Olivia Caramello

Grothendiecl toposes

Basic properties of Grothendieck toposes

For further reading

Topos Theory Lectures 7-8: Basic properties of categories of sheaves

Olivia Caramello

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Olivia Caramello

Grothendieck toposes

Basic properties of Grothendieck toposes

For further reading

The notion of Grothendieck topos I

Definition

- A site is a pair (*C*, *J*) where *C* is a small category and *J* is a Grothendieck topology on *C*.
- A presheaf on a (small) category \mathscr{C} is a functor $P: \mathscr{C}^{op} \to \mathbf{Set}$.
- Let $P : \mathscr{C}^{\text{op}} \to \text{Set}$ be a presheaf on \mathscr{C} and S be a sieve on an object c of \mathscr{C} . A matching family for S of elements of P is a function which assigns to each arrow $f : d \to c$ in S an element $x_f \in P(d)$ in such a way that

$$P(g)(x_f) = x_{f \circ g}$$
 for all $g : e o d$.

An amalgamation for such a family is a single element $x \in P(c)$ such that

$$P(f)(x) = x_f$$
 for all f in S .

Olivia Caramello

Grothendieck toposes

Basic properties of Grothendieck toposes

For further reading

The notion of Grothendieck topos II

- Given a site (*C*, *J*), a presheaf on *C* is a *J*-sheaf if every matching family for any *J*-covering sieve on any object of *C* has a unique amalgamation.
 - The category Sh(C, J) of sheaves on the site (C, J) is the full subcategory of [C^{op}, Set] on the presheaves which are *J*-sheaves.
 - A Grothendieck topos is any category of sheaves on a site.

Examples

- For any (small) category *C*, [*C*^{op}, Set] is the category of sheaves Sh(*C*, *T*) where *T* is the trivial topology on *C*.
- For any topological space X, Sh(𝒫(X), J_{𝒫(X)}) is equivalent to the usual category Sh(X) of sheaves on X.

Olivia Caramello

Grothendied toposes

Basic properties of Grothendieck toposes

For further reading

Basic properties of Grothendieck toposes

Theorem

Let (\mathcal{C}, J) be a site. Then

- the inclusion $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$ has a left adjoint
 - $a : [\mathscr{C}^{op}, \mathbf{Set}] \to \mathbf{Sh}(\mathscr{C}, J)$ (called the associated sheaf functor), which preserves finite limits.
- The category $\mathbf{Sh}(\mathscr{C}, J)$ has all (small) limits, which are preserved by the inclusion functor $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$; in particular, limits are computed pointwise and the terminal object $1_{\mathbf{Sh}(\mathscr{C}, J)}$ of $\mathbf{Sh}(\mathscr{C}, J)$ is the functor $T : \mathscr{C}^{op} \to \mathbf{Set}$ sending each object $c \in Ob(\mathscr{C})$ to the singleton {*}.
- The associated sheaf functor a : [𝔅^{op}, Set] → Sh(𝔅, J) preserves colimits; in particular, Sh(𝔅, J) has all (small) colimits.
- The category Sh(C, J) has exponentials, which are constructed as in the topos [C^{op}, Set].

• The category Sh(C,J) has a subobject classifier.

Corollary

Olivia Caramello

Grothendied toposes

Basic properties of Grothendieck toposes

For further reading

Basic properties of Grothendieck toposes

Theorem

Let (\mathcal{C}, J) be a site. Then

- the inclusion $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$ has a left adjoint
 - $a : [\mathscr{C}^{op}, \mathbf{Set}] \to \mathbf{Sh}(\mathscr{C}, J)$ (called the associated sheaf functor), which preserves finite limits.
- The category $\mathbf{Sh}(\mathscr{C}, J)$ has all (small) limits, which are preserved by the inclusion functor $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$; in particular, limits are computed pointwise and the terminal object $1_{\mathbf{Sh}(\mathscr{C}, J)}$ of $\mathbf{Sh}(\mathscr{C}, J)$ is the functor $T : \mathscr{C}^{op} \to \mathbf{Set}$ sending each object $c \in Ob(\mathscr{C})$ to the singleton {*}.
- The associated sheaf functor a : [𝔅^{op}, Set] → Sh(𝔅, J) preserves colimits; in particular, Sh(𝔅, J) has all (small) colimits.
- The category Sh(C, J) has exponentials, which are constructed as in the topos [C^{op}, Set].
- The category **Sh**(*C*, J) has a subobject classifier.

Corollary

Olivia Caramello

Grothendied toposes

Basic properties of Grothendieck toposes

For further reading

Basic properties of Grothendieck toposes

Theorem

Let (\mathcal{C}, J) be a site. Then

- the inclusion $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$ has a left adjoint
 - $a : [\mathscr{C}^{op}, \mathbf{Set}] \to \mathbf{Sh}(\mathscr{C}, J)$ (called the associated sheaf functor), which preserves finite limits.
- The category $\mathbf{Sh}(\mathscr{C}, J)$ has all (small) limits, which are preserved by the inclusion functor $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$; in particular, limits are computed pointwise and the terminal object $1_{\mathbf{Sh}(\mathscr{C}, J)}$ of $\mathbf{Sh}(\mathscr{C}, J)$ is the functor $T : \mathscr{C}^{op} \to \mathbf{Set}$ sending each object $c \in Ob(\mathscr{C})$ to the singleton {*}.
- The associated sheaf functor a: [𝔅^{op}, Set] → Sh(𝔅, J) preserves colimits; in particular, Sh(𝔅, J) has all (small) colimits.
- The category Sh(C, J) has exponentials, which are constructed as in the topos [C^{op}, Set].

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > の合い?

• The category Sh(C,J) has a subobject classifier.

Corollary

Olivia Caramello

Grothendiecl toposes

Basic properties of Grothendieck toposes

For further reading

Basic properties of Grothendieck toposes

Theorem

Let (\mathcal{C}, J) be a site. Then

- the inclusion $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$ has a left adjoint
 - $a : [\mathscr{C}^{op}, \mathbf{Set}] \to \mathbf{Sh}(\mathscr{C}, J)$ (called the associated sheaf functor), which preserves finite limits.
- The category $\mathbf{Sh}(\mathscr{C}, J)$ has all (small) limits, which are preserved by the inclusion functor $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$; in particular, limits are computed pointwise and the terminal object $1_{\mathbf{Sh}(\mathscr{C}, J)}$ of $\mathbf{Sh}(\mathscr{C}, J)$ is the functor $T : \mathscr{C}^{op} \to \mathbf{Set}$ sending each object $c \in Ob(\mathscr{C})$ to the singleton {*}.
- The associated sheaf functor a: [𝔅^{op}, Set] → Sh(𝔅, J) preserves colimits; in particular, Sh(𝔅, J) has all (small) colimits.
- The category **Sh**(*C*, *J*) has exponentials, which are constructed as in the topos [*C*^{op}, **Set**].

<<p>(ロ)

• The category $\mathbf{Sh}(\mathcal{C}, J)$ has a subobject classifier.

Corollary

Olivia Caramello

Grothendied toposes

Basic properties of Grothendieck toposes

For further reading

Basic properties of Grothendieck toposes

Theorem

Let (\mathcal{C}, J) be a site. Then

- the inclusion $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$ has a left adjoint
 - $a : [\mathscr{C}^{op}, \mathbf{Set}] \to \mathbf{Sh}(\mathscr{C}, J)$ (called the associated sheaf functor), which preserves finite limits.
- The category $\mathbf{Sh}(\mathscr{C}, J)$ has all (small) limits, which are preserved by the inclusion functor $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$; in particular, limits are computed pointwise and the terminal object $1_{\mathbf{Sh}(\mathscr{C}, J)}$ of $\mathbf{Sh}(\mathscr{C}, J)$ is the functor $T : \mathscr{C}^{op} \to \mathbf{Set}$ sending each object $c \in Ob(\mathscr{C})$ to the singleton {*}.
- The associated sheaf functor a: [𝔅^{op}, Set] → Sh(𝔅, J) preserves colimits; in particular, Sh(𝔅, J) has all (small) colimits.
- The category **Sh**(*C*, *J*) has exponentials, which are constructed as in the topos [*C*^{op}, **Set**].

(日)

• The category $\hat{Sh}(\mathcal{C}, J)$ has a subobject classifier.

Corollary

Olivia Caramello

Grothendiecl toposes

Basic properties of Grothendieck toposes

For further reading

Basic properties of Grothendieck toposes

Theorem

Let (\mathcal{C}, J) be a site. Then

- the inclusion $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$ has a left adjoint
 - $a : [\mathscr{C}^{op}, \mathbf{Set}] \to \mathbf{Sh}(\mathscr{C}, J)$ (called the associated sheaf functor), which preserves finite limits.
- The category $\mathbf{Sh}(\mathscr{C}, J)$ has all (small) limits, which are preserved by the inclusion functor $\mathbf{Sh}(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, \mathbf{Set}]$; in particular, limits are computed pointwise and the terminal object $1_{\mathbf{Sh}(\mathscr{C}, J)}$ of $\mathbf{Sh}(\mathscr{C}, J)$ is the functor $T : \mathscr{C}^{op} \to \mathbf{Set}$ sending each object $c \in Ob(\mathscr{C})$ to the singleton {*}.
- The associated sheaf functor a: [𝔅^{op}, Set] → Sh(𝔅, J) preserves colimits; in particular, Sh(𝔅, J) has all (small) colimits.
- The category Sh(C, J) has exponentials, which are constructed as in the topos [C^{op}, Set].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The category Sh(C, J) has a subobject classifier.

Corollary

Olivia Caramello

Grothendieck toposes

Basic properties of Grothendieck toposes

For further reading

The subobject classifier in $\mathbf{Sh}(\mathcal{C}, J)$

Given a site (𝔅, J) and a sieve S in 𝔅 on an object c, we say that S is J-closed if for any arrow f : d → c, f*(S) ∈ J(d) implies that f ∈ S.

• Let us define $\Omega_J : \mathscr{C}^{op} \to \mathbf{Set}$ by: $\Omega_J(c) = \{R \mid R \text{ is a } J\text{-closed sieve on } c\}$ (for an object $c \in \mathscr{C}$), $\Omega_J(f) = f^*(-)$ (for an arrow f in \mathscr{C}), where $f^*(-)$ denotes the operation of pullback of sieves in \mathscr{C} along f. Then the arrow $true : 1_{\mathbf{Sh}(\mathscr{C},J)} \to \Omega_J$ defined by: $true(*)(c) = M_c$ for each $c \in Ob(\mathscr{C})$

is a subobject classifier for $Sh(\mathcal{C}, J)$.

• The classifying arrow $\chi_{A'} : A \to \Omega_J$ of a subobject $A' \subseteq A$ in **Sh**(\mathscr{C}, J) is given by:

$$\chi_{\mathcal{A}'}(c)(x) = \{f: d
ightarrow c \mid \mathcal{A}(f)(x) \in \mathcal{A}'(d)\}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $c \in Ob(\mathscr{C})$ and $x \in A(c)$.

Olivia Caramello

Grothendied toposes

Basic properties of Grothendieck toposes

For further reading

Subobjects in a Grothendieck topos

Theorem

- For any Grothendieck topos & and any object a of &, the poset Sub_&(a) of all subobjects of a in & is a complete Heyting algebra.
- For any arrow f : a → b in a Grothendieck topos &, the pullback functor f* : Sub_&(b) → Sub_&(a) has both a left adjoint ∃_f : Sub_&(a) → Sub_&(b) and a right adjoint ∀_f : Sub_&(a) → Sub_&(b).

<ロト < 聞 > < 臣 > < 臣 > 臣 ?1962

Olivia Caramello

For further reading

🛸 S. Mac Lane and I. Moerdijk.

Sheaves in geometry and logic: a first introduction to topos theory Springer-Verlag, 1992.

