,

(iii) R1p∗µn identifies with the locally constant finite étale Z/nZ-Module

JacX/Y [n]

which is locally isomorphic to (Z/nZ)2g ,
(iv) p∗µn identifies with the locally constant étale sheaf µn on Y .
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Grothendieck’s six operations
for étale cohomology

Definition:
A morphism of schemes X → S is called “compactifiable” if it factorises as the
composite

X
i
↪→ X

p−→ S

of an open embedding i and a proper morphism p.

Remarks:
(i) Any compactifiable morphism is locally of finite type.
(ii) If S is a base scheme, let’s denote

Schc/S

the full subcategory of Sch/S on compactifiable morphisms X → S.
(iii) If S is quasi-compact, all objects X → S of Schc/S have finite relative

dimension and, more generally, all morphisms X → Y of Schc/S have
finite relative dimension.
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Choice of torsion coefficients
Let n = integer which is invertible in OS(S). We consider:
• for any object X → S of Schc/S the category

Mod(Z/n Z)X

of étale (Z/nZ)X -Modules on X , together with the functors ⊗, Hom, Hom

and their derived functors
L
⊗, RHom, RHom,

• for any morphism f : X → Y of Schc/S the pair of adjoint functors
f ∗ = f−1, f∗ betweenMod(Z/n Z)X andMod(Z/n Z)Y

and their derived functors f ∗ = f−1,Rf∗,
• for any étale morphism i : X → Y of Schc/S, the exact left adjoint i! of i∗.

Remark:
If n = `m1

1 · · · `
mk
k is the prime decomposition of n,

we have for any X a canonical decomposition
Mod(Z/n Z)X =Mod(Z/`m1

1 Z)X
× · · · ×Mod

(Z/`mk
k Z)X

.

So there is no restriction in supposing that

n = `m

is a power of a prime `.
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The main theorems

Theorem:
Let S = quasi-compact base scheme,

n = integer which is invertible in OS(S).
Consider a proper morphism of Schc/S

f : X → Y .
Then:

(i) (Proper base change theorem)
For any cartesian square of Sch completing f

X ′

f ′

��

x // X

f
��

Y ′
y // Y

the canonical morphisms

y∗ ◦ f∗ −→ f ′∗ ◦ x∗ ,
y∗ ◦ Rf∗ −→ Rf ′∗ ◦ x∗

of functors fromMod(Z/n Z)X toMod(Z/n Z)Y ′
or from D+(Mod(Z/n Z)X ) to

D+(Mod(Z/n Z)Y ′
) are isomorphisms.
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(ii) If d is the relative dimension of X f−→ Y ,
f∗ has cohomological dimension ≤ 2d .
In other words,

Rk f∗ = 0

for any k > 2d .
(iii) The functors

f∗,Rk f∗ :Mod(Z/n Z)X −→Mod(Z/n Z)Y

transform constructible (Z/nZ)X -Modules
into constructible (Z/nZ)Y -Modules.

Remark:
(ii) implies that Rf∗ is well-defined as a functor
from D(Mod(Z/n Z)X ) to D(Mod(Z/n Z)Y ).
In the situation of (i), there is a morphism of functors
from D(Mod(Z/n Z)X ) to D(Mod(Z/n Z)Y )

y∗ ◦ Rf∗ −→ Rf ′∗ ◦ x∗

and it is an isomorphism.
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Corollary (of the proper base change theorem):
We can associate to any morphism of Schc/S

f : X → Y
a functor

Rf! : D+(Mod(Z/n Z)X ) −→ D+(Mod(Z/n Z)Y )

(or even: D(Mod(Z/n Z)X ) −→ D(Mod(Z/n Z)Y ))

such that:
• for any factorisation of f

X
i
↪→ X

p−→ Y

as the composite of an open embedding i and a proper morphism p,
there is a canonical isomorphism

Rf! ∼= Rp∗ ◦ i! ,

• for any pair of morphisms of Schc/S

X f−→ Y
g−→ Z ,

there is a canonical isomorphism

R(g ◦ f )! ∼= Rg! ◦ Rf! .
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Remarks:
(i) Any morphism f : X → Y of Schc/S factorises as the composite of an

open embedding followed by a proper morphism.
Indeed, X → S has such a factorisation

X
i
↪→ X

p−→ S .

Then, X ×S Y → Y is proper as well as X 1 → Y if X 1 is the smallest
closed subscheme of X ×S Y containing the image of

X �
� (i,f) // X ×S Y .

So X �
� i1 // X 1

p1 // Y is a factorisation of f as the composite of an
open embedding i1 and a proper morphism p1.
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(ii) If X �
� i1 // X 1

p1 // Y and X �
� i2 // X 2

p2 // Y are two such
factorisations, there is a commutative diagram

X 1

p1

��
X
/ �

i1
??

� � i3 //� o

i2 ��

X 3

q1

OO

p3 //

q2

��

Y

X 2

p2

??

such that
i3 is an open embedding, just as i1, i2,
p3,q1,q2 are proper, just as p1,p2,
q−1

1 (i1(X )) = i3(X ) = q−1
2 (i2(X )).
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(iii) The corollary formally follows from the proper base change theorem
combined with remarks (i) and (ii),
just as in the case of ringed topological spaces.

(iv) The functors Rf! commute with base change.
(v) We can associate to any morphism f : X → Y of Schc/S a functor

f! :Mod(Z/n Z)X −→Mod(Z/n Z)Y

such that:
• for any factorisation of f as X

i
↪→ X

p−→ Y , f! identifies with p∗ ◦ i!,
• for any pair of morphisms of Schc/S

X f−→ Y
g−−→ Z ,

(g ◦ f )! is canonically isomorphic to g! ◦ f!.

Nevertheless, in general, Rf! is not the derived functor of f!.
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The Künneth formula

Proposition:
(i) For any morphism f : X → Y of Schc/S

and objectsM of D+(Mod(Z/n Z)X ), N of D+(Mod(Z/n Z)Y ),

Rf!(M
L
⊗ f−1N ) and Rf!M

L
⊗N

are canonically isomorphic.
(ii) For any cartesian square of Schc/S

X1 ×Y X2

p1

��

p2 // X2

q2

��
X1

q1 // Y
with r = q1 ◦ p1 = q2 ◦ p2,
and objectsM1 of D+(Mod(Z/n Z)X1

),M2 of D+(Mod(Z/n Z)X2
),

Rr!(p−1
1 M1

L
⊗ p−1

2 M2) and R(p1)!M1
L
⊗ R(p2)!M2

are canonically isomorphic.
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Sketch of proof of the proposition:
It is similar to the case of topological spaces.
(ii) is a formal consequence of (i).
(i) is obvious when f is an open immersion.
So we can suppose that f is proper and Rf! = Rf∗.
For anyM and N , the canonical morphism

f−1 ◦ Rf∗M−→M
yields a morphism

(f−1 ◦ Rf∗M)
L
⊗ f−1N −→ M

L
⊗ f−1N

∼=

f−1(Rf∗
L
⊗N )

and by adjunction, a morphism

Rf∗
L
⊗N −→ Rf∗(M

L
⊗ f−1N ) .

We have to check that this morphism is an isomorphism.
As Rf∗ commutes with base change, we can suppose that Y is a geometric point.
We can also suppose that N is a flat (Z/nZ)-module.
Then • ⊗ N is an exact functor.
So, for any (Z/nZ)X -ModuleM, U 7→M(U)⊗N is a (Z/nZ)X -Module
(in particular a sheaf) and it is f∗-acyclic ifM is f∗-acyclic.
The conclusion follows.
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The exceptionnal inverse image functor

Theorem:
Let f : X → Y

= morphism of Schc/S.
Then:
(i) The functor

Rf! : D+(Mod(Z/n Z)X ) −→ D+(Mod(Z/n Z)Y )

has a right adjoint

f ! : D+(Mod(Z/n Z)Y ) −→ D+(Mod(Z/n Z)X ) .

(ii) The two functors

D+(Mod(Z/n Z)X )× D+(Mod(Z/n Z)Y ) −→ D(Mod(Z/n Z)Y ) ,
(M,N ) 7−→ Rf∗RHom(M, f !N ) ,
(M,N ) 7−→ RHom(Rf!M,N )

are canonically isomorphic.
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Remarks:
(i) Composing the isomorphism of (ii) with RΓ(Y , •),

we get that the two functors

D+(Mod(Z/n Z)X )× D+(Mod(Z/n Z)Y ) −→ D(ModZ/n Z) ,
(M,N ) 7−→ RHom(M, f !N ) ,
(M,N ) 7−→ RHom(Rf!M,N )

are canonically isomorphic.
(ii) The isomorphism of (ii) also means that,

for any object N of D+(Mod(Z/n Z)Y ), the square

D+(Mod(Z/n Z)X )

Rf!
��

RHom(•,f !N ) // D(Mod(Z/n Z)X )

Rf∗
��

D+(Mod(Z/n Z)Y )
RHom(•,N ) // D(Mod(Z/n Z)Y )

is commutative up to canonical isomorphism.

(iii) For any morphisms X f−→ Y
g−→ Z of Schc/S, (g ◦ f )! is canonically

isomorphic to f ! ◦ g!.
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(iv) If f : X → Y is an open immersion,
Rf! is the extension by 0 functor f! and so
f ! is the restriction functor f ∗ = f−1.
More generally, if f : X → Y is étale, Rf! is f! and so f ! is f ∗ = f−1.

(v) For any object N of D+(Mod(Z/n Z)Y ),
the identity morphism f !N → f !N
corresponds by adjunction to a morphism

Tr : Rf! ◦ f !N −→ N
called the “trace morphism”.

(vi) For any such object N , the morphism

Rf!(f !(Z/nZ)Y
L
⊗ f−1N ∼= Rf! ◦ f !(Z/nZ)Y

L
⊗N −→ N

corresponds by adjunction to a morphism

f !(Z/nZ)Y
L
⊗ f−1N −→ f !N .
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Principles of the construction
They are very similar to the case of topological spaces.
• We can suppose that f : X → Y is proper of relative dimension d so that

Rf! = Rf∗ has dimension ≤ 2d .
• There exists a finite resolution

0 −→ (Z/nZ)X −→ S0 −→ S1 −→ · · · −→ S2d −→ 0

of (Z/nZ)X by objects Sj of the full additive subcategory SX of
Mod(Z/n Z)X on (Z/nZ)X -Modules S which are flat and such that,

for any étale morphism U i−→ X , SU = i!i∗S is f∗-acyclic.
For this we denote |X |f the set of points x of X which are closed in their
fiber over Y and lift any x ∈ |X |f to a geometric point x of X .
We define

C0 = (Z/nZ)X ,
Cj = Sj−1/Cj−1 for 1 ≤ j ≤ 2d ,
Sj =

∏
x∈|X |f

x∗ ◦ x∗Cj for 0 ≤ j ≤ 2d − 1,

S2d = C2d
so that there is an exact sequence

0 −→ (Z/nZ)X −→ S0 −→ S1 −→ · · · −→ S2d −→ 0 .
O. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 146 / 151



We prove by induction on j that each Cj and Sj is flat over (Z/nZ)X .

For any étale morphism U i−→ X , the (Z/nZ)X -Modules

(Sj)U = i! ◦ i∗Sj , 0 ≤ j ≤ 2d − 1 ,

are f∗-acyclic because they are products∏
x∈|X |f

∏
(x → U)

= lift of x → X

x∗ ◦ x∗Cj .

Lastly, each (S2d )U is f∗-acyclic because the (Sj)U , 0 ≤ j < 2d , are f∗-acyclic
and f∗ has cohomological dimension ≤ 2d .
• For any object S of SX and for any injective (Z/nZ)X -Module I,

the presheaf

(U → X ) 7−→ Hom(Z/n Z)Y (f∗((Z/nZ)U ⊗(Z/n Z)X S), I)

is an injective (Z/nZ)Y -Module (in particular an étale sheaf)
denoted f !S(I).

• If N is an object of D+(Mod(Z/n Z)Y ), and N → I is an injective resolution
of N by I = (Ik ), we define f !N as the complex( ⊕

k−j=n
f !Sj (Ik )

)
n∈Z

.
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Theorem:
Let S = quasi-compact base scheme,

n = integer which is invertible in OS(S).
Consider a morphism of Schc/S

y : Y ′ −→ Y
which is smooth of dimension d .
Then:
(i) (Smooth base change theorem)

For any cartesian square of Schc/S completing y

X ′

f ′

��

x // X

f
��

Y ′
y // Y

the canonical morphisms

y∗ ◦ f∗ −→ f ′∗ ◦ x∗

y∗ ◦ Rf∗ −→ Rf ′∗ ◦ x∗

of functors fromMod(Z/n Z)X toMod(Z/n Z)Y ′

or from D+(Mod(Z/n Z)X ) to D+(Mod(Z/n Z)Y ′
)

are isomorphisms
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(ii) The object of D+(Mod(Z/n Z)Y ′
)

f !(Z/nZ)Y

is concentrated in degree 2d
and quasi-isomorphic to

(µ⊗d
n )[−2d ] =

( d times︷ ︸︸ ︷
µn ⊗(Z/n Z)Y ′

· · · ⊗(Z/n Z)Y ′
µn

)
[−2d ] .

Furthermore, the functor

f ! : D+(Mod(Z/n Z)Y ) −→ D+(Mod(Z/n Z)Y ′
)

is canonically isomorphic to the functor

N 7−→ f !(Z/nZ)Y ⊗ f−1N .

Remark:
In particular, if y : Y ′ → Y is étale, (ii) means that f ! = f−1 = f ∗

or, equivalently, that Ry! = y! is the exact functor of extension by 0.
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Corollary:
Let X f−→ Y

= smooth morphism of dimension d in Schc/S.
Then the square

D+(Mod(Z/n Z)X )

Rf!
��

RHom(•,µ⊗d
n [−2d]) // D(Mod(Z/n Z)X )

Rf∗
��

D+(Mod(Z/n Z)Y )
RHom(•(Z/n Z)Y ) // D(Mod(Z/n Z)Y )

is commutative up to canonical isomorphism.

Remark: If Y = Spec(k) is a base field k , Mod(Z/n Z)Y is the category of
(Z/nZ)-linear representations of the Galois group Galk = Autk (k) for some
algebraic closure k of k .
For any objectM of D+(Mod(Z/n Z)Y ),

R2d−i f∗(RHom(M, µ⊗d
n ))

is the image of
Rf!M

by the duality functor RiHom(•, (Z/nZ)Y )
in the category of (Z/nZ)-linear representations of Galk .
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The case of proper and smooth morphisms

Theorem:
Let X f−→ Y

= morphism of Schc/S which is both proper and smooth.
Then the functors

Rk f! = Rk f∗ =Mod(Z/n Z)X −→Mod(Z/n Z)Y

transform locally constant constructible (Z/nZ)X -Modules into locally constant
constructible (Z/nZ)Y -Modules.

Remark:
In other words, if X and Y are connected,
x is a geometric point of X and y its composite with f : X → Y , the functors

Rk f∗ = Rk f!
transform (Z/nZ)-linear representations of the profinite group

π1(X , x)
into (Z/nZ)-linear representations of the profinite group

π1(Y , y) .
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