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Geometric morphisms as flat functors I

Theorem
Let C be a small category and E be a locally small cocomplete
category. Then, for any functor A : C → E the functor
RA : E → [C op,Set] defined for each e ∈Ob(E ) and c ∈Ob(C ) by:

RA(e)(c) = HomE (A(c),e)

has a left adjoint −⊗C A : [C op,Set]→ E .

Definition
• A functor A : C → E from a small category C to a locally

small topos E with small colimits is said to be flat if the
functor −⊗C A : [C op,Set]→ E preserves finite limits.

• The full subcategory of [C ,E ] on the flat functors will be
denoted by Flat(C ,E ).
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Geometric morphisms as flat functors II

Theorem
Let C be a small category and E be a locally small topos with
small colimits (in particular, a Grothendieck topos). Then we have
an equivalence of categories

Geom(E , [C op,Set])' Flat(C ,E )

(natural in E ), which sends

• a flat functor A : C → E to the geometric morphism
E → [C op,Set] determined by the functors RA and −⊗C A,
and

• a geometric morphism f : E → [C op,Set] to the flat functor
given by the composite f ∗ ◦y of f ∗ : [C op,Set]→ E with the
Yoneda embedding y : C → [C op,Set].

Fact
Let C be a category with finite limits and E be a locally small
cocomplete topos. Then a functor C → E is flat if and only if it
preserves finite limits.
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Geometric morphisms to Sh(C ,J) I

Definition
Let E be a topos with small colimits.

• A family {fi : ai → a | i ∈ I} of arrows in E with common
codomain is said to be epimorphic if for any pair of arrows
g,h : a→ b with domain a, g = h if and only if g ◦ fi = h ◦ fi for
all i ∈ I.

• If (C ,J) is a site, a functor F : C → E is said to be
J-continuous if it sends J-covering sieves to epimorphic
families.

The full subcategory of Flat(C ,E ) on the J-continuous flat
functors will be denoted by FlatJ(C ,E ).
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Geometric morphisms to Sh(C ,J) II

Theorem
For any site (C ,J) and locally small cocomplete topos E , the
above-mentioned equivalence between geometric morphisms and
flat functors restricts to an equivalence of categories

Geom(E ,Sh(C ,J))' FlatJ(C ,E )

natural in E .

Sketch of proof.
Appeal to the previous theorem

• identifying the geometric morphisms E → Sh(C ,J) with the
geometric morphisms E → [C op,Set] which factor through the
canonical geometric inclusion Sh(C ,J) ↪→ [C op,Set], and

• using the characterization of such morphisms as the geometric
morphisms f : E → [C op,Set] such that the composite f ∗ ◦y of
the inverse image functor f ∗ of f with the Yoneda embedding
y : C → [C op,Set] sends J-covering sieves to colimits in E
(equivalently, to epimorphic families in E ).
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For further reading

S. Mac Lane and I. Moerdijk.
Sheaves in geometry and logic: a first introduction to topos
theory
Springer-Verlag, 1992.
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