Olivia Caramello

Morphisms of sites

The controvariant case The covariant case

The Comparison Lemma

For further reading

Topos Theory Lectures 14-15: Morphisms of sites

Olivia Caramello

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Olivia Caramello

Morphisms o sites

The controvariant case

The covariant case

The Comparison Lemma

For further reading

Morphisms of sites: the controvariant case

Definition

A morphism of sites (𝔅, J) → (𝔅, K), where 𝔅 and 𝔅 are cartesian categories, is a cartesian functor 𝔅 → 𝔅 which sends *J*-covering sieves to *K*-covering sieves.

 Given a site (𝒞, J), the Grothendieck topology J is said to be subcanonical if all the representable functors 𝒞^{op} → Set are J-sheaves.

Theorem

- A morphism of sites f: (𝒞, J) → (𝒯, K) induces a geometric morphism f: Sh(𝒯, K) → Sh(𝒞, J).
- If J and K are subcanonical then a geometric morphism
 g: Sh(𝔅,K) → Sh(𝔅,J) is of the form f for some f if and only if the
 inverse image functor g* sends representables to representables; if
 this is the case then f is isomorphic to the restriction of g* to the full
 subcategories of representables.

Corollary

The assignment $L \to \mathbf{Sh}(L)$ from locales to Grothendieck toposes is a full and faithful 2-functor.

Olivia Caramello

Morphisms of sites

The controvariant case

The covariant case

The Comparison Lemma

For further reading

Morphisms of sites: the covariant case

Definition

A geometric morphism $f : \mathscr{E} \to \mathscr{F}$ is said to be essential if the inverse image functor $f^* : \mathscr{F} \to \mathscr{E}$ has a left adjoint.

Theorem

- Every functor $f:\mathscr{C}\to\mathscr{D}$ induces an essential geometric morphism

 $E(f): [\mathscr{C}^{op}, \mathbf{Set}] \to [\mathscr{D}^{op}, \mathbf{Set}],$

whose inverse image functor is given by composition with f^{op}.

If *C* and *D* are Cauchy-complete categories, a geometric morphism [*C*^{op}, **Set**] → [*D*^{op}, **Set**] is of the form *E*(*f*) for some functor *f* : *C* → *D* if and only if it is essential; in this case, *f* can be recovered from *E*(*f*) (up to isomorphism) as the restriction to the full subcategories of representables of the left adjoint to the inverse image of *E*(*f*).

Olivia Caramello

Morphisms (sites

The controvariant case The covariant case

The Comparison Lemma

For further reading

The Comparison Lemma I

Definition

Let \mathscr{D} be a full subcategory of a small category \mathscr{C} , and let J be a Grothendieck topology on \mathscr{C} . Then \mathscr{D} is said to be *J*-dense if for every object $c \in \mathscr{C}$ there exists a sieve $S \in J(c)$ generated by a family of arrows whose domains lie in \mathscr{D} .

Theorem (The Comparison Lemma)

Let (\mathscr{C}, J) be a site and \mathscr{D} be a *J*-dense subcategory of \mathscr{C} . Then the sieves in \mathscr{D} of the form $R \cap arr(\mathscr{D})$ for a *J*-covering sieve *R* in \mathscr{C} form a Grothendieck topology $J|_{\mathscr{D}}$ on \mathscr{D} , called the *induced topology*, and, denoted by $i : \mathscr{D} \to \mathscr{C}$ the canonical inclusion functor, the geometric morphism

 $E(i): [\mathscr{D}^{op}, \mathbf{Set}] \to [\mathscr{C}^{op}, \mathbf{Set}],$

restricts to an equivalence of categories

E(i)|: $\mathbf{Sh}(\mathscr{D}, J|_{\mathscr{D}}) \simeq \mathbf{Sh}(\mathscr{C}, J)$.

Olivia Caramello

Morphisms o sites

The controvariant case The covariant case

The Comparison Lemma

For further reading

The Comparison Lemma II

Corollary

 Let B be a basis of a frame L, i.e. a subset B ⊂ L such that every element in L can be written as a join of elements in B; then we have an equivalence of categories

$\mathbf{Sh}(L)\simeq\mathbf{Sh}(B,J^{L}|_{B}),$

where J^{L} is the canonical topology on L.

• Let \mathscr{C} be a preorder and J be a subcanonical topology on \mathscr{C} . Then we have an equivalence of categories

$$\mathbf{Sh}(\mathscr{C},J)\simeq\mathbf{Sh}(\mathit{Id}_{J}(\mathscr{C})),$$

where $Id_J(\mathcal{C})$ is the frame of J-ideals on \mathcal{C} (regarded as a locale).

Olivia Caramello

reading

For further reading

🛸 P. T. Johnstone.

Sketches of an Elephant: a topos theory compendium. Vols. 1-2, vols. 43-44 of Oxford Logic Guides Oxford University Press, 2002.

S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: a first introduction to topos theory Springer-Verlag, 1992.