TOPOS THEORY EXAMPLES 4 (Lent Term 2012) O. Caramello

1. Let Σ be a signature having finitely many sorts A_1, A_2, \ldots, A_n , and **T** a coherent theory over Σ . Show that there is a single-sorted signature $\widehat{\Sigma}$ and a coherent theory $\widehat{\mathbf{T}}$ over $\widehat{\Sigma}$ such that, for any topos \mathcal{E} , we have an equivalence \mathbf{T} - $\mathbf{Mod}(\mathcal{E}) \simeq \widehat{\mathbf{T}}$ - $\mathbf{Mod}(\mathcal{E})$, which is natural in \mathcal{E} .

2. The class of cartesian formulae relative to a theory \mathbf{T} is defined as follows: atomic formulae and \top are cartesian, $(\phi \land \psi)$ is cartesian provided both ϕ and ψ are, and $(\exists x)\phi$ is cartesian provided ϕ is cartesian and the sequent $((\phi \land \phi[x'/x]) \vdash_{x,x',\vec{y}} (x = x'))$ is derivable in \mathbf{T} . (Here x, \vec{y} is a suitable context for ϕ , and x' is a variable not in it.) A theory \mathbf{T} is said to be cartesian if its axioms can be ordered in such a way that each involves formulae which are cartesian relative to the theory formed by the earlier axioms. Write down a presentation of the theory of categories (as a two-sorted theory, with function symbols for domain, codomain and identities, and a ternary relation T(x, y, z) to express "z is the composite of x and y"), and verify that it is cartesian. Show also that if \mathbf{T} is a cartesian theory then \mathbf{T} - $\mathbf{Mod}(\mathcal{E})$ is closed under finite limits in Σ - $\mathbf{Str}(\mathcal{E})$.

3. Consider the following (single-sorted) geometric theory **K**: it has one *n*-ary relation symbol R_n for each $n \ge 0$, with axioms

$$(R_n(x_1,\ldots,x_n)\vdash_{x_1,\ldots,x_n,y}\bigvee_{i=1}^n(y=x_i))$$

(for n = 0, we interpret this as the axiom $(R_0 \vdash_y \bot)$),

$$(R_n(x_1,\ldots,x_n)\dashv _{x_1,\ldots,x_n} R_m(x_{f(1)},\ldots,x_{f(m)}))$$

for any surjection $f: \{1, 2, \dots, m\} \to \{1, 2, \dots, n\}$, and

$$(\top \vdash \bigvee_{n=0}^{\infty} (\exists x_1) \cdots (\exists x_n) R_n(x_1, \dots, x_n))$$
.

Show that the category of **K**-models in **Set** is equivalent to the category of finite sets and surjections between them.

4. Let \mathcal{E} be a Grothendieck topos with internal language $\Sigma_{\mathcal{E}}$. We write $\mathcal{E} \models \sigma$, where σ is a sequent over $\Sigma_{\mathcal{E}}$, to mean that σ is satisfied in the canonical $\Sigma_{\mathcal{E}}$ -structure in \mathcal{E} . Show that

- (a) $1_A : A \to A$ is the identity arrow on A if and only if $\mathcal{E} \models (\top \vdash_x (^{\top}1_A^{\neg}(x) = x));$
- (b) $f: A \to C$ is the composite of $g: A \to B$ and $h: B \to C$ if and only if $\mathcal{E} \models (\top \vdash_x (\ulcorner f \urcorner (x) = \ulcorner h \urcorner (\ulcorner g \urcorner (x))));$

- (c) $f : A \to B$ is monic if and only if $\mathcal{E} \models ((\ulcorner f \urcorner (x) = \ulcorner f \urcorner (x')) \vdash_{x,x'} (x = x'));$
- (d) $f: A \to B$ is an epimorphism if and only if $\mathcal{E} \models (\top \vdash_y (\exists x) \ulcorner f \urcorner (x) = y);$
- (e) A is a terminal object of \mathcal{E} if and only if $\mathcal{E} \models (\top \vdash_{\parallel} (\exists x) \top)$ and $\mathcal{E} \models (\top \vdash_{x,x'} x = x')$ (here x and x' are of sort $\ulcorner A \urcorner$).

5. Let $\xi : X \to P$ be an indexing of a set P of points of a Grothendieck topos \mathcal{E} by a set X. Show that the image of the function $\phi_{\mathcal{E}} : \operatorname{Sub}_{\mathcal{E}}(1) \to \mathscr{P}(X)$ given by

$$\phi_{\mathcal{E}}(u) = \{ x \in X \mid \xi(x)^*(u) \cong 1_{\mathbf{Set}} \}$$

defines a topology on the set X, which we call the subterminal topology. We denote the set X endowed with this topology by $X_{\tau_{\varepsilon}^{\mathcal{E}}}$. Show that

- (a) If \mathcal{P} is a preorder and ξ is the indexing $\{ev_p : \mathbf{Set} \to [\mathcal{P}, \mathbf{Set}] \mid p \in \mathcal{P}\}$ of set of points of the topos $[\mathcal{P}, \mathbf{Set}]$ by (the underlying set of) \mathcal{P} (cf. problem 6) then $\mathcal{P}_{\tau_c^{[\mathcal{P}, \mathbf{Set}]}}$ is the Alexandrov space associated to \mathcal{P} .
- (b) If X is a topological space and ξ is the indexing $\{F_x : \mathbf{Set} \to \mathbf{Sh}(X)\}$ of set of points of $\mathbf{Sh}(X)$ by the set X, where for each $x \in X$, F_x is the point of $\mathbf{Sh}(X)$ whose inverse image is the stalk functor at x (cf. problem 5 on sheet 1) then the space $\mathcal{X}_{\tau_{\varepsilon}}^{\mathbf{Sh}(X)}$ is homeomorphic to X.
- (c) If \mathcal{B} is a Boolean algebra, J is the coherent topology on \mathcal{B} and ξ is the identical indexing of the set X of points of the topos $\mathbf{Sh}(\mathcal{B}, J)$ by itself then the space $X_{\tau_{\xi}^{\mathbf{Sh}(\mathcal{B},J)}}$ is homeomorphic to the Stone space associated to the Boolean algebra \mathcal{B} .

6. Given an indexing $\xi : X \to P$ of a set of points of a Grothendieck topos \mathcal{E} , let $\tilde{\xi} : [X, \mathbf{Set}] \to \mathcal{E}$ denote the associated geometric morphism, as in problem **6** on sheet 3. Show that if $\xi : X \to P$ (resp. $\xi' : Y \to Q$) is an indexing of a set of points of a Grothendieck topos \mathcal{E} (resp. \mathcal{F}) and $f : \mathcal{E} \to \mathcal{F}$ is a geometric morphism such that the diagram

$$\begin{bmatrix} X, \mathbf{Set} \end{bmatrix} \xrightarrow{E(l)} \begin{bmatrix} Y, \mathbf{Set} \end{bmatrix} \xrightarrow{\tilde{\xi}'} \begin{bmatrix} \tilde{\xi}' \\ \mathcal{E} \xrightarrow{f} & \mathcal{F} \end{bmatrix}$$

commutes (up to isomorphism), where $E(l) : [X, \mathbf{Set}] \to [Y, \mathbf{Set}]$ is the geometric morphism induced by the functor $l : X \to Y$, then $l : X_{\tau_{\xi}^{\mathcal{E}}} \to Y_{\tau_{\xi'}^{\mathcal{F}}}$ is a continuous map of topological spaces.