Olivia Caramello

Geometric morphisms as flat functors

Geometric morphisms to $\mathbf{Sh}(\mathscr{C}, J)$

For further reading

Topos Theory Lectures 12 and 13: Geometric morphisms as flat functors

Olivia Caramello

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Olivia Caramello

Geometric morphisms as flat functors

Geometric morphisms to $Sh(\mathcal{C}, J)$

For further reading

Geometric morphisms as flat functors I

Theorem

Let \mathscr{C} be a small category and \mathscr{E} be a locally small cocomplete category. Then, for any functor $A : \mathscr{C} \to \mathscr{E}$ the functor $R_A : \mathscr{E} \to [\mathscr{C}^{op}, \mathbf{Set}]$ defined for each $e \in Ob(\mathscr{E})$ and $c \in Ob(\mathscr{C})$ by:

$$R_A(e)(c) = Hom_{\mathscr{E}}(A(c), e)$$

has a left adjoint $-\otimes_{\mathscr{C}} A : [\mathscr{C}^{op}, \mathbf{Set}] \to \mathscr{E}$.

Definition

- A functor A: C → E from a small category C to a locally small topos E with small colimits is said to be flat if the functor ⊗_C A: [C^{op}, Set] → E preserves finite limits.
- The full subcategory of [\$\mathcal{C}\$,\$\mathcal{E}\$] on the flat functors will be denoted by Flat(\$\mathcal{C}\$,\$\mathcal{E}\$).

Olivia Caramello

Geometric morphisms as flat functors

Geometric morphisms to $\mathbf{Sh}(\mathcal{C}, J)$

For further reading

Geometric morphisms as flat functors II

Theorem

Let \mathscr{C} be a small category and \mathscr{E} be a locally small topos with small colimits (in particular, a Grothendieck topos). Then we have an equivalence of categories

 $\textit{Geom}(\mathscr{E}, [\mathscr{C}^{\textit{op}}, \textit{Set}]) \simeq \textit{Flat}(\mathscr{C}, \mathscr{E})$

(natural in &), which sends

- a flat functor $A : \mathscr{C} \to \mathscr{E}$ to the geometric morphism $\mathscr{E} \to [\mathscr{C}^{op}, \textbf{Set}]$ determined by the functors R_A and $\otimes_{\mathscr{C}} A$, and
- a geometric morphism f : & → [C^{op}, Set] to the flat functor given by the composite f* ∘ y of f* : [C^{op}, Set] → & with the Yoneda embedding y : C → [C^{op}, Set].

Fact

Let \mathscr{C} be a category with finite limits and \mathscr{E} be a locally small cocomplete topos. Then a functor $\mathscr{C} \to \mathscr{E}$ is flat if and only if it preserves finite limits.

Olivia Caramello

Geometric morphisms as flat functors

Geometric morphisms to $\mathbf{Sh}(\mathscr{C}, J)$

For further reading

Geometric morphisms to $\mathbf{Sh}(\mathcal{C}, J)$ I

Definition

Let \mathcal{E} be a topos with small colimits.

- A family $\{f_i : a_i \to a \mid i \in I\}$ of arrows in \mathscr{E} with common codomain is said to be epimorphic if for any pair of arrows $g, h : a \to b$ with domain a, g = h if and only if $g \circ f_i = h \circ f_i$ for all $i \in I$.
- If (\mathscr{C}, J) is a site, a functor $F : \mathscr{C} \to \mathscr{E}$ is said to be *J*-continuous if it sends *J*-covering sieves to epimorphic families.

The full subcategory of $\mathbf{Flat}(\mathscr{C},\mathscr{E})$ on the *J*-continuous flat functors will be denoted by $\mathbf{Flat}_J(\mathscr{C},\mathscr{E})$.

Olivia Caramello

Geometric morphisms as fla functors

Geometric morphisms to $Sh(\mathcal{C}, J)$

For further reading

Geometric morphisms to $\mathbf{Sh}(\mathscr{C}, J)$ II

Theorem

For any site (\mathcal{C}, J) and locally small cocomplete topos \mathcal{E} , the above-mentioned equivalence between geometric morphisms and flat functors restricts to an equivalence of categories

 $\textit{Geom}(\mathscr{E},\textit{Sh}(\mathscr{C},J)) \simeq \textit{Flat}_{J}(\mathscr{C},\mathscr{E})$

natural in &.

Sketch of proof.

Appeal to the previous theorem

- identifying the geometric morphisms $\mathscr{E} \to Sh(\mathscr{C}, J)$ with the geometric morphisms $\mathscr{E} \to [\mathscr{C}^{op}, Set]$ which factor through the canonical geometric inclusion $Sh(\mathscr{C}, J) \hookrightarrow [\mathscr{C}^{op}, Set]$, and
- using the characterization of such morphisms as the geometric morphisms $f : \mathscr{E} \to [\mathscr{C}^{\mathrm{op}}, \mathbf{Set}]$ such that the composite $f^* \circ y$ of the inverse image functor f^* of f with the Yoneda embedding $y : \mathscr{C} \to [\mathscr{C}^{\mathrm{op}}, \mathbf{Set}]$ sends *J*-covering sieves to colimits in \mathscr{E} (equivalently, to epimorphic families in \mathscr{E}).

Olivia Caramello

For further

🛸 S. Mac Lane and I. Moerdijk.

Sheaves in geometry and logic: a first introduction to topos theory Springer-Verlag, 1992.

For further reading