### Olivia Caramello

Sheaves on a topological space

Sheaves as étal bundles

#### Sheaves on a site

Grothendieck topologies Grothendieck toposes

For further reading

## Topos Theory Lectures 5-6: Sheaves on a site

Olivia Caramello

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

### Olivia Caramello

## Sheaves on a topological space

Sheaves as étale bundles

### Sheaves on a site

Grothendieck topologies Grothendieck toposes

For further reading

# Presheaves on a topological space

### Definition

Let X be a topological space. A presheaf  $\mathscr{F}$  on X consists of the data:

(i) for every open subset U of X, a set  $\mathscr{F}(U)$  and

(ii) for every inclusion  $V \subseteq U$  of open subsets of X, a function  $\rho_{U,V} : \mathscr{F}(U) \to \mathscr{F}(V)$  subject to the conditions

- $\rho_{U,U}$  is the identity map  $\mathscr{F}(U) o \mathscr{F}(U)$  and
- if  $W \subseteq V \subseteq U$  are three open subsets, then  $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$ .

The maps  $\rho_{U,V}$  are called restriction maps, and we sometimes write  $s|_V$  instead of  $\rho_{U,V}(s)$ , if  $s \in \mathscr{F}(U)$ .

A morphism of presheaves  $\mathscr{F} \to \mathscr{G}$  on a topological space X is a collection of maps  $\mathscr{F}(U) \to \mathscr{G}(U)$  which is compatible with respect to restriction maps.

### Remark

Categorically, a presheaf  $\mathscr{F}$  on X is a functor  $\mathscr{F} : \mathscr{O}(X)^{op} \to \mathbf{Set}$ , where  $\mathscr{O}(X)$  is the poset category corresponding to the lattice of open sets of the topological space X (with respect to the inclusion relation). A morphism of presheaves is then just a natural transformation between the corresponding functors. So we have a category  $[\mathscr{O}(X)^{op}, \mathbf{Set}]$  of presheaves on X.

### Olivia Caramello

## Sheaves on a topological space

Sheaves as étale bundles

### Sheaves on a site

Grothendieck topologies Grothendieck toposes

For further reading

## Sheaves on a topological space

### Definition

A sheaf  $\mathscr{F}$  on a topological space X is a presheaf on X satisfying the additional conditions

(i) if *U* is an open set, if  $\{V_i | i \in I\}$  is an open covering of *U*, and if  $s, t \in \mathscr{F}(U)$  are elements such that  $s|_{V_i} = t|_{V_i}$  for all i, then s = t;

(ii) if *U* is an open set, if {*V<sub>i</sub>* | *i* ∈ *I*} is an open volume to vering of *U*, and if we have elements  $s_i \in \mathscr{F}(V_i)$  for each *i*, with the property that for each  $i, j \in I, s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ , then there is an element  $s \in \mathscr{F}(U)$  (necessarily unique by (i)) such that  $s|_{V_i} = s_i$  for each *i*.

A morphism of sheaves is defined as a morphism of the underlying presheaves.

### Remark

Categorically, a sheaf is a functor  $\mathcal{O}(X)^{op} \to \mathbf{Set}$  which satisfies certain conditions expressible in categorical language entirely in terms of the poset category  $\mathcal{O}(X)$  and of the usual notion of covering on it. The category  $\mathbf{Sh}(X)$  of sheaves on a topological space X is thus a full subcategory of the category  $[\mathcal{O}(X)^{op}, \mathbf{Set}]$  of presheaves on X.

This paves the way for a significant categorical generalization of the notion of sheaf, leading to the notion of Grothendieck topos.

### Olivia Caramello

#### Sheaves on a topological space

Sheaves as étale bundles

### Sheaves on a site

Grothendieck topologies Grothendieck toposes

For further reading

# The associated sheaf functor

### Theorem

Given a presheaf  $\mathscr{F}$ , there is a sheaf  $a(\mathscr{F})$  and a morphism  $\theta : \mathscr{F} \to a(\mathscr{F})$ , with the property that for any sheaf  $\mathscr{G}$ , and any morphism  $\phi : \mathscr{F} \to \mathscr{G}$ , there is a unique morphism  $\psi : a(\mathscr{F}) \to \mathscr{G}$  such that  $\psi \circ \theta = \phi$ .

The sheaf  $a(\mathscr{F})$  is called the sheaf associated to the presheaf  $\mathscr{F}$ .

### Remark

Categorically, this means that the inclusion functor  $i: \mathbf{Sh}(X) \to [\mathscr{O}(X)^{op}, \mathbf{Set}]$  has a left adjoint  $a: [\mathscr{O}(X)^{op}, \mathbf{Set}] \to \mathbf{Sh}(X).$ 

The left adjoint  $a : [\mathcal{O}(X)^{\text{op}}, \textbf{Set}] \to \textbf{Sh}(X)$  is called the associated sheaf functor.

### Olivia Caramello

### Sheaves on a topological space

Sheaves as étale bundles

### Sheaves on a site

Grothendieck topologies Grothendieck toposes

For further reading

# Examples of sheaves

## Examples

- the sheaf of continuous real-valued functions on any topological space
- · the sheaf of regular functions on a variety
- the sheaf of differentiable functions on a differentiable manifold
- · the sheaf of holomorphic functions on a complex manifold

In each of the above examples, the restriction maps of the sheaf are the usual set-theoretic restrictions of functions to a subset.

### Remark

Sheaves arising in Mathematics are often equipped with more structure than the mere set-theoretic one; for example, one may wish to consider sheaves of modules (resp. rings, abelian groups, ...) on a topological space X.

The natural categorical way of looking at these notions is to consider them as models of certain (geometric) theories in a category  $\mathbf{Sh}(X)$  of sheaves of sets.

### Olivia Caramello

#### Sheaves on a topological space

Sheaves as étale bundles

### Sheaves on a site

Grothendieck topologies Grothendieck toposes

For further reading

# The sheaf of cross-sections of a bundle

### Definition

- For any topological space X, a continuous map p: Y → X is called a bundle over X. In fact, the category of bundles is the slice category Top/X.
- Given an open subset U of X, a cross-section over U of a bundle p: Y → X is a continuous map s: U → Y such that the composite p ∘ s is the inclusion i : U → X. Let

 $\Gamma_p U = \{ s \mid s : U \to Y \text{ and } p \circ s = i : U \to X \}$ 

denote the set of all such cross-sections over U.

If V ⊆ U, one has a restriction operation Γ<sub>p</sub>U → Γ<sub>p</sub>V. The functor Γ<sub>p</sub> : 𝒪(X)<sup>op</sup> → Set obtained in this way is a sheaf and is called the sheaf of cross-sections of the bundle p.

### Olivia Caramello

## Sheaves on a topological space

Sheaves as étale bundles

### Sheaves on a site

Grothendieck topologies Grothendieck toposes

For further reading

# The bundle of germs of a presheaf

### Definition

• Given any presheaf  $\mathscr{F} : \mathscr{O}(X)^{\operatorname{op}} \to \operatorname{Set}$  on a space X, a point  $x \in X$ , two open neighbourhoods U and V of x, and two elements  $s \in \mathscr{F}(U), t \in \mathscr{F}(V)$ . We say that s and t have the same germ at x when there is some open set  $W \subseteq U \cap V$  with  $x \in W$  and  $s|_W = t|_W$ . This relation 'to have the same germ at x' is an equivalence relation, and the equivalence class of any one such s is called the germ of s at x, in symbols germ(s).

Let

$$\mathscr{F}_x = \{germ(s) \mid s \in \mathscr{F}(U), x \in U \text{ open in } X\}$$

be the set of all germs at x.

• Let  $\Gamma_p$  be the disjoint union of the  $\mathscr{F}_x$ 

$$\Lambda_{\rho} = \{ \langle x, r \rangle \mid x \in X, r \in \mathscr{F}_{x} \}$$

topologized by taking as a base of open sets all the image sets  $\tilde{s}(U)$ , where  $\tilde{s}: U \to \Lambda_p$  is the map induced by an element  $s \in \mathscr{F}(U)$  by taking its germs at points in U.

• With respect to this topology, the natural projection map  $\Lambda_p \to X$  becomes a continuous map, called the bundle of germs of the presheaf  $\mathscr{F}$ .

### Olivia Caramello

### Sheaves on a topological space

Sheaves as étale bundles

### Sheaves on a site

Grothendieck topologies Grothendieck toposes

For further reading

# Sheaves as étale bundles

## Definition

- A bundle  $p: E \to X$  is said to be étale (over X) when p is a local homeomorphism in the following sense: for each  $e \in E$  there is an open set V, with  $e \in V$ , such that p(V) is open in X and  $p|_V$  is a homeomorphism  $V \to p(V)$ .
- The full subcategory of **Top**/X on the étale bundles is denoted by **Etale**(X).

## Theorem

• For any topological space X, there is a pair of adjoint functors

 $\Gamma: \textit{Top}/X \to [\mathscr{O}(X)^{\textit{op}}, \textit{Set}], \quad \Lambda: [\mathscr{O}(X)^{\textit{op}}, \textit{Set}] \to \textit{Top}/X,$ 

where  $\Gamma$  assigns to each bundle  $p: Y \to X$  the sheaf of cross-sections of p, while its left adjoint  $\Lambda$  assigns to each presheaf  $\mathscr{F}$  the bundle of germs of  $\mathscr{F}$ .

The adjunction restricts to an equivalence of categories

 $Sh(X) \simeq Etale(X)$ .

### Olivia Caramello

topological spac Sheaves as étale bundles

### Sheaves on a site

Grothendieck topologies

Grothendieck toposes

For further reading

# Grothendieck topologies I

In order to 'categorify' the notion of sheaf of a topological space, the first step is to introduce an abstract notion of covering on a category.

## Definition

 Given a category 𝒞 and an object c ∈ Ob(𝒞), a sieve S in 𝒞 on c is a collection of arrows in 𝒞 with codomain c such that

$$f \in S \Rightarrow f \circ g \in S$$

whenever this composition makes sense.

• We say that a sieve *S* is generated by a given family of arrows (with common codomain) if it is the smallest sieve which contains all the arrows of the family.

If S is a sieve on c and  $h: d \rightarrow c$  is any arrow to c, then

$$h^*(S) := \{g \mid cod(g) = d, h \circ g \in S\}$$

is a sieve on d.



### Olivia Caramello

Sheaves on a topological space

bundles

### Sheaves on a site

Grothendieck topologies

Grothendieck toposes

For further reading

# Grothendieck topologies II

## Definition

A Grothendieck topology on a small category  $\mathscr{C}$  is a function J which assigns to each object c of  $\mathscr{C}$  a collection J(c) of sieves on c in such a way that

- (i) (maximality axiom) the maximal sieve M<sub>c</sub> = {f | cod(f) = c} is in J(c);
- (ii) (stability axiom) if  $S \in J(c)$ , then  $f^*(S) \in J(d)$  for any arrow  $f: d \rightarrow c$ ;

(iii) (transitivity axiom) if  $S \in J(c)$  and R is any sieve on c such that  $f^*(R) \in J(d)$  for all  $f : d \to c$  in S, then  $R \in J(c)$ .

The sieves *S* which belong to J(c) for some object *c* of  $\mathscr{C}$  are said to be *J*-covering.

・ロト・日本・モート・モーンのの
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
10/15
1

### Olivia Caramello

Sheaves on a topological space

Sheaves as étal bundles

### Sheaves on a site

Grothendieck topologies

Grothendieck toposes

For further reading

# Examples of Grothendieck topologies I

- For any (small) category *C*, the trivial topology on *C* is the Grothendieck topology in which the only sieve covering an object *c* is the maximal sieve *M<sub>c</sub>*.
- The dense topology *D* on a category *C* is defined by: for a sieve *S*,

$$S \in D(c)$$
 if and only if for any  $f : d \to c$  there exists  $g : e \to d$  such that  $f \circ g \in S$ .

If  $\mathscr{C}$  satisfies the right Ore condition i.e. the property that any two arrows  $f: d \to c$  and  $g: e \to c$  with a common codomain c can be completed to a commutative square

$$\begin{array}{c} \bullet - - > d \\ | \\ | \\ \psi \\ g \\ e \\ \end{array} \begin{array}{c} \downarrow f \\ \downarrow$$

then the dense topology on  $\mathscr{C}$  specializes to the atomic topology on  $\mathscr{C}$  i.e. the topology  $J_{at}$  defined by: for a sieve S,  $S \in J_{at}(c)$  if and only if  $S \neq \emptyset$ .



### Olivia Caramello

Sheaves on a topological space

bundles

Sheaves on a site

Grothendieck topologies

Grothendieck toposes

For further reading

# Examples of Grothendieck topologies II

• If X is a topological space, the usual notion of covering in Topology gives rise to the following Grothendieck topology  $J_{\mathscr{O}(X)}$  on the poset category  $\mathscr{O}(X)$ : for a sieve  $S = \{U_i \hookrightarrow U \mid i \in I\}$  on  $U \in Ob(\mathscr{O}(X))$ ,

5

$$S \in J_{\mathscr{O}(X)}(U)$$
 if and only if  $\bigcup_{i \in I} U_i = U$ .

• More generally, given a complete Heyting algebra H, i.e. a Heyting algebra with arbitrary joins  $\bigvee$  (and meets), we can define a Grothendieck topology  $J_H$  by:

$$\{a_i \mid i \in I\} \in J_H(a)$$
 if and only if  $\bigvee_{i \in I} a_i = a$  .

・・・・< E> < E> E つみ合

### Olivia Caramello

Sheaves on a topological space Sheaves as étale bundles

#### Sheaves on a site

Grothendieck topologies

Grothendieck toposes

For further reading

## The notion of Grothendieck topos I

### Definition

- A site is a pair ( $\mathscr{C}$ , J) where  $\mathscr{C}$  is a small category and J is a Grothendieck topology on  $\mathscr{C}$ .
- A presheaf on a (small) category  $\mathscr{C}$  is a functor  $P: \mathscr{C}^{op} \to \mathbf{Set}$ .
- Let  $P : \mathscr{C}^{\text{op}} \to \text{Set}$  be a presheaf on  $\mathscr{C}$  and S be a sieve on an object c of  $\mathscr{C}$ . A matching family for S of elements of P is a function which assigns to each arrow  $f : d \to c$  in S an element  $x_f \in P(d)$  in such a way that

$$\mathsf{P}(g)(x_f) = x_{f \circ g} \quad ext{for all } g : e o d \; .$$

An amalgamation for such a family is a single element  $x \in P(c)$  such that

$$P(f)(x) = x_f$$
 for all  $f$  in  $S$ .

<ロ > < 団 > < 置 > < 置 > < 置 > 置 ?3715



### Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

#### Sheaves on a site

Grothendieck topologies

Grothendieck toposes

For furthe reading

# The notion of Grothendieck topos II

- Given a site (*C*, *J*), a presheaf on *C* is a *J*-sheaf if every matching family for any *J*-covering sieve on any object of *C* has a unique amalgamation.
- The category Sh(C, J) of sheaves on the site (C, J) is the full subcategory of [C<sup>op</sup>, Set] on the presheaves which are J-sheaves.
- A Grothendieck topos is any category of sheaves on a site.

## Examples

- For any (small) category C, [C<sup>op</sup>, Set] is the category of sheaves Sh(C, T) where T is the trivial topology on C.
- For any topological space X, Sh(𝒫(X), J<sub>𝒫(X)</sub>) is equivalent to the usual category Sh(X) of sheaves on X.

#### Olivia Caramello

Sheaves on a topological space

Sheaves as étal bundles

#### Sheaves on a site

Grothendieck topologies Grothendieck toposes

For further reading

# For further reading

🛸 S. Mac Lane and I. Moerdijk.

Sheaves in geometry and logic: a first introduction to topos theory Springer-Verlag, 1992.

> <ロ > < 団 > < 置 > < 置 > < 置 > 置 ? のので 15/15