TOPOS THEORY EXAMPLES 1 (Lent Term 2012) O. Caramello

1. Let \mathcal{C} be a category such that, for each object c, the slice category \mathcal{C}/c is equivalent to a small category, even though \mathcal{C} may not be small. Show that the functor category $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$ is an elementary topos [hint: show that the usual constructions of exponentials and Ω for small \mathcal{C} yield set-valued rather than class-valued functors]. By considering the case when \mathcal{C} is the ordered class **On** of ordinals, or otherwise, show that such toposes need not be locally small (i.e. their 'hom-sets' may be proper classes.).

2. Let \mathcal{E} be a category with finite limits and a subobject classifier Ω , and let $f: \Omega \to \Omega$ be a monomorphism in \mathcal{E} . By considering the pullback squares

show that $f \circ f$ is the identity morphism 1_{Ω} . By considering the topos $[\mathbf{N}, \mathbf{Set}]$ where \mathbf{N} is the ordered set of natural numbers, show that Ω may have epic endomorphisms which are not isomorphisms.

3. Let G be a topological group. The category $\mathbf{B}(G)$ of continuous G-sets has as objects sets X equipped with a right action $\xi : X \times G \to X$ which is continuous when X is equipped with the discrete topology and as arrows $(X,\xi) \to (Y,\xi')$ the functions $X \to Y$ which respect the action. Show that $\mathbf{B}(G)$ is an elementary topos.

4. Let X be a topological space. Given an open covering $\mathcal{U} = \{U_i \mid i \in I\}$ of an open set $U \subseteq X$, we write $S_{\mathcal{U}}$ for the subfunctor of $\mathbf{y}U = \mathcal{O}(X)(-,U)$ which is the union of the $\mathbf{y}U_i$, i.e.

$$S_{\mathcal{U}}(V) = \{*\}$$
 if $V \subseteq U_i$ for some i

and $S_{\mathcal{U}}(V) = \emptyset$ otherwise. Show that a functor $F : \mathcal{O}(X)^{\mathrm{op}} \to \mathbf{Set}$ is a sheaf iff, for each such \mathcal{U} , each morphism $S_{\mathcal{U}} \to F$ in $[\mathcal{O}(X)^{\mathrm{op}}, \mathbf{Set}]$ has a unique extension to a morphism $\mathbf{y}U \to F$.

5. Let x be a point of a topological space X, and F a sheaf on X. If $s \in F(U)$ for some open neighbourhood U of x, the germ of sat x (denoted s_x) is its equivalence class under the relation which identifies $s \in F(U)$ with $t \in F(V)$ iff they agree when restricted to some open W with $x \in W \subseteq U \cap V$. The stalk x^*F of F at x is the set of all germs at x of elements of F defined on neighbourhoods of x. Show that x^* is a functor $\mathbf{Sh}(X) \to \mathbf{Set}$, that it preserves finite limits, and that it has a right adjoint.

6. Prove that for any arrow $f: Z \to Y$ in the category $\tilde{\mathcal{C}} := [\mathcal{C}^{\text{op}}, \mathbf{Set}]$, the pullback functor

$$f^* : \operatorname{Sub}_{\tilde{\mathcal{C}}}(Y) \to \operatorname{Sub}_{\tilde{\mathcal{C}}}(Z)$$

has both a left adjoint \exists_f and a right adjoint \forall_f .