Topos Theory

Lectures 5-6: Sheaves on a site

Olivia Caramello
Presheaves on a topological space

Definition
Let X be a topological space. A presheaf \mathcal{F} on X consists of the data:

(i) for every open subset U of X, a set $\mathcal{F}(U)$ and

(ii) for every inclusion $V \subseteq U$ of open subsets of X, a function $\rho_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V)$ subject to the conditions

- $\rho_{U,U}$ is the identity map $\mathcal{F}(U) \to \mathcal{F}(U)$ and
- if $W \subseteq V \subseteq U$ are three open subsets, then $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$.

The maps $\rho_{U,V}$ are called restriction maps, and we sometimes write $s|_V$ instead of $\rho_{U,V}(s)$, if $s \in \mathcal{F}(U)$.

A morphism of presheaves $\mathcal{F} \to \mathcal{G}$ on a topological space X is a collection of maps $\mathcal{F}(U) \to \mathcal{G}(U)$ which is compatible with respect to restriction maps.

Remark
Categorically, a presheaf \mathcal{F} on X is a functor $\mathcal{F} : \mathcal{O}(X)^{op} \to \text{Set}$, where $\mathcal{O}(X)$ is the poset category corresponding to the lattice of open sets of the topological space X (with respect to the inclusion relation).

A morphism of presheaves is then just a natural transformation between the corresponding functors.

So we have a category $[\mathcal{O}(X)^{op}, \text{Set}]$ of presheaves on X.
Sheaves on a topological space

Definition
A sheaf \(\mathcal{F} \) on a topological space \(X \) is a presheaf on \(X \) satisfying the additional conditions

(i) if \(U \) is an open set, if \(\{ V_i \mid i \in I \} \) is an open covering of \(U \), and if \(s, t \in \mathcal{F}(U) \) are elements such that \(s|_{V_i} = t|_{V_i} \) for all \(i \), then \(s = t \);
(ii) if \(U \) is an open set, if \(\{ V_i \mid i \in I \} \) is an open covering of \(U \), and if we have elements \(s_i \in \mathcal{F}(V_i) \) for each \(i \), with the property that for each \(i, j \in I \), \(s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j} \), then there is an element \(s \in \mathcal{F}(U) \) (necessarily unique by (i)) such that \(s|_{V_i} = s_i \) for each \(i \).

A morphism of sheaves is defined as a morphism of the underlying presheaves.

Remark
Categorically, a sheaf is a functor \(\mathcal{O}(X)^{\text{op}} \rightarrow \text{Set} \) which satisfies certain conditions expressible in categorical language entirely in terms of the poset category \(\mathcal{O}(X) \) and of the usual notion of covering on it. The category \(\text{Sh}(X) \) of sheaves on a topological space \(X \) is thus a full subcategory of the category \([\mathcal{O}(X)^{\text{op}}, \text{Set}]\) of presheaves on \(X \).

This paves the way for a significant categorical generalization of the notion of sheaf, leading to the notion of Grothendieck topos.
The associated sheaf functor

Theorem

Given a presheaf \(\mathcal{F} \), there is a sheaf \(a(\mathcal{F}) \) and a morphism \(\theta : \mathcal{F} \rightarrow a(\mathcal{F}) \), with the property that for any sheaf \(\mathcal{G} \), and any morphism \(\phi : \mathcal{F} \rightarrow \mathcal{G} \), there is a unique morphism \(\psi : a(\mathcal{F}) \rightarrow \mathcal{G} \) such that \(\psi \circ \theta = \phi \).

The sheaf \(a(\mathcal{F}) \) is called the **sheaf associated** to the presheaf \(\mathcal{F} \).

Remark

Categorically, this means that the inclusion functor \(i : \text{Sh}(X) \rightarrow [\mathcal{O}(X)^{\text{op}},\text{Set}] \) has a left adjoint \(a : [\mathcal{O}(X)^{\text{op}},\text{Set}] \rightarrow \text{Sh}(X) \).

The left adjoint \(a : [\mathcal{O}(X)^{\text{op}},\text{Set}] \rightarrow \text{Sh}(X) \) is called the **associated sheaf functor**.
Examples of sheaves

Examples

• the sheaf of continuous real-valued functions on any topological space
• the sheaf of regular functions on a variety
• the sheaf of differentiable functions on a differentiable manifold
• the sheaf of holomorphic functions on a complex manifold

In each of the above examples, the restriction maps of the sheaf are the usual set-theoretic restrictions of functions to a subset.

Remark

Sheaves arising in Mathematics are often equipped with more structure than the mere set-theoretic one; for example, one may wish to consider sheaves of modules (resp. rings, abelian groups, ...) on a topological space X.

The natural categorical way of looking at these notions is to consider them as models of certain (geometric) theories in a category $\mathbf{Sh}(X)$ of sheaves of sets.
The sheaf of cross-sections of a bundle

Definition

- For any topological space X, a continuous map $p : Y \to X$ is called a bundle over X. In fact, the category of bundles is the slice category Top/X.
- Given an open subset U of X, a cross-section over U of a bundle $p : Y \to X$ is a continuous map $s : U \to Y$ such that the composite $p \circ s$ is the inclusion $i : U \hookrightarrow X$. Let

$$\Gamma_p U = \{ s \mid s : U \to Y \text{ and } p \circ s = i : U \to X \}$$

denote the set of all such cross-sections over U.
- If $V \subseteq U$, one has a restriction operation $\Gamma_p U \to \Gamma_p V$. The functor $\Gamma_p : \mathcal{O}(X)^{\text{op}} \to \text{Set}$ obtained in this way is a sheaf and is called the sheaf of cross-sections of the bundle p.
The bundle of germs of a presheaf

Definition

• Given any presheaf \(\mathcal{F} : \mathcal{O}(X)^{\text{op}} \to \text{Set} \) on a space \(X \), a point \(x \in X \), two open neighbourhoods \(U \) and \(V \) of \(x \), and two elements \(s \in \mathcal{F}(U), t \in \mathcal{F}(V) \). We say that \(s \) and \(t \) have the same germ at \(x \) when there is some open set \(W \subseteq U \cap V \) with \(x \in W \) and \(s|_W = t|_W \). This relation ‘to have the same germ at \(x \)' is an equivalence relation, and the equivalence class of any one such \(s \) is called the germ of \(s \) at \(x \), in symbols \(\text{germ}(s) \).

• Let

\[
\mathcal{F}_x = \{ \text{germ}(s) \mid s \in \mathcal{F}(U), \ x \in U \text{ open in } X \}
\]

be the set of all germs at \(x \).

• Let \(\Gamma_p \) be the disjoint union of the \(\mathcal{F}_x \)

\[
\Lambda_p = \{ (x, r) \mid x \in X, r \in \mathcal{F}_x \}
\]

topologized by taking as a base of open sets all the image sets \(\tilde{s}(U) \), where \(\tilde{s} : U \to \Lambda_p \) is the map induced by an element \(s \in \mathcal{F}(U) \) by taking its germs at points in \(U \).

• With respect to this topology, the natural projection map \(\Lambda_p \to X \) becomes a continuous map, called the bundle of germs of the presheaf \(\mathcal{F} \).
Sheaves as étale bundles

Definition

- A bundle \(p : E \to X \) is said to be étale (over \(X \)) when \(p \) is a local homeomorphism in the following sense: for each \(e \in E \) there is an open set \(V \), with \(e \in V \), such that \(p(V) \) is open in \(X \) and \(p|_V \) is a homeomorphism \(V \to p(V) \).

- The full subcategory of \(\text{Top}/X \) on the étale bundles is denoted by \(\text{Etale}(X) \).

Theorem

- For any topological space \(X \), there is a pair of adjoint functors

\[
\Gamma : \text{Top}/X \to [\mathcal{O}(X)^{\text{op}}, \text{Set}], \quad \Lambda : [\mathcal{O}(X)^{\text{op}}, \text{Set}] \to \text{Top}/X,
\]

where \(\Gamma \) assigns to each bundle \(p : Y \to X \) the sheaf of cross-sections of \(p \), while its left adjoint \(\Lambda \) assigns to each presheaf \(\mathcal{F} \) the bundle of germs of \(\mathcal{F} \).

- The adjunction restricts to an equivalence of categories

\[
\text{Sh}(X) \simeq \text{Etale}(X).
\]
In order to ‘categorify’ the notion of sheaf of a topological space, the first step is to introduce an abstract notion of covering on a category.

Definition

- Given a category \(\mathcal{C} \) and an object \(c \in \text{Ob}(\mathcal{C}) \), a **sieve** \(S \) in \(\mathcal{C} \) on \(c \) is a collection of arrows in \(\mathcal{C} \) with codomain \(c \) such that

\[
\text{if } f \in S \Rightarrow f \circ g \in S
\]

whenever this composition makes sense.

- We say that a sieve \(S \) is **generated** by a given family of arrows (with common codomain) if it is the smallest sieve which contains all the arrows of the family.

If \(S \) is a sieve on \(c \) and \(h : d \to c \) is any arrow to \(c \), then

\[
h^*(S) := \{ g \mid \text{cod}(g) = d, \ h \circ g \in S \}
\]

is a sieve on \(d \).
Grothendieck topologies II

Definition
A Grothendieck topology on a small category \mathcal{C} is a function J which assigns to each object c of \mathcal{C} a collection $J(c)$ of sieves on c in such a way that

(i) (maximality axiom) the maximal sieve $M_c = \{ f | \text{cod}(f) = c \}$ is in $J(c)$;

(ii) (stability axiom) if $S \in J(c)$, then $f^*(S) \in J(d)$ for any arrow $f : d \to c$;

(iii) (transitivity axiom) if $S \in J(c)$ and R is any sieve on c such that $f^*(R) \in J(d)$ for all $f : d \to c$ in S, then $R \in J(c)$.

The sieves S which belong to $J(c)$ for some object c of \mathcal{C} are said to be J-covering.
Examples of Grothendieck topologies I

- For any (small) category \(\mathcal{C} \), the **trivial topology** on \(\mathcal{C} \) is the Grothendieck topology in which the only sieve covering an object \(c \) is the maximal sieve \(M_c \).

- The **dense topology** \(D \) on a category \(\mathcal{C} \) is defined by: for a sieve \(S \),

\[
S \in D(c) \quad \text{if and only if} \quad \text{for any } f : d \to c \text{ there exists } g : e \to d \text{ such that } f \circ g \in S .
\]

If \(\mathcal{C} \) satisfies the **right Ore condition** i.e. the property that any two arrows \(f : d \to c \) and \(g : e \to c \) with a common codomain \(c \) can be completed to a commutative square

\[
\begin{array}{ccc}
\bullet & \to & d \\
| & | & | \\
| & | & | \\
\downarrow & \downarrow & \downarrow \\
e & \overset{g}{\to} & c \\
\end{array}
\]

then the dense topology on \(\mathcal{C} \) specializes to the **atomic topology** on \(\mathcal{C} \) i.e. the topology \(J_{at} \) defined by: for a sieve \(S \),

\[
S \in J_{at}(c) \quad \text{if and only if} \quad S \not= \emptyset .
\]
Examples of Grothendieck topologies II

• If X is a topological space, the usual notion of covering in Topology gives rise to the following Grothendieck topology $J_{\mathcal{O}(X)}$ on the poset category $\mathcal{O}(X)$: for a sieve $S = \{ U_i \hookrightarrow U \mid i \in I \}$ on $U \in Ob(\mathcal{O}(X))$,

$$S \in J_{\mathcal{O}(X)}(U) \text{ if and only if } \bigcup_{i \in I} U_i = U.$$

• More generally, given a complete Heyting algebra H, i.e. a Heyting algebra with arbitrary joins \bigvee (and meets), we can define a Grothendieck topology J_H by:

$$\{ a_i \mid i \in I \} \in J_H(a) \text{ if and only if } \bigvee_{i \in I} a_i = a.$$
The notion of Grothendieck topos I

Definition

- A site is a pair \((\mathcal{C}, J)\) where \(\mathcal{C}\) is a small category and \(J\) is a Grothendieck topology on \(\mathcal{C}\).
- A presheaf on a (small) category \(\mathcal{C}\) is a functor \(P : \mathcal{C}^{\text{op}} \to \text{Set}\).
- Let \(P : \mathcal{C}^{\text{op}} \to \text{Set}\) be a presheaf on \(\mathcal{C}\) and \(S\) be a sieve on an object \(c\) of \(\mathcal{C}\). A matching family for \(S\) of elements of \(P\) is a function which assigns to each arrow \(f : d \to c\) in \(S\) an element \(x_f \in P(d)\) in such a way that

\[
P(g)(x_f) = x_{f \circ g} \quad \text{for all } g : e \to d.
\]

An amalgamation for such a family is a single element \(x \in P(c)\) such that

\[
P(f)(x) = x_f \quad \text{for all } f \text{ in } S.
\]
The notion of Grothendieck topos II

- Given a site \((\mathcal{C}, J)\), a presheaf on \(\mathcal{C}\) is a \(J\)-sheaf if every matching family for any \(J\)-covering sieve on any object of \(\mathcal{C}\) has a unique amalgamation.
- The category \(\mathbf{Sh}(\mathcal{C}, J)\) of sheaves on the site \((\mathcal{C}, J)\) is the full subcategory of \([\mathcal{C}^{\text{op}}, \mathbf{Set}]\) on the presheaves which are \(J\)-sheaves.
- A Grothendieck topos is any category of sheaves on a site.

Examples

- For any (small) category \(\mathcal{C}\), \([\mathcal{C}^{\text{op}}, \mathbf{Set}]\) is the category of sheaves \(\mathbf{Sh}(\mathcal{C}, T)\) where \(T\) is the trivial topology on \(\mathcal{C}\).
- For any topological space \(X\), \(\mathbf{Sh}(\mathcal{O}(X), J_{\mathcal{O}(X)})\) is equivalent to the usual category \(\mathbf{Sh}(X)\) of sheaves on \(X\).
For further reading

S. Mac Lane and I. Moerdijk.
Sheaves in geometry and logic: a first introduction to topos theory