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Functor categories

Definition
Let C and D be two categories. The functor category [C ,D ] is the
category having as objects the functors C →D and as arrows the
natural transformations between them.

Examples

• If C is the category having two distinct objects and exactly
one non-identical arrow 0→ 1, the functor category [C ,D ]
becomes the category D→ of arrows in D and commutative
squares between them.

• If C is the category corresponding to a monoid M and
D = Set, then [C ,D ] becomes the category M-Set of sets
equipped with a M-action and action-preserving maps
between them.

• If C is a discrete category on a set I and D = Set then [C ,D ]
becomes the category Bn(I) of I-indexed collections of sets
and functions between them.
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Other basic constructions
Definition (Slice category)
Let C be a category and a be an object of C . The slice category C /a
of C on a has as objects the arrows in C with codomain a and as
arrows the commutative triangles between them (composition and
identities are the obvious ones).
Notice that the slice category Set/I is equivalent to the functor
category Bn(I) introduced above.

Two monomorphisms in a category C with common codomain a are
said to be isomorphic if they are isomorphic as objects of C /a. An
isomorphism class of monomorphisms with common codomain a is
called a subobject of a.

Definition (Product category)
Let C and D be two categories. The product category C ×D has as
objects the pairs 〈a,b〉 where a is an object of C and b is an object of
D and as arrows 〈a,b〉 → 〈c,d〉 the pairs 〈f ,g〉 where f : a→ c is an
arrow in C and g : b→ d is an arrow in D (composition and identities
are defined componentwise).
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Universal properties

• It is a striking fact that one can often define mathematical
objects not by means of their internal structure (that is, as in
the classical spirit of set-theoretic foundations) bur rather in
terms of their relations with the other objects of the
mathematical environment in which one works (that is, in
terms of the objects and arrows of the category in which one
works), by means of so-called universal properties.

• Of course, isomorphic objects in a category are
indistinguishable from the point of view of the categorical
properties that they satisfy; in fact, definitions via universal
property do not determine the relevant objects ‘absolutely’
but only up to isomorphism in the given category.

The technical embodiment of the idea of universal property is
given by the notion of limit (dually, colimit) of a functor.
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Limits and colimits I

Note that a functor F : J → C can be thought as a ‘diagram in C
of shape J ′.
For every object c of C , there is a ‘constant’ functor
∆(c) : J → C , which sends all the objects of J to the object c
and all the arrows in J to the identity arrow on c. This defines a
diagonal functor ∆ : C → [J ,C ]. A natural transformation α from
∆(c) to a functor F : J → C is called a cone from c to (the
diagram given by) F ; in fact, it is as a collection of arrows
{α(j) : c→ F (j) | j ∈Ob(J )} such that for any arrow l : j1→ j2 in
J the triangle

c

α(j1)
��

α(j2)

##
F (j1)

F (l)
// F (j2)

commutes.

5 / 17



Topos Theory

Olivia Caramello

Basic categorical
constructions

Universal
properties

Adjoint functors

The Yoneda
Lemma

Elementary
toposes

For further
reading

Limits and colimits II

Definition
Let F : J → C be a functor. A limit for F in C is an object c
together with a cone α : ∆(c)→ F which is universal among the
cones from objects of C to F i.e. such that for every cone
β : ∆(c′)→ F there exists a unique map g : c′→ c in C such that
β (j) = α(j)◦g for each object j of J .
A colimit is the dual notion to that of limit.
Of course, by the universal property, if the limit of a functor exists
then it is unique up to isomorphism.

Definition
Let F : J → C be a functor and α : ∆(c)→ F be a limit for F in
C . We say that a functor G : C →D preserves the limit of F if the
cone in D from F (c) to the composite functor G ◦F obtained by
applying G to α is universal i.e. gives a limit for the functor G ◦F .
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Special kinds of limits

Examples

• A limit of the unique functor from the empty category to a
category C can be identified with a terminal object, that is
with an object 1 of C such that for any object a of C there
exists exactly one arrow a→ 1 (in Set, terminal objects are
exactly the singleton sets).

• When J is a discrete category, a limit for a functor J → C
is called a product in C (in Set, this notion specializes to that
of cartesian product).

• When J is the category having three objects j ,k ,m and two
non-identity arrows j →m and k →m, a limit for a functor
J → C is called a pullback (in Set, this notion specializes to
that of fibred product).
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Adjoint functors: definition

“Adjoint functors arise everywhere”
(S. Mac Lane, Categories for the working mathematician)

Adjunction is a very special relationship between two functors, of
great importance for its ubiquity in Mathematics.

Definition
Let C and D be two categories. An adjunction between C and D is a
pair of functors

F : C →D and G : D → C

together with a natural isomorphism between the functors
HomD (F (−),−),HomC (−,G(−)) : C op×D → Set i.e. a family of
bijections

HomD (F (a),b)∼= HomC (a,G(b))

natural in a ∈Ob(C ) and b ∈Ob(D).
The functor F is said to be left adjoint to G, while G is said to be
right adjoint to F , and we write F aG.
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Adjoint functors: examples and properties

Examples

• Free constructions and forgetful functors
• Limits and diagonal functors
• Diagonal functors and colimits
• Hom-tensor adjunctions in Algebra
• Stone-Čech compactification in Topology
• Quantifiers as adjoints in Logic

Useful properties of adjoint functors include:
• Uniqueness: The left (resp. right) ajoint of a given functor, if it

exists, is unique (up to natural isomorphism).
• Continuity: Any functor which has a left (resp. right) adjoint

preserves limits (resp. colimits).
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The Yoneda Lemma
Given a category C , we define the Yoneda embedding to be the
functor yC : C → [C op,Set] given by:

• y(a) = HomC (−,a), for an object a ∈Ob(C ).
• y(f ) = f ◦C −, for an arrow f : a→ b in C .

Theorem (Yoneda Lemma)
Let C be a category and F : C op→ Set be a functor. Then, for any
object c ∈Ob(C ), we have a bijection

Hom[C op,Set](yC (c),F )∼= F (c)

natural in c.

Sketch of proof.
The proof essentially amounts to checking that the any natural
transformation α : HomC (−,c)→ F is uniquely determined by its
value α(c)(idc) at the identity on c.

Corollary
The Yoneda embedding is full and faithful.
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Exponentials and cartesian closed categories
For any two sets X and Y , we can always form the set Y X of the
functions X → Y . This set enjoys the following (universal) property
in the category Set of sets: the familiar bijection

HomSet(Z ,Y X )∼= HomSet(Z ×X ,Y )

is natural in both Y and Z and hence it gives rise to an adjunction
between the functor −×X : Set→ Set (left adjoint) and the functor
(−)X : Set→ Set (right adjoint).
Expressing this property in categorical language, we arrive at the
following notion of exponential for an object X of a category C with
binary products: an exponential for X is a functor (−)X : C → C
which is right adjoint to the product functor X ×− : C → C . (Note
that exponentials are unique up to natural isomorphism, if they
exist.)

Definition
A category C is said to be cartesian closed if it has finite products
and exponentials for each object c ∈Ob(C ).
For example, both the category Set of sets and the (large) category
Cat of small categories are cartesian closed.
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Heyting algebras

Definition
A Heyting algebra is a lattice H with 0 and 1 which is cartesian
closed when regarded as a preorder category with products, i.e.
such that for any pair of elements x ,y ∈ H there is an element
x⇒y satisfying the adjunction z ≤ (x⇒y) if and only if z ∧x ≤ y
(for any z ∈ H). For x ∈ H, we put ¬x := x⇒0 and call it the
pseudocomplement of x in H.

Remark
(i) For any topological space X, the collection O(X ) of open

sets of X , endowed with the subset-inclusion order, is a
Heyting algebra.

(ii) More generally, any frame (i.e. complete lattice in which the
infinite distributive law holds) is a Heyting algebra.

(iii) Any Boolean algebra is a Heyting algebra.
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The concept of subobject classifier I

In the category Set of sets, subsets S of a given set X can be
identified with their characteristic functions χS : X →{0,1}; in fact,
denoted by true : {∗}= 1Set→{0,1} the function which sends ∗ to
1, we have a pullback square

S

i
��

! // {∗}

true
��

X
χS
// {0,1}

where i : S→ X is the inclusion and ! : S→{∗} is the unique
arrow in Set to the terminal object 1Set = {∗}.
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The concept of subobject classifier II

Definition
In a category C with finite limits, a subobject classifier is a
monomorphism true : 1C → Ω, such that for every monomorphism
m : a′→ a there is a unique arrow χm : a→ Ω, called the
classifying arrow of m, such that we have a pullback square

a′

m
��

! // 1C

true
��

a
χm
// Ω

Note that, for any object A of C , we have an arrow
∈A: A×ΩA→ Ω, generalizing the belonging relation ∈ of Set
Theory.
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The notion of elementary topos

Definition
An elementary topos is a category with all finite limits,
exponentials and a subobject classifier.

Remark
The notion of elementary topos admits a first-order axiomatization
in the language of Category Theory.
We will see in the next lectures that an elementary topos can be
considered as a mathematical universe in which one can perform
most of the usual set-theoretic constructions, and in which one
can consider models of arbitrary finitary first-order theories.
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Examples of elementary toposes

Example
The following categories are all elementary toposes.

(i) Set.
(ii) Set→.
(iii) Categories Sh(X ) of sheaves on a topological space.
(iv) Categories of set-valued functors [C ,Set] (in particular,

categories M-Set of monoid actions).
(v) Categories of sheaves on a site (this subsumes all the

examples above).

16 / 17



Topos Theory

Olivia Caramello

Basic categorical
constructions

Universal
properties

Adjoint functors

The Yoneda
Lemma

Elementary
toposes

For further
reading

For further reading

F. Borceux.
Handbook of categorical algebra, vol. 1.
Cambridge University Press, 1994.

S. Mac Lane.
Categories for the working mathematician, Graduate Texts in
Math. no 5.
Springer-Verlag, 1971 (revised edition 1998).

S. Mac Lane and I. Moerdijk.
Sheaves in geometry and logic: a first introduction to topos
theory
Springer-Verlag, 1992.
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