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Introduction

The “unifying notion” of topos

“It is the topos theme which is this “bed” or “deep river”

where come to be married geometry and algebra, topology and arithmetic,
mathematical logic and category theory, the world of the “continuous” and
that of “discontinuous” or discrete structures. It is what | have conceived of
most broad to perceive with finesse, by the same language rich of
geometric resonances, an “essence” which is common to situations

most distant from each other coming from one region or another

of the vast universe of mathematical things”.

A. Grothendieck

Topos theory can be regarded as a unifying subject in Mathemat-
ics, with great relevance as a framework for systematically inves-
tigating the relationships between different mathematical theories
and studying them by means of a multiplicity of different points of
view. lts methods are transversal to the various fields and com-
plementary to their own specialized techniques. In spite of their
generality, the topos-theoretic techniques are liable to generate in-
sights which would be hardly attainable otherwise and to establish
deep connections that allow effective transfers of knowledge be-

tween different contexts. :
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The multifaceted

nature of toposes

The multifaceted nature of toposes

The role of toposes as unifying spaces is intimately tied to their
multifaceted nature.

For instance, a topos can be seen as:
® a generalized space
¢ a mathematical universe

¢ atheory modulo ‘Morita-equivalence’

We shall now review each of these classical points of view, and
then present the more recent theory of topos-theoretic ‘bridges’,
which combines all of them to provide tools for making toposes
effective means for studying mathematical theories from multiple
points of view, relating and unifying theories with each other and
constructing ‘bridges’ across them.
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The multifaceted

nature of toposes

Toposes as generalized spaces

¢ The notion of topos was introduced in the early sixties by A.
Grothendieck with the aim of bringing a topological or
geometric intuition also in areas where actual topological
spaces do not occur.
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The multifaceted

nature of toposes

Toposes as generalized spaces

¢ The notion of topos was introduced in the early sixties by A.
Grothendieck with the aim of bringing a topological or
geometric intuition also in areas where actual topological
spaces do not occur.

e Grothendieck realized that many important properties of
topological spaces X can be naturally formulated as
(invariant) properties of the categories Sh(X) of sheaves of
sets on the spaces.
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The multifaceted

nature of toposes

Toposes as generalized spaces

¢ The notion of topos was introduced in the early sixties by A.

Grothendieck with the aim of bringing a topological or
geometric intuition also in areas where actual topological
spaces do not occur.

Grothendieck realized that many important properties of
topological spaces X can be naturally formulated as
(invariant) properties of the categories Sh(X) of sheaves of
sets on the spaces.

He then defined toposes as more general categories of
sheaves of sets, by replacing the topological space X by a
pair (¢,J), called a site, consisting of a (small) category ¥
and a ‘generalized notion of covering’ J on it, and taking
sheaves (in a generalized sense) over the pair:
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Topos-theoretic invariants

Olivia Garamello ® The notion of a geometric morphism of toposes has notably
allowed to build general comology theories starting from the
The multfaceted categories of internal abelian groups or modules in toposes.

nature of toposes

In particular, the topos-theoretic viewpoint has allowed
Grothendieck to refine and enrich the study of cohomology,
up to the so-called ‘six-operation formalism’.

The cohomological invariants have had a tremendous impact
on the development of modern Algebraic Geometry and
beyond.
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Olivia Garamello ® The notion of a geometric morphism of toposes has notably
allowed to build general comology theories starting from the
The multfaceted categories of internal abelian groups or modules in toposes.

nature of toposes

In particular, the topos-theoretic viewpoint has allowed
Grothendieck to refine and enrich the study of cohomology,
up to the so-called ‘six-operation formalism’.

The cohomological invariants have had a tremendous impact
on the development of modern Algebraic Geometry and
beyond.

¢ On the other hand, also homotopy-theoretic invariants such

as the fundamental group and the higher homotopy groups
can be defined as invarants of toposes.
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The multifaceted

nature of

Topos-theoretic invariants

® The notion of a geometric morphism of toposes has notably

allowed to build general comology theories starting from the
categories of internal abelian groups or modules in toposes.
In particular, the topos-theoretic viewpoint has allowed
Grothendieck to refine and enrich the study of cohomology,
up to the so-called ‘six-operation formalism’.

The cohomological invariants have had a tremendous impact
on the development of modern Algebraic Geometry and
beyond.

On the other hand, also homotopy-theoretic invariants such
as the fundamental group and the higher homotopy groups
can be defined as invarants of toposes.

Still, these are by no means the only invariants that one can
consider on toposes: indeed, there are infinitely many
invariants of toposes (of algebraic, logical, geometric or
whatever nature), the notion of identity for toposes being
simply categorical equivalence.
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nature of toposes

Toposes as mathematical universes

A decade later, W. Lawvere and M. Tierney discovered that a
topos could not only be seen as a generalized space, but also as
a mathematical universe in which one can do mathematics
similarly to how one does it in the classical context of sets (with
the only important exception that one must argue constructively).
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The multifaceted

nature of toposes

Toposes as mathematical universes

A decade later, W. Lawvere and M. Tierney discovered that a
topos could not only be seen as a generalized space, but also as
a mathematical universe in which one can do mathematics
similarly to how one does it in the classical context of sets (with
the only important exception that one must argue constructively).

Amongst other things, this discovery made it possible to:

e Exploit the inherent ‘flexibility’ of the notion of topos to
construct ‘new mathematical worlds’ having particular
properties.

11/47



Grothendieck
toposes as
unifying ‘bridges’
in Mathematics

Olivia Caramello

The multifaceted

nature of toposes

Toposes as mathematical universes

A decade later, W. Lawvere and M. Tierney discovered that a
topos could not only be seen as a generalized space, but also as
a mathematical universe in which one can do mathematics
similarly to how one does it in the classical context of sets (with
the only important exception that one must argue constructively).

Amongst other things, this discovery made it possible to:
e Exploit the inherent ‘flexibility’ of the notion of topos to
construct ‘new mathematical worlds’ having particular
properties.

¢ Consider models of any kind of (first-order) mathematical

theory not just in the classical set-theoretic setting, but inside
every topos, and hence ‘relativise’ Mathematics.
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The multifaceted
nature of toposes

Classifying toposes

It was realized in the seventies (thanks to the work of several

people, notably including W. Lawvere, A. Joyal, G. Reyes and M.
Makkai) that:

¢ To any (geometric first-order) mathematical theory T one can
canonically associate a topos &r, called the classifying topos
of the theory, which represents its ‘semantical core’.

e The topos &7 is characterized by the following
representability property: for any Grothendieck topos & we

have an equivalence of categories
Geom(&, &) ~ T-mod(&)

natural in &, where

- Geom(&, &) is the category of geometric morphisms & — &t
and

- T-mod(&) is the category of T-models in &.

13/47
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The multifaceted

nature of toposes

Toposes as theories up to ‘Morita-equivalence’

e Two mathematical theories have the same classifying topos
(up to equivalence) if and only if they have the same
‘semantical core’, that is if and only if they are

indistinguishable from a semantic point of view; such theories

are said to be Morita-equivalent.

e Conversely, every Grothendieck topos arises as the
classifying topos of some theory.

e So atopos can be seen as a canonical representative of
equivalence classes of theories modulo Morita-equivalence.
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¢ The notion of Morita-equivalence is ubiquitous in
Mathematics; indeed, it formalizes in many situations the
feeling of ‘looking at the same thing in different ways’, or
e ‘constructing a mathematical object through different
‘ methods’.
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Toposes as bridges

¢ The notion of Morita-equivalence is ubiquitous in
Mathematics; indeed, it formalizes in many situations the
feeling of ‘looking at the same thing in different ways’, or
‘constructing a mathematical object through different
methods’.

¢ |n fact, many important dualities and equivalences in
Mathematics can be naturally interpreted in terms of
Morita-equivalences.
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Toposes as bridges

¢ The notion of Morita-equivalence is ubiquitous in
Mathematics; indeed, it formalizes in many situations the
feeling of ‘looking at the same thing in different ways’, or
‘constructing a mathematical object through different
methods’.

¢ |n fact, many important dualities and equivalences in
Mathematics can be naturally interpreted in terms of
Morita-equivalences.

® On the other hand, Topos Theory itself is a primary source of

Morita-equivalences. Indeed, different representations of the
same topos can be interpreted as Morita-equivalences
between different mathematical theories.
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¢ The notion of Morita-equivalence is ubiquitous in
Mathematics; indeed, it formalizes in many situations the
feeling of ‘looking at the same thing in different ways’, or
e ‘constructing a mathematical object through different
‘ methods’.

¢ |n fact, many important dualities and equivalences in
Mathematics can be naturally interpreted in terms of
Morita-equivalences.

® On the other hand, Topos Theory itself is a primary source of
Morita-equivalences. Indeed, different representations of the
same topos can be interpreted as Morita-equivalences
between different mathematical theories.

* Any two theories which are bi-interpretable in each other are
Morita-equivalent but, very importantly, the converse does
not hold.
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¢ The notion of Morita-equivalence is ubiquitous in
Mathematics; indeed, it formalizes in many situations the
feeling of ‘looking at the same thing in different ways’, or
e ‘constructing a mathematical object through different
‘ methods’.

¢ |n fact, many important dualities and equivalences in
Mathematics can be naturally interpreted in terms of
Morita-equivalences.

® On the other hand, Topos Theory itself is a primary source of
Morita-equivalences. Indeed, different representations of the
same topos can be interpreted as Morita-equivalences
between different mathematical theories.

* Any two theories which are bi-interpretable in each other are
Morita-equivalent but, very importantly, the converse does
not hold.

* A mathematical theory alone gives rise to an infinite number
of Morita-equivalences, through its ‘internal dynamics’.
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Toposes as bridges

® |n the topos-theoretic study of theories, the latter are
represented by sites (of definition of their classifying topos or
of some other topos naturally attached to them).
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Toposes as bridges

® |n the topos-theoretic study of theories, the latter are
represented by sites (of definition of their classifying topos or
of some other topos naturally attached to them).

® The existence of theories which are Morita-equivalent to each
other translates into the existence of different sites of definition
(or, more generally, presentations) for the same Grothendieck
topos.
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Toposes as bridges

® |n the topos-theoretic study of theories, the latter are
represented by sites (of definition of their classifying topos or
of some other topos naturally attached to them).

® The existence of theories which are Morita-equivalent to each
other translates into the existence of different sites of definition
(or, more generally, presentations) for the same Grothendieck
topos.

e Grothendieck toposes can be effectively used as ‘bridges’ for

transferring notions, properties and results across different
Morita-equivalent theories:

>~ Ep — _
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Toposes as bridges

In the topos-theoretic study of theories, the latter are
represented by sites (of definition of their classifying topos or
of some other topos naturally attached to them).

The existence of theories which are Morita-equivalent to each
other translates into the existence of different sites of definition
(or, more generally, presentations) for the same Grothendieck
topos.

Grothendieck toposes can be effectively used as ‘bridges’ for
transferring notions, properties and results across different
Morita-equivalent theories:

=&~ Ep —~ _

The transfer of information takes place by expressing
topos-theoretic invariants in terms of the different sites of
definition (or, more generally, presentations) for the given
topos.

24 /47



Grothendieck
toposes as
unifying ‘bridges’
in Mathematics

Olivia Caramello

Topo!
bridg

Toposes as bridges

In the topos-theoretic study of theories, the latter are
represented by sites (of definition of their classifying topos or
of some other topos naturally attached to them).

The existence of theories which are Morita-equivalent to each
other translates into the existence of different sites of definition
(or, more generally, presentations) for the same Grothendieck
topos.

Grothendieck toposes can be effectively used as ‘bridges’ for
transferring notions, properties and results across different
Morita-equivalent theories:

=&~ Ep —~ _

The transfer of information takes place by expressing
topos-theoretic invariants in terms of the different sites of
definition (or, more generally, presentations) for the given
topos.

As such, different properties (resp. constructions) arising in
the context of theories classified by the same topos are seen
to be different manifestations of a unique property (resp.
construction) lying at the topos-theoretic level.
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Toposes as bridges

¢ This methodology is technically effective because the
relationship between a topos and its representations is often
very natural, enabling us to easily transfer invariants across
different representations (and hence, between different
theories).

¢ On the other hand, the ‘bridge’ technique is highly non-trivial, in
the sense that it often yields deep and surprising results. This
is due to the fact that a given invariant can manifest itself in
significanly different ways in the context of different
presentations.
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Olivia Caramello ¢ This methodology is technically effective because the
relationship between a topos and its representations is often
very natural, enabling us to easily transfer invariants across
different representations (and hence, between different
theories).

¢ On the other hand, the ‘bridge’ technique is highly non-trivial, in
the sense that it often yields deep and surprising results. This
is due to the fact that a given invariant can manifest itself in
significanly different ways in the context of different
presentations.

* The level of generality represented by topos-theoretic
invariants is ideal to capture several important features of
mathematical theories and constructions. Indeed, many
important invariants of mathematical structures are actually
invariants of toposes (think for instance of cohomology or
homotopy groups) and topos-theoretic invariants considered on
the classifying topos &1 of a geometric theory T often translate
into interesting logical (i.e. syntactic or semantic) properties of
T.

27 /47



Grothendieck
toposes as
unifying ‘bridges’
in Mathematics

Olivia Caramello

TO[)OS(?S as
bridges

The ‘bridge-building’ technique

e Decks of ‘bridges’: Morita-equivalences (or more generally
morphisms or other kinds of relations between toposes)

® Arches of ‘bridges’: Site characterizations for topos-theoretic
invariants (or more generally ‘unravelings’ of topos-theoretic
invariants in terms of concrete representations of the relevant
topos)

Invariant I across
the Morita-equivalence

Sh(C.J) ~ Sh(D, K)

site characterization site characterization

forl -~ =~ forl
- - = ~
- ~
-~ ~
e ~
(c.J) (D, K)
Property P 1 Property Qp k)

The ‘bridge’ yields a logical equivalence (or an implication)

between the ‘concrete’ properties P ) and Q4 k), interpreted in
this context as manifestations of a unique property / lying at the

level of the topos. 3.8
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A few selected applications

u_nifying ‘bridg_es‘
YRR Since the theory of topos-theoretic ‘bridges’ was introduced in
2010, several applications of it have been obtained in different

fields of Mathematics, such as:
e Model theory (topos-theoretic Fraissé theorem)
Toposes as
oridges e Proof theory (various results for first-order theories)

e Algebra (topos-theoretic generalization of topological Galois
theory)

¢ Topology (topos-theoretic interpretation/generation of
Stone-type and Priestley-type dualities)

e Functional analysis (various results on Gelfand spectra and
Wallman compactifications)

¢ Many-valued logics and lattice-ordered groups (three joint
papers with A. C. Russo)

e Cyclic homology, as reinterpreted by A. Connes (work on
“cyclic theories”, jointly with N. Wentzlaff)

e Algebraic geometry (logical analysis of (co)homological
motives, cf. the paper “Syntactic categories for Nori motives”
joint with L. Barbieri-Viale and L. Lafforgue)

Olivia Caramello
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The methodology ‘toposes as bridges’ is a vast extension of
Felix Klein’s Erlangen Program (A. Joyal)

Toposes as More SpeCiﬁca"y:

bridges
e Every group gives rise to a topos (namely, the category of
actions of it), but the notion of topos is much more general.

¢ As Klein classified geometries by means of their
automorphism groups, so we can study first-order geometric
theories by studying the associated classifying toposes.

® As Klein established surprising connections between very
different-looking geometries through the study of the
algebraic properties of the associated automorphism groups,
so the methodology ‘toposes as bridges’ allows to discover
non-trivial connections between properties, concepts and
results pertaining to different mathematical theories through
the study of the categorical invariants of their classifying
toposes.

30/47
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Examples of
bridges

Some examples of ‘bridges’

We shall now discuss a few ‘bridges’ established in the context of

the above-mentioned applications:
¢ Topological Galois theory
e Theories of presheaf type
¢ Topos-theoretic Fraissé theorem

e Stone-type dualities

The results are completely different... but the methodology is
always the samel!
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Topological Galois theory

Recall that classical topological Galois theory provides, given a
Galois extension F C L, a bijective correspondence between the
intermediate field extensions (resp. finite field extensions)

F C K C L and the closed (resp. open) subgroups of the Galois
group Autr(L).

This admits the following categorical reformulation: the functor
K — Hom(K, L) defines an equivalence of categories

(LE)°P = Conty(Auti(L)),

where .,2”,_5 is the category of finite intermediate field extensions
and Cont;(Auts(L)) is the category of continuous non-empty
transitive actions of Auts(L) on discrete sets.

32/47
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Topological Galois theory

Recall that classical topological Galois theory provides, given a
Galois extension F C L, a bijective correspondence between the
intermediate field extensions (resp. finite field extensions)

F C K C L and the closed (resp. open) subgroups of the Galois
group Autr(L).

This admits the following categorical reformulation: the functor
K — Hom(K, L) defines an equivalence of categories

(LE)°P = Conty(Auti(L)),

where .,2”,_5 is the category of finite intermediate field extensions
and Cont;(Auts(L)) is the category of continuous non-empty
transitive actions of Auts(L) on discrete sets.

A natural question thus arises: can we characterize the
categories ¥ whose dual is equivalent to (or fully embeddable
into) the category of (non-empty transitive) actions of a
topological automorphism group?
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Topological
Galois theory

The topos-theoretic interpretation
Key observation: the above equivalence extends to an
equivalence of toposes
Sh(LE™ Jat) ~ Cont(Autr(L)),

where Jy is the atomic topology on Z£°F and Cont(Autr(L)) is
the topos of continuous actions of Autg(L) on discrete sets.
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Topological
Galois theory

The topos-theoretic interpretation

Key observation: the above equivalence extends to an
equivalence of toposes

Sh(LE™ Jat) ~ Cont(Autr(L)),

where Jy is the atomic topology on Z£°F and Cont(Autr(L)) is
the topos of continuous actions of Autg(L) on discrete sets.

It is therefore natural to investigate our problem by using the
methods of topos theory: more specifically, we shall look for
conditions on a small category ¥ and on an object u of its
ind-completion for the existence of an equivalence of toposes of
the form

Sh(%°P, Jat) ~ Cont(Aut(u)) .

We will then be able to obtain, starting from such an equivalence,
an answer to our question, and hence build Galois-type theories
in a great variety of different mathematical contexts.

135/47
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Topological
Galois theory

The key notions |

* A category ¥ is said to satisfy the amalgamation property
(AP) if for every objects a, b, c € ¥ and morphisms f: a— b,
g:a— cin % there exists an object d € ¥ and morphisms
ff:b—d,g:c—din%suchthat ffof=gog:

e A category ¥ is said to satisfy the joint embedding property
(JEP) if for every pair of objects a, b € ¥ there exists an
object ¢ € ¥ and morphisms f:a—c¢,g:b—cin%:

36/47
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Topological
Galois theory

The key notions Il

* An object u € Ind-% is said to be ¢-universal if for every
a € ¢ there exists an arrow x : a— uin Ind-%¢":

x

a--—-=>u

* An object u € Ind-% is said to be ¥-ultrahomogeneous if for
any object a€ ¢ and arrows xy:a— U, o : a— uin Ind-¢
there exists an automorphism j: u — u such that jo y1 = xo:

X

a——su

\

1
N
u

37/47
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Topological
Galois theory

Topological Galois theory as a ‘bridge’

Theorem

Let € be a small category satisfying the amalgamation and joint
embedding properties, et let u be a ¢ -universal et

¢ -ultrahomogeneous object of the ind-completion Ind-¢ of €. Then
there is an equivalence of toposes

Sh(%¢°P, Ja) ~ Cont(Aut(u)),

where Aut(u) is endowed with the topology in which a basis of open
neighbourhoods of the identity is given by the subgroups of the form
ly={acAut(u) | aoy =y} for xy :c— u an arrow in Ind-%¢ from an
object c of €.

This equivalence is induced by the functor

F : €°° — Cont(Aut(u))

which sends any object ¢ of € on the set Homnq-¢(C, u) (endowed
with the obvious action of Aut(u)) and any arrow f : ¢ — d in € to the
Aut(u)-equivariant map

—of:Homjng.¢(d,u) = Homng.¢(C, U) .

38/47
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The following result arises from two ‘bridges’, respectively obtained by
considering the invariant notions of atom and of arrow between atoms.

Theorem

Under the hypotheses of the last theorem, the functor F is full and
faithful if and only if every arrow of ¢ is a strict monomorphism, and it is
an equivalence on the full subcategory Cont;(Aut(u)) of Cont(Aut(u))
on the non-empty transitive actions if € is moreover atomically complete.

Olivia Caramello

Topological
Galois theory

Sh(%°P, Jut) ~ Cont(Aut(u))

%P Cont,(Aut(u))

This theorem generalizes Grothendieck’s theory of Galois categories and
can be applied for generating Galois-type theories in different fields of
Mathematics, for example that of finite groups and that of finite graphs.

Moreover, if a category ¥ satisfies the first but not the second condition
of the theorem, our topos-theoretic approach gives us a fully explicit way
to complete it, by means of the addition of ‘imaginaries’, so that also the

second condition gets satisfied.
39/47
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Theories o
presheaf type

Theories of presheaf type

Definition
A geometric theory is said to be of presheaf type if it is classified by
a presheaf topos.

Theories of presheaf type are very important in that they constitute
the basic ‘building blocks’ from which every geometric theory can be
built. Indeed, as every Grothendieck topos is a subtopos of a
presheaf topos, so every geometric theory is a ‘quotient’ of a theory
of presheaf type.

These theories are, in a precise technical sense, the logical
counterpart of small categories.

Most importantly, any theory of presheaf type T gives rise to two
different representations of its classifying topos, which can be used
to build ‘bridges’ connecting its syntax and semantics:

_ [f.p-T-mod(Set), Set] ~ Sh(¢7, Jr)

- ~
—~ ~

f.p.’[[‘—mod(S;t)"p (@1, Jr)

40/47
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Theories o
presheaf type

A definability theorem

Theorem

Let T be a theory of preshef type and suppose that we are given,
for every finitely presentable Set-model .# of T, a subset R, of
A" in such a way that every T-model homomorphism

h:.# — ¥ maps R, into R ,. Then there exists a geometric
formula-in-context ¢(x1,...,xn) such that R , = [[X . ¢]].» for each
finitely presentable T-model .# .

Subobject of UAy x---x UAp
[f.p.T-mod(Set), Set] ~ Sh(%, Jr)

-7 ~

- = ~ o
f.p.T-mod(Set)°? ~ (‘ﬁr; Jr)
Functorial assignment Geometric formula

M— Ry CMA} x-x MAp ¢(xf‘ i)

41/47
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Topos-theoretic
Fraissé theorem

Topos-theoretic Fraissé theorem

The following result, which generalizes Fraissé’s theorem in
classical model theory, arises from a triple ‘bridge’.

Definition

A set-based model M of a geometric theory T is said to be
homogeneous if for any arrow y : ¢ — M in T-mod(Set) and any
arrow f in f.p.T-mod(Set) there exists an arrow v in T-mod(Set)
such that uof=y:
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Theorem

Let T be a theory of presheaf type such that the category
f.p.T-mod(Set) is non-empty and has AP and JEP. Then the
theory T’ of homogeneous T-models is complete and atomic.
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Atomic topos

Sh(f.p.T-mod(Set), J) ~ Sh(¢y, Jr)

(£p.T-mod(Set)%P, Jz) T~
Atomic site i.e. (%/T"J'ﬂ")
AP on f.p.T-mod(Set) Atomicity of T’

Two-valued topos
Sh(f.p.T-mod(Set)*P, Jar) ~ Sh(r, Jrv)

(f.p.T-mod(Set)P, Jzr) (%, dv)
JEP on f.p.T-mod(Set) Completeness of T’
Point of

Sh(f.p.T-mod(Set), Ja) ~ Sh(%r, Jyv)

(£.p.T-mod(Set)P, Jz) ()

homogeneous T-model in Set T’-model in Set
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Stone-type dualities through ‘bridges’

The ‘bridge-building’ technique allows one to unify all the classical
Stone-type dualities between special kinds of preorders and partial
orders, locales or topological spaces as instances of just one
topos-theoretic phenomenon, and to generate many new such
dualities.

More precisely, this machinery generates Stone-type
dualities/equivalences by functorializing ‘bridges’ of the form

_Sh(%,Jg) ~Sh(2,Kz) _

where

% is a preorder (regarded as a category),
Jg is a (subcanonical) Grothendieck topology on %,
% is a Kg-dense full subcategory of 2, and

Jg is the induced Grothendieck topology (K2)

¢ ong.
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Future directions

The evidence provided by the results obtained so far shows that
toposes can effectively act as unifying spaces for transferring
information between distinct mathematical theories and for
generating new equivalences, dualities and symmetries across
different fields of Mathematics.

In fact, toposes have an authentic creative power in Mathematics,
in the sense that their study naturally leads to the discovery of a
great number of notions and ‘concrete’ results in different
mathematical fields, which are pertinent but often unsuspected.

In the next years, we intend to continue pursuing the development
of these general unifying methodologies both at the theoretical
level and at the applied level, in order to continue developing the
potential of toposes as fundamental tools in the study of
mathematical theories and their relations, and as key concepts
defining a new way of doing Mathematics liable to bring distinctly
new insights in a great number of different subjects.
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Future directions

Central themes in this programme will be:

investigation of important dualities or correspondences in
Mathematics from a topos-theoretic perspective (in particular,
the theory of motives, class field theory and the Langlands
programme)

systematic study of invariants of toposes in terms of their
presentations, and introduction of new invariants which
capture important aspects of concrete mathematical
problems

interpretation and generalization of important parts of
classical and modern model theory in terms of toposes and
development of a functorial model theory

introduction of new methodologies for generating
Morita-equivalences

development of general techniques for building spectra by
using classifying toposes

generalization of the ‘bridge’ technique to the setting of
higher categories and toposes through the introduction of
higher geometric logic

development of a relative theory of classifying toposes
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For further reading

¥ O. Caramello
Grothendieck toposes as unifying ‘bridges’ in Mathematics,
Mémoire d’habilitation a diriger des recherches,
Université de Paris 7 (2016),
available from my website www.oliviacaramello.com.

¥ O. Caramello
Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic ‘bridges’,
Oxford University Press (2017).
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