Topos Theory

Olivia Caramello

Topos Theory

Lectures 14-15: Morphisms of sites

Olivia Caramello



Topos Theory

Morphisms of sites: the controvariant case

Olivia Caramello

Definition

The controvariant

+ A morphism of sites (¢,J) — (2, K), where ¥ and 2 are cartesian
e categories, is a cartesian functor ¥ — 2 which sends J-covering
sieves to K-covering sieves.
+ Given a site (¢, J), the Grothendieck topology J is said to be
subcanonical if all the representable functors ¥°P — Set are
J-sheaves.

Theorem

* A morphism of sites f : (¢',J) — (2. K) induces a geometric
morphism f : Sh(Z,K) — Sh(¢,J).

* If J and K are subcanonical then a geometric morphism
g:Sh(2,K) — Sh(¥,J) is of the form f for some f if and only if the
inverse image functor g* sends representables to representables; if
this is the case then f is isomorphic to the restriction of g* to the full
subcategories of representables.

Corollary

The assignment L — Sh(L) from locales to Grothendieck toposes is a
full and faithful 2-functor.
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Definition
A geometric morphism f: & — .% is said to be essential if the
inverse image functor f*: . % — & has a left adjoint.

The covariant case

Theorem

« Every functor f : ¢ — 2 induces an essential geometric
morphism
E(f): [€¢7,Set] — [2°,Set],

whose inverse image functor is given by composition with 7.

« If¢ and 2 are Cauchy-complete categories, a geometric
morphism [€¢°P,Set] — [2°,Set] is of the form E(f) for some
functor f . ¢ — 2 if and only if it is essential; in this case, f
can be recovered from E(f) (up to isomorphism) as the
restriction to the full subcategories of representables of the
left adjoint to the inverse image of E(f).
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Definition

Let 2 be a full subcategory of a small category ¢, and let J be a
S Grothendieck topology on . Then Z is said to be J-dense if for
Lemma every object ¢ € ¥ there exists a sieve S € J(c) generated by a

family of arrows whose domains lie in 2.

Theorem (The Comparison Lemma)

Let (¢,J) be a site and 9 be a J-dense subcategory of €. Then
the sieves in 9 of the form Rnarr(2) for a J-covering sieve R in
& form a Grothendieck topology J|, on 2, called the induced
topology, and, denoted by i : ¥ — € the canonical inclusion
functor, the geometric morphism

E(i):[27,Set] — [¢7,Set],
restricts to an equivalence of categories

E(i)| : Sh(Z,J]5) ~ Sh(¥%,J) .
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Corollary

The Comparison

Lemma  Let B be a basis of a frame L, i.e. a subset B C L such that
every element in L can be written as a join of elements in B;
then we have an equivalence of categories

Sh(L) ~ Sh(B."|s),

where JL is the canonical topology on L.

+ Let ¢ be a preorder and J be a subcanonical topology on & .
Then we have an equivalence of categories

Sh(%,J) ~ Sh(ld,(%)),

where Id,(%€) is the frame of J-ideals on € (regarded as a
locale).
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