TOPOS THEORY EXAMPLES 3 (Lent Term 2012) O. Caramello

- **1**. Let \mathcal{E} be a topos. Show that the following conditions are equivalent:
- (a) For any subobject $A' \to A$, we have $A' \cup \neg A' \cong A$.
- (b) $(\top, \bot): 1 + 1 \to \Omega$ is an isomorphism.
- (c) The sequent $(\top \vdash_x x \lor \neg x = 1)$ written in the theory of Heyting algebras is valid in the internal Heyting algebra $\Omega_{\mathcal{E}}$ of \mathcal{E} given by its subobject classifier.

A topos \mathcal{E} satisfying any of these conditions is said to be a *Boolean topos*. Show that a topos of sheaves $\mathbf{Sh}(\mathcal{C}, J)$ on a site (\mathcal{C}, J) is Boolean if and only if for every object $c \in \mathcal{C}$ and J-closed sieve R on c,

$$\{f: d \to c \mid (f^*(R) = R_d) \text{ or } (f \in R)\} \in J(c),$$

where R_e denotes the *J*-closure of the empty sieve on *e*, i.e. the sieve $R_e := \{f : d \to e \mid \emptyset \in J(d)\}$ (for each $e \in C$).

Specialize this characterization to obtain necessary and sufficient conditions on a small category \mathcal{C} for the presheaf topos $[\mathcal{C}^{op}, \mathbf{Set}]$ to be Boolean, and on a topological space X for the topos $\mathbf{Sh}(X)$ to be Boolean.

2. If $A_1 \to A$ and $A_2 \to A$ are subobjects in an elementary topos \mathcal{E} , verify that we always have $\neg(A_1 \cup A_2) \cong \neg A_1 \cap \neg A_2$, but that we do not necessarily have $\neg(A_1 \cap A_2) \cong \neg A_1 \cup \neg A_2$. [Consider subobjects of 1 in **Sh**(X), for a suitable space X.] Show further that the second condition (for all pairs of subobjects in \mathcal{E}) is equivalent to any of the following conditions:

- (a) For any subobject $A' \to A$, we have $\neg A' \cup \neg \neg A' \cong A$.
- (b) Every $\neg\neg$ -closed subobject is complemented.
- (c) $(\top, \bot): 2 \to \Omega_{\neg\neg}$ is an isomorphism. [Here 2 denotes the coproduct of two copies of 1, and $\Omega_{\neg\neg}$ denotes the equalizer in \mathcal{E} of the pair of arrows $1_{\Omega}, \neg \circ \neg: \Omega \to \Omega$.]
- (d) The sequent $(\top \vdash_x \neg x \lor \neg \neg x = 1)$ written in the theory of Heyting algebras is valid in the internal Heyting algebra $\Omega_{\mathcal{E}}$ of \mathcal{E} given by its subobject classifier.

A topos \mathcal{E} satisfying any of these conditions is said to be a *De Morgan topos*. Show that a topos of sheaves $\mathbf{Sh}(\mathcal{C}, J)$ on a site (\mathcal{C}, J) is De Morgan if and only if for every object $c \in \mathcal{C}$ and J-closed sieve R on c,

$$\{f: d \to c \mid (f^*(R) = R_d) \text{ or (for any } g: e \to d, \ g^*(f^*(R)) = R_e \text{ implies } g \in R_d)\}$$

belongs to J(c), where R_e denotes the *J*-closure of the empty sieve on *e*, i.e. the sieve $R_e := \{f : d \to e \mid \emptyset \in J(d)\}$ (for each $e \in C$).

Specialize this characterization to obtain necessary and sufficient conditions on a small category \mathcal{C} for the presheaf topos $[\mathcal{C}^{op}, \mathbf{Set}]$ to be De Morgan, and on a topological space X for the topos $\mathbf{Sh}(X)$ to be De Morgan.

3. Let (\mathcal{C}, J) be a site. Show that the subobject classifier $\Omega_{\mathbf{Sh}(\mathcal{C},J)}$ of the topos $\mathbf{Sh}(\mathcal{C}, J)$ has the structure of an internal Heyting algebra in $\mathbf{Sh}(\mathcal{C}, J)$ (i.e., it is a model of the theory of Heyting algebras in $\mathbf{Sh}(\mathcal{C}, J)$) with respect to the following operations:

$$0: 1 \to \Omega_{\mathbf{Sh}(\mathcal{C},J)}$$

defined by setting O(c)(*) equal to the *J*-closure of the empty sieve on c,

$$1: 1 \to \Omega_{\mathbf{Sh}(\mathcal{C},J)}$$

defined by setting 1(c)(*) equal to the maximal sieve on c,

$$\wedge: \Omega_{\mathbf{Sh}(\mathcal{C},J)} \times \Omega_{\mathbf{Sh}(\mathcal{C},J)} \to \Omega_{\mathbf{Sh}(\mathcal{C},J)}$$

defined by setting $\wedge(c)(S,T) = S \cap T$ (for any $c \in \mathcal{C}$ and any J-closed sieves S and T on c),

$$\vee: \Omega_{\mathbf{Sh}(\mathcal{C},J)} \times \Omega_{\mathbf{Sh}(\mathcal{C},J)} \to \Omega_{\mathbf{Sh}(\mathcal{C},J)}$$

defined by setting $\lor(c)(S,T) = \{f : d \to c \text{ in } \mathcal{C} \mid f^*(S \cup T) \in J(d)\}$ (for any $c \in \mathcal{C}$ and any J-closed sieves S and T on c), and

$$\Rightarrow \Omega_{\mathbf{Sh}(\mathcal{C},J)} \times \Omega_{\mathbf{Sh}(\mathcal{C},J)} \to \Omega_{\mathbf{Sh}(\mathcal{C},J)}$$

defined by setting $\Rightarrow (c)(S,T) = \{f : d \to c \text{ in } \mathcal{C} \mid f^*(S) \subseteq f^*(T)\}$ (for any $c \in \mathcal{C}$ and any J-closed sieves S and T on c).

4. Let \mathcal{P} be a preorder. The Alexandrov space $\mathcal{A}_{\mathcal{P}}$ associated to \mathcal{P} is the topological space whose underlying set is \mathcal{P} and whose open sets are the upper sets in \mathcal{P} (i.e. the subsets $S \subseteq \mathcal{P}$ such that for any $a, b \in \mathcal{P}$ with $a \leq b$, $a \in \mathcal{P}$ implies $b \in \mathcal{P}$). Using the technique 'toposes as bridges' (applied to the Morita-equivalence $\mathbf{Sh}(Id(\mathcal{P}^{\text{op}})) \simeq [\mathcal{P}, \mathbf{Set}]$ and to the topos-theoretic invariants 'to be a Boolean topos' and 'to be a De Morgan topos', in light of the site characterizations obtained in problems 1 and 2), show that

- (a) $\mathcal{A}_{\mathcal{P}}$ is almost discrete if and only if for any $p, q \in \mathcal{P}, p \leq q$ implies $q \leq p$.
- (b) $\mathcal{A}_{\mathcal{P}}$ is extremally disconnected if and only if \mathcal{P} satisfies the amalgamation property (i.e., for any elements $a, b, c \in \mathcal{P}$ such that $c \leq a, b$ there exists $d \in \mathcal{P}$ such that $a, b \leq d$).

5. Let L and L' be frames and let $f: L \to L'$ be a surjective frame homomorphism. Show that the induced geometric morphism $\mathbf{Sh}(L') \to \mathbf{Sh}(L)$ is a geometric inclusion. Deduce, by using the technique 'toposes as bridges' (applied to the Morita-equivalence $\mathbf{Sh}(Id(\mathcal{C})) \simeq [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ holding for any preorder \mathcal{C} , and to the invariant notion of subtopos (in the sense of equivalence class of geometric inclusions to a given topos)) that for any preorder \mathcal{C} and any surjective frame homomorphism $f: Id(\mathcal{C}) \to F$ onto a frame F there exists a Grothendieck topology J on \mathcal{C} such that $F \cong Id_J(\mathcal{C})$ and f corresponds, under this isomorphism, to the frame homomorphism $cl_J: Id(\mathcal{C}) \to Id_J(\mathcal{C})$ sending an ideal I on \mathcal{C} to its J-closure. Is the Grothendieck topology J necessarily unique?

- 6. A point of a topos \mathcal{E} is a geometric morphism $\mathbf{Set} \to \mathcal{E}$. Show that
- (a) For any preorder C and Grothendieck topology J on C, the points of the topos Sh(C, J) correspond precisely to the J-prime filters on C (by a J-prime filter on C we mean a subset F ⊆ C such that F is non-empty, a ∈ F implies b ∈ F whenever a ≤ b, for any a, b ∈ F there exists c ∈ F such that c ≤ a and c ≤ b, and for any J-covering sieve {a_i → a | i ∈ I} in C if a ∈ F then there exists i ∈ I such that a_i ∈ F).
- (b) For any frame L, the points of the topos Sh(L) correspond precisely to the frame homomorphisms L → {0,1}, equivalently to the completely prime filters on L (i.e., the subsets S ⊆ L such that 1 ∈ S, a ∧ b ∈ S if and only if a ∈ S and b ∈ S, and for any family of elements {a_i | i ∈ I} whose join is a, a ∈ S implies a_i ∈ S for some i).
- (c) For any small category \mathcal{C} and any object c of \mathcal{C} , there is a point ev_c : $\mathbf{Set} \to [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ of the topos $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ whose inverse image is the evaluation functor at the object c.

Show further that for any Grothendieck topos \mathcal{E} , any set of points P of a Grothendieck topos \mathcal{E} indexed by a set X via a function $\xi : X \to P$ can be naturally identified with a geometric morphism $\tilde{\xi} : [X, \mathbf{Set}] \to \mathcal{E}$.

7. Let \mathcal{C} be a meet-semilattice (regarded as a preorder category) and let J be a (subcanonical) topology on \mathcal{C} . Show, by using the technique 'toposes as bridges' (applied to the Morita-equivalence $\mathbf{Sh}(\mathcal{C}, J) \simeq \mathbf{Sh}(Id_J(\mathcal{C}))$ and to the invariant notion of geometric morphism from a localic topos $\mathbf{Sh}(L)$ to a given topos), that for any monotone map $f : \mathcal{C} \to L$ to a frame L, f is a meet-semilattice homomorphism which sends every J-covering sieve to a jointly covering family in L if and only if there is a (unique) frame homomorphism $\tilde{f} : Id_J(\mathcal{C}) \to L$ such that $\tilde{f} \circ \eta = f$ (given by the formula

 $\tilde{f}(I) = \bigvee_{c \in I} f(c)$ for any $I \in Id_J(\mathcal{C})$). Deduce that the assignment sending a filter F on $Id_J(\mathcal{C})$ to the J-prime filter $\{c \in \mathcal{C} \mid (c) \downarrow \in F\}$ on \mathcal{C} defines a bijection between the completely prime filters on the frame $Id_J(\mathcal{C})$ and the J-prime filters on \mathcal{C} (cf. problem **6**).