Olivia Caramello

Points of toposes

Separating sets of points of a topos

The subtermina topology

For further reading

Topos Theory Lecture 16: Points of toposes

Olivia Caramello

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Olivia Caramello

Points of toposes

Separating sets of points of a topos

The subterminal topology

For further reading

Points of toposes

Definition

By a point of a topos \mathscr{E} , we mean a geometric morphism $\mathbf{Set} \to \mathscr{E}$.

Examples

- For any site (𝔅, J), the points of the topos Sh(𝔅, J) correspond precisely to the *J*-continuous flat functors 𝔅 → Set;
- For any locale *L*, the points of the topos $\mathbf{Sh}(L)$ correspond precisely to the frame homomorphisms $L \rightarrow \{0, 1\}$;
- For any small category *C* and any object *c* of *C*, we have a point *e_c*: Set → [*C*^{op}, Set] of the topos [*C*^{op}, Set], whose inverse image is the evaluation functor at *c*.

Fact

Any set of points P of a Grothendieck topos \mathscr{E} indexed by a set X via a function $\xi : X \to P$ can be identified with a geometric morphism $\tilde{\xi} : [X, \mathbf{Set}] \to \mathscr{E}$.

Olivia Caramello

Points of toposes

Separating sets of points of a topos

The subterminal topology

For further reading

Separating sets of points

Definition

- Let \mathscr{E} be a topos and P be a collection of points of \mathscr{E} indexed by a set X via a function $\xi : X \to P$. We say that P is separating for \mathscr{E} if the points in P are jointly surjective, i.e. if the inverse image functors of the geometric morphisms in Pjointly reflect isomorphisms (equivalently, if the geometric morphism $\tilde{\xi} : [X, \mathbf{Set}] \to \mathscr{E}$ is surjective).
- A topos is said to have enough points if the collection of all the points of \mathscr{E} is separating for \mathscr{E} .

Fact

A Grothendieck topos has enough points if and only if there exists a set of points of \mathscr{E} which is separating for \mathscr{E} .

Olivia Caramello

Points of toposes

Separating sets of points of a topos

The subterminal topology

For further reading

The subterminal topology

The following notion provides a way for endowing a given set of points of a topos with a natural topology.

Definition

Let $\xi : X \to P$ be an indexing of a set P of points of a Grothendieck topos \mathscr{E} by a set X. We define the subterminal topology $\tau_{\xi}^{\mathscr{E}}$ as the image of the function $\phi_{\mathscr{E}} : \operatorname{Sub}_{\mathscr{E}}(1) \to \mathscr{P}(X)$ given by

$$\phi_{\mathscr{E}}(u) = \{x \in X \mid \xi(x)^*(u) \cong \mathsf{1}_{\mathsf{Set}}\}.$$

We denote the space X endowed with the topology $\tau_{\xi}^{\mathscr{E}}$ by $X_{\tau_{\xi}^{\mathscr{E}}}$.

The interest of this notion lies in its level of generality, as well as in its formulation as a topos-theoretic invariant admitting a 'natural behaviour' with respect to sites.

Fact

If P is a separating set of points for \mathscr{E} then the frame $\mathscr{O}(X_{\tau_{\xi}^{\mathscr{E}}})$ of open sets of $X_{\tau_{\xi}^{\mathscr{E}}}$ is isomorphic to $\operatorname{Sub}_{\mathscr{E}}(1)$ (via $\phi_{\mathscr{E}}$).

Olivia Caramello

Points of toposes

Separating sets of points of a topos

The subterminal topology

For further reading

Categories of toposes paired with points

The construction of the subterminal topology can be made functorial.

Definition

The category \mathfrak{Top}_P toposes paired with points has as objects the pairs (\mathscr{E}, ξ) , where \mathscr{E} is a Grothendieck topos and $\xi : X \to P$ is an indexing of a set of points P of \mathscr{E} , and whose arrows $(\mathscr{E}, \xi) \to (\mathscr{F}, \xi')$, where $\xi : X \to P$ and $\xi' : Y \to Q$, are the pairs (f, I) where $f : \mathscr{E} \to \mathscr{F}$ is a geometric morphism and $I : X \to Y$ is a function such that the diagram

commutes (up to isomorphism).

Theorem

We have a functor $\mathfrak{Top}_p \to \mathbf{Top}$ (where \mathbf{Top} is the category of topological spaces) sending an object (\mathscr{E}, ξ) of \mathfrak{Top}_p to the space $X_{\tau^{\mathscr{E}}_{\xi}}$ and an arrow $(f, I) : (\mathscr{E}, \xi) \to (\mathscr{F}, \xi')$ in \mathfrak{Top}_p to the continuous function $I : X_{\tau^{\mathscr{E}}_{\xi}} \to X_{\tau^{\mathscr{F}}_{\xi'}}$.

Olivia Caramello

Points of toposes

Separating sets of points of a topos

The subterminal topology

For further reading

Examples of subterminal topologies I

Definition

Let (\mathscr{C}, \leq) be a preorder category. A *J*-prime filter on \mathscr{C} is a subset $F \subseteq ob(\mathscr{C})$ such that *F* is non-empty, $a \in F$ implies $b \in F$ whenever $a \leq b$, for any $a, b \in F$ there exists $c \in F$ such that $c \leq a$ and $c \leq b$, and for any *J*-covering sieve $\{a_i \rightarrow a \mid i \in I\}$ in \mathscr{C} if $a \in F$ then there exists $i \in I$ such that $a_i \in F$.

Theorem

Let \mathscr{C} be a preorder and J be a Grothendieck topology on it. Then the space $X_{\tau^{\mathsf{Sh}(\mathscr{C},J)}}$ has as set of points the collection $\mathscr{F}^J_{\mathscr{C}}$ of the J-prime filters on \mathscr{C} and as open sets the sets the form

$$\mathscr{F}_{I} = \{ F \in \mathscr{F}_{\mathscr{C}}^{J} \mid F \cap I \neq \emptyset \},\$$

where I ranges among the J-ideals on \mathscr{C} . In particular, a sub-basis for this topology is given by the sets

$$\mathscr{F}_{\mathbf{C}} = \{ \mathbf{F} \in \mathscr{F}_{\mathscr{C}}^{\mathbf{J}} \mid \mathbf{C} \in \mathbf{F} \},\$$

<<p><ロ> < 団> < 団> < 三> < 三> < 三> < 三</p>

where c varies among the objects of \mathscr{C} .

Olivia Caramello

Points of toposes

Separating sets of points of a topos

The subterminal topology

For further reading

Examples of subterminal topologies II

- The Alexandrov topology (*ε* = [*P*, Set], where *P* is a preorder and ξ is the indexing of the set of points of *ε* corresponding to the elements of *P*)
- The Stone topology for distributive lattices (*ε* = Sh(*D*, *J*_{coh}) and *ξ* is an indexing of the set of all the points of *ε*, where *D* is a distributive lattice and *J*_{coh} is the coherent topology on it)
- A topology for meet-semilattices (*E* = [*M*^{op}, Set] and ξ is an indexing of the set of all the points of *E*, where *M* is a meet-semilattice)
- The space of points of a locale ($\mathscr{E} = \mathbf{Sh}(L)$ for a locale *L* and ξ is an indexing of the set of all the points of \mathscr{E})
- A logical topology (*E* = Sh(*E*_T, J_T) is the classifying topos of a geometric theory T and ξ is any indexing of the set of all the points of *E* i.e. models of T)
- The Zariski topology

...

Olivia Caramello

For further reading

Sector O Caramello

A topos-theoretic approach to Stone-type dualities, to shortly appear on the Mathematics ArXiv

See P. T. Johnstone.

Sketches of an Elephant: a topos theory compendium. Vols. 1-2, vols. 43-44 of Oxford Logic Guides Oxford University Press, 2002.

📎 S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: a first introduction to topos theory Springer-Verlag, 1992.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・