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A machinery for generating dualities

• In this course we shall describe a general topos-theoretic
machinery for building ‘Stone-type’ dualities, i.e. dualities or
equivalences between categories of preorders and
categories of posets, locales or topological spaces.

• This machinery allows one to unify the classical Stone-type
dualities as instances of just one topos-theoretic
phenomenon, and to generate many new such dualities.

• It results from an implementation of the view of Grothendieck
toposes as unifying ‘bridges’ for transferring information
between distinct mathematical theories.
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Classical Stone-type dualities

In particular, we recover the following well-known dualities:

• Stone duality for distributive lattices (and Boolean algebras)
• Lindenbaum-Tarski duality for atomic complete Boolean

algebras
• The duality between spatial frames and sober spaces
• M. A. Moshier and P. Jipsen’s topological duality for

meet-semilattices
• Alexandrov equivalence between preorders and Alexandrov

spaces
• Birkhoff duality for finite distributive lattices
• The duality between algebraic lattices and sup-semilattices
• The duality between completely distributive algebraic lattices

and posets
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Grothendieck topologies

Definition
A Grothendieck topology on a (small) category C is a function J
which assigns to each object c of C a collection J(c) of sieves on
c in such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c}
is in J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such
that f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are said
to be J-covering.
A site is a pair (C ,J) where C is a small category and J is a
Grothendieck topology on C .
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Categories of sheaves on a site

• A presheaf on a (small) category C is a functor
P : C op→ Set.

• Given a site (C ,J), a presheaf on C is a J-sheaf if every
matching family for a J-covering sieve S on any object of C
(i.e. family of elements {xf ∈ P(dom(f )) | f ∈ S} such that
xf◦g = P(g)(xf ) for any g composable with f ) has a unique
amalgamation (i.e. element x such that P(f )(x) = xf for all
f ∈ S).

• The category Sh(C ,J) of sheaves on the site (C ,J) is the full
subcategory of [C op,Set] on the presheaves which are
J-sheaves.

• A Grothendieck topos is a category (equivalent to) the
category of sheaves on a site.

• A Grothendieck topology J on a category C is said to be
subcanonical if every representable functor on C is a
J-sheaf, equivalently if the canonical functor C → Sh(C ,J) is
a full embedding.
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Geometric morphisms
The natural, topologically motivated, notion of morphism of
Grothendieck toposes is that of geometric morphism.

Definition
A geometric morphism f : E →F consists of a pair of adjoint
functors f∗ : E →F (the direct image of f - the right adjoint) and
f ∗ : F → E (the inverse image of f - the left adjoint) such that f ∗

preserves finite limits.
For example:

• For any site (C ,J), there is a geometric morphism
Sh(C ,J) ↪→ [C op,Set] whose direct image is the inclusion
functor and whose inverse image is the associated sheaf
functor.

• Any continuous map f : X → Y of topological spaces induces a
geometric morphism Sh(X )→ Sh(Y ). More generally, any
map of locales f : L→ L′ induces a geometric morphism
Sh(L)→ Sh(L′), and any geometric morphism Sh(L)→ Sh(L′)
is, up to equivalence, of this form.

One can induce geometric morphisms between Grothendieck
toposes Sh(C ,J) and Sh(D ,K ) starting from suitable functors
between the sites (C ,J) and (D ,K ) either contravariantly (through
the so-called morphisms of sites) or covariantly (through the
so-called comorphisms of sites). 6 / 43
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Geometric morphisms

In particular:
(a) Any functor F : C → C ′ between categories C and C ′ with

finite limits which preserves finite limits and is
cover-preserving (i.e., sends J-covering sieves to families
which generate a J ′-covering sieve) induces a geometric
morphism Sh(F ) : Sh(C ′,J ′)→ Sh(C ,J). If the topologies J
and J ′ are subcanonical then F can be identified with the
restriction of the inverse image Sh(F )∗ : Sh(C ,J)→ Sh(C ′,J ′)
of Sh(F ) to the representables.

(b) Any functor f : C → C ′ induces a geometric morphism
E(f ) : [C ,Set]→ [C ′,Set]. If C and C ′ are Cauchy-complete
then f can be identified with the restriction to the
representables of the left adjoint E(f )! : [C ,Set]→ [C ′,Set] to
the inverse image of E(f ). If C and C ′ are Cauchy-complete,
the geometric morphisms [C ,Set]→ [C ′,Set] of the form E(f )
for some functor f : C → C ′ can be intrinsically characterized
as the essential ones (i.e., those whose inverse image admits
a left adjoint).

7 / 43
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The general methodology

The main idea consists in interpreting the fact that two structures
C and D correspond to each other under a Stone-type duality in
terms of the existence of a common topos Sh(C ,J)' Sh(D ,K )
naturally attached to each of the structures independently from
one another.

A natural source of equivalences of toposes

Sh(C ,J)' Sh(D ,K ),

is provided by Grothendieck’s comparison lemma: C is a
K -dense full subcategory of D (i.e. a full subcategory C of D
such that for any object d of D the sieve generated by the arrows
from objects of C to d is K -covering) and J is the induced
Grothendieck topology K |C on C .

8 / 43
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The general methodology

Given a bunch of such equivalences

Sh(C ,JC )' Sh(D ,KD ),

where the Grothendieck topologies JC and KD are intrinsically
defined in terms of the categories C and D , we will obtain, under
some natural hypotheses which are satisfied in a large number of
cases, dualities or equivalences between a category of structures
C (whose morphisms are maps which induce geometric
morphisms between the associated toposes Sh(C ,JC ), either
covariantly or contravariantly) and a category of structures D
(whose morphisms are maps which induce geometric morphisms
between the associated toposes Sh(D ,KD ), either covariantly or
contravariantly).

9 / 43
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The general methodology

The key point is the possibility, under those hypotheses, of
recovering the structures C (resp. D) from the corresponding
toposes Sh(C ,JC ) (resp. Sh(D ,KD )) by means of topos-theoretic
invariants:

Sh(C ,JC )

��

' Sh(D ,KD )

��
Sh(C ′,JC ′) ' Sh(D ′,KD ′)

C D

��
C ′

OO

D ′

(in this bridge the first arch is contravariant and the second is
covariant, but all the variance possibilities are equally feasible).

10 / 43
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Grothendieck topologies on preorders

Definition
Let C be a preorder.

(i) A (basis for a) Grothendieck topology on C is a function J
which assigns to every element c ∈ C a family J(c) of lower
subsets of (c) ↓, called the J-covers on c, such that for any
S ∈ J(c) and any c′ ≤ c the subset Sc′ = {d ≤ c′ | d ∈ S}
belongs to J(c′).

(ii) A preorder site is a pair (C ,J), where C is a preorder and J
is a Grothendieck topology on C .

(iii) A Grothendiek topology J on C is subcanonical if and only if
for every c ∈ C and any subset S ∈ J(c), c is the supremum
in C of the elements d ∈ S (i.e., for any element c′ in C such
that for every d ∈ S d ≤ c′, we have c ≤ c′).

11 / 43
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Examples of Grothendieck topologies

• If P is a preorder, the trivial topology on P is the one in which
the only covers are the maximal ones.

• If D is a distributive lattice, the coherent topology on D is the
one in which the covers are exactly those which contain finite
families whose join is the given element.

• If F is a frame, the canonical topology on F is the one in
which the covers are exactly the families whose join is the
given element.

• If D is a disjunctively distributive lattice, the disjunctive
topology on D is the one in which the covers are exactly
those which contain finite families of pairwise disjoint
elements whose join is the given element.

• If U is a k -frame, the k -covering topology on U is the one in
which the covers are the those which contain families of less
than k elements whose join is the given element.

• If V is a preframe, the directed topology on V is the one in
which the covering sieves are precisely those which contain
directed families of elements whose join is the given element.

12 / 43
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J-ideals
Definition
Given a preorder site (C ,J), a J-ideal on C is a subset I ⊆ C such
that

• for any a,b ∈ C such that b ≤ a in C , a ∈ I implies b ∈ I, and
• for any J-cover R on an element c of C , if a ∈ I for every a ∈ R

then c ∈ I.

We denote by IdJ(C ) the set of all the J-ideals on C .

Proposition
Let C be a preorder and J be a Grothendieck topology on C . Then
(IdJ(C ),⊆) is a frame. In fact, we have an equivalence of toposes

Sh(C ,J)' Sh(IdJ(C ))

and the J-ideals on C correspond precisely to the subterminal
objects of this topos.

Remark
If J is subcanonical (i.e. all the principal ideals on C are J-ideals)
and C is a poset then we have an embedding C ↪→ IdJ(C ), which
identifies C with the set of principal ideals on C .

13 / 43
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Functorialization I
We can generate covariant or controvariant equivalences with
categories of posets by appropriately functorializing the
assignments above.

Definition
A morphism of sites (C ,J)→ (D ,K ), where C and D are
meet-semilattices, is a meet-semilattice homomorphism C →D
which sends J-covers to K -covers.

Theorem
1 A morphism of sites f : (C ,J)→ (D ,K ) induces, naturally in f ,

a frame homomorphism ḟ : IdJ(C )→ IdK (D).
This homomorphism sends a J-ideal I on C to the smallest
K -ideal on D containing the image of I under f .

2 If J and K are subcanonical then a frame homomorphism
IdJ(C )→ IdK (D) is of the form ḟ for some f if and only if it
sends principal ideals to principal ideals; if this is the case
then f is isomorphic to the restriction of ḟ to the principal
ideals.

14 / 43
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Functorialization II

Theorem
Let C and D be two preorders. Then

1 For any monotone map f : C →D , the map
Bf : Id(D)→ Id(C ) sending an ideal I on D to the inverse
image f−1(I) of I under f is a frame homomorphism.

2 A frame homomorphism F : Id(D)→ Id(C ) is of the form Bf
for some monotone map f : C →D if and only if F preserves
arbitrary infima, equivalently if and only if it has a left adjoint
F! : Id(C )→ Id(D), given by the formula F!(I) = ∩

I⊆F (I′)
I ′ (for

any I ∈ Id(C )).
3 If C and D are posets then any monotone map f : C →D can

be recovered from Bf as the restriction of its left adjoint (Bf )!
to the subsets of principal ideals.

15 / 43
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The general framework

We only discuss for simplicity the case of covariant equivalences
with categories of frames, the other cases being conceptually
similar to it.
Let K be a category of preordered structures, and suppose to
have equipped each structure C in K with a Grothendieck
topology JC on C in such a way that every arrow f : C →D in K
gives rise to a morphism of sites f : (C ,JC )→ (D ,JD ).

These choices automatically induce a functor

A : K → Frm

to the category Frm of frames sending any C in K to IdJC
(C )

and any f : C →D in K to the frame homomorphism
ḟ : IdJC

(C )→ IdJD
(D).

With the above notation, if all the Grothendieck topologies JC are
subcanonical and the preorders in K are posets then the functor
A : K → Frm yields an embedding of K into Frm.

16 / 43
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Recovering the structures through invariants

• It would thus be desirable to have an equivalence of K with
a subcategory of Frm which is closed under isomorphisms in
Frm (namely, the closure ExtIm(A) of the image of A under
isomorphisms in Frm) and whose objects and arrows admit
an intrinsic description in frame-theoretic terms.

• To achieve this, we investigate the problem of recovering a
preorder C in K from the topos Sh(C ,JC ) (equivalently, from
the frame IdJC

(C )) through an invariant, functorially in C .
• It turns out that if the topologies JC can be ‘uniformly

described through an invariant’ C (namely C-induced in the
sense of the following definition) then the principal ideals on
C can be characterized among the elements of the frame
IdJC

(C ) precisely as the ones which are C-compact.
• This enables us to define a functor on the category ExtIm(A)

which yields, together with A, the desired equivalence.

17 / 43
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Topologies defined through invariants
Definition
Let C be a frame-theoretic invariant property of families of
elements of a frame (for example: to be finite, to be a singleton, to
be of cardinality at most k for some cardinal k , to be formed by
elements which are pairwise disjoint, to be directed etc.)

• Given a structure C in K , the Grothendieck topology JC is
said to be C-induced if for any JF

can-dense monotone
embedding i : C ↪→ F into a frame F (where JF

can is the
canonical topology on F ) possibly satisfying some invariant
property P which is known to hold for the canonical
embedding C ↪→ IdJC

(C ) and such that the JC -covers on C
are sent by i to covers in F , for any family A of elements in C
there exists a JC -cover S on an element c ∈ C such that the
elements a ∈A such that a≤ c generate S if and only if the
image i(A ) of the family A in F has a refinement satisfying C
made of elements of the form i(c′) (for c′ ∈ C ).

Proposition
The trivial (resp. coherent, canonical, k-covering, disjunctive,
directed) topology is C-induced where C is the invariant ‘to be a
singleton’ (resp. ‘to be finite’, ‘to be any family’, ‘to be of cardinality
at most k’,‘to be formed by elements which are pairwise disjoint’,
‘to be directed’).

18 / 43
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A key result

Definition
An element u of a frame F is said to be C-compact if every
covering of u in F has a refinement satisfying C.

Theorem
If all the Grothendieck topologies JC associated to the structures
C in K are C-induced and the invariant C satisfies the property
that for any structure C in K and for any family F of principal
JC -ideals on C , F has a refinement satisfying C (if and) only if it
has a refinement satisfying C made of principal JC -ideals on C
then the functor ExtIm(A)→K sending a frame F in ExtIm(A) to
the poset of C-compact elements of F and acting on the arrows
accordingly is a categorical quasi-inverse to A.

19 / 43
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The target categories of frames

Theorem
• The frames in ExtIm(A) are precisely the frames F with a

basis BF of C-compact elements which, regarded as a poset
with the induced order, belongs to K , and such that the
embedding BF ↪→ F satisfies property P, the property that
every covering in F of an element of BF is refined by a
covering made of elements of BF which satisfies the invariant
C, and the property that the JBF -covering sieves are sent by
the embedding BF ↪→ F into covering families in F (where
JBF is the Grothendieck topology with which BF comes
equipped as a structure in K ).

• The arrows F → F ′ in ExtIm(A) are the frame
homomorphisms which send C-compact elements to
C-compact elements in such a way that their restriction to the
subsets of C-compact elements can be identified with an
arrow in K .

20 / 43
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The subterminal topology
For obtaining dualities with categories of topological spaces rather
than locales/frames, one can use the following construction, which
provides a canonical way for endowing a given set of points of a
topos with a natural topology.

Definition
Let ξ : X → P be an indexing of a set P of points of a Grothendieck
topos E by a set X . We define the subterminal topology τE

ξ
as the

image of the frame homomorphism φE : SubE (1)→P(X ) given by

φE (u) = {x ∈ X | ξ (x)∗(u)∼= 1Set} .

We denote the topological space obtained by endowing the set X
with the topology τE

ξ
by X

τE
ξ

.

The interest of this notion lies in its level of generality, as well as in
its formulation as a topos-theoretic invariant admitting a ‘natural
behaviour’ with respect to sites. Moreover, the following fact will be
crucial for us.

Remark
If P is a separating set of points for E (for example, the set of all the
points of a localic topos having enough points) then the frame
O(X

τE
ξ

) of open sets of the space X
τE

ξ

is isomorphic (via φE ) to the

frame SubE (1) of subterminals of the topos E .
21 / 43
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Examples of subterminal topologies I
Definition
Let (C ,≤) be a preorder. A J-prime filter on C is a subset F ⊆ C
such that F is non-empty, a ∈ F implies b ∈ F whenever a≤ b, for
any a,b ∈ F there exists c ∈ F such that c ≤ a and c ≤ b, and for
any J-covering sieve {ai → a | i ∈ I} in C if a ∈ F then there exists
i ∈ I such that ai ∈ F .

Theorem
Let C be a preorder and J be a Grothendieck topology on it. Then
the space X

τSh(C ,J) of points of the topos Sh(C ,J) has as set of
points the collection F J

C of J-prime filters on C and as open sets
the sets the form

FI = {F ∈F J
C | F ∩ I 6= /0},

where I ranges among the J-ideals on C . In particular, a
sub-basis for this topology is given by the sets

Fc = {F ∈F J
C | c ∈ F},

where c varies among the elements of C .
22 / 43
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Examples of subterminal topologies II

• The Alexandrov topology (E = [P,Set], where P is a preorder
and ξ is the indexing of the set of points of E corresponding
to the elements of P)

• The Stone topology for distributive lattices (E = Sh(D,Jcoh
D )

and ξ is an indexing of the set of all the points of E , where D
is a distributive lattice and Jcoh

D is the coherent topology on it)
• A topology for meet-semilattices (E = [Mop,Set] and ξ is an

indexing of the set of all the points of E , where M is a
meet-semilattice)

• The space of points of a locale (E = Sh(L) for a locale L and
ξ is an indexing of the set of all the points of E )

• A logical topology (E = Sh(CT,JT) is the classiying topos of a
geometric theory T and ξ is any indexing of the set of all the
points of E i.e. set-based models of T)

• The Zariski topology

...

23 / 43
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Dualities with categories of topological spaces

• By using the subterminal topology, we can ‘lift’ the
equivalences with frames established above to dualities with
topological spaces, provided that the toposes involved have
enough points.

• Indeed, the construction of the subterminal topology can be
naturally made functorial.

• Thus, by assigning sets of points of the toposes
corresponding to the structures in a natural way, we obtain a
functor Ã : K → Topop such that O ◦ Ã∼= A, where
O : Topop→ Frm the usual functor taking the frame of open
sets of a topological space:

Topop

O
��

K

Ã
<<

A // Frm

24 / 43
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The case of Stone duality
• Stone duality between the category of distributive lattices and

that of coherent spaces is obtained by functorializing the
equivalences of the form

Sh(D,Jcoh
D )' Sh(XD),

where D is any distributive lattice and XD is the Stone space
associated with D.

• Indeed, the morphisms D→ D′ of distributive lattices are
precisely the morphisms of sites (D,Jcoh

D )→ (D′,Jcoh
D′ ), and

any distributive lattice D can be recovered from Sh(D,Jcoh
D )

as the lattice of its compact subterminals; accordingly, the
arrows in the target category are the continuous maps
between coherent spaces whose inverse image send
compact open sets to compact open sets.

• The space XD is the space of points of the locale IdJcoh
D

(D) of
ideals of D. As predicted by our theorem, the coherent
spaces are precisely the sober topological spaces with a
basis of compact open sets which forms a distributive lattice
(equivalently, with a basis of compact open sets which is
closed under finite intersections).
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The case of Lindenbaum-Tarski duality
• Lindenbaum-Tarski duality between the category of sets and

the category of complete atomic Boolean algebras and frame
homomorphisms between them which preserve arbitrary
infima can be obtained by functorializing the equivalences of
the form

[A,Set]' Sh(P(A)),

where A is any set and P(A) is the powerset of A, or of the
form

Sh(B)' Sh(At(B)),

where B is any complete atomic Boolean algebra and At(B)
is the set of its atoms. Here B is viewed as a frame and
equipped with the canonical topology, with respect to which
the full subcategory At(B) of B is dense (by definition of
atomic frame).

• A geometric morphism [A,Set]→ [B,Set] (resp. a frame
homomorphism P(B)→P(A)) is of the form E(f ) for some
map f : A→ B (resp. is of the form P(f ) for some map
f : A→ B) if and only if it is essential (resp. it admits a left
adjoint or, equivalently, it preserves arbitrary infima).
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The general case

• Functorializing general equivalences

Sh(C ,J)' Sh(D ,K )

(where C is a K -dense subcategory of D and J is induced by
K on C ), we are able to recover all the dualities mentioned at
the beginning of the talk as special cases generated through
our machinery.

• At the same time, our framework allows enough flexibility to
construct many new dualities with particular properties.

• In fact, our machinery has essentially four degrees of
freedom:

(i) The choice of the structures C ;
(ii) The choice of the structures D ;
(iii) The choice of the topologies K ;
(iv) The choice of points of the toposes Sh(C ,J)' Sh(D ,K ).
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Examples of new dualities

Among the new dualities that we obtain though our machinery, we
have:

• A duality between the category of meet-semilattices and
meet-semilattices homomorphisms betweeen them and the
category of locales whose objects are the locales with a
basis of supercompact elements which is closed under finite
meets and whose arrows are the locale maps whose
associated frame homomorphisms send supercompact
elements to supercompact elements.

• A duality between the category of disjunctively distributive
lattices and the category whose objects are the sober
topological spaces which have a basis of disjunctively
compact open sets which is closed under finite intersection
and satisfies the property that any covering of a basic open
set has a disjunctively compact refinement by basic open
sets and whose arrows are the continuous maps between
such spaces such that the inverse image of any disjunctively
compact open set is a disjunctively compact open set.

28 / 43



Stone-type
dualities through
topos-theoretic

‘bridges’

Olivia Caramello

Introduction

Topos-theoretic
background

The general
methodology

The abstract
framework
Equivalences with
categories of frames

The subterminal
topology

Dualities with
topological spaces

New dualities

Other
applications

For further
reading

Examples of new dualities

• For any regular cardinal k , a duality between the category of
k -frames and the category whose objects are the frames
which have a basis of k -compact elements which is closed
under finite meets and whose arrows are the frame
homomorphisms between them which send k -compact
elements to k -compact elements.

• A duality between the category of disjunctive frames and the
category Posdis which has as objects the posets P such that
for any a,b ∈P there exists a family {ci | i ∈ I} of elements
of P such that for any p ∈P, p ≤ a and p ≤ b if and only if
p ≤ ci for a unique i ∈ I and as arrows P→P ′ the monotone
maps g : P →P ′ such that for any b ∈P ′ there exists a
family {ci | i ∈ I} of elements of P such that for any p ∈P,
g(p)≤ b if and only if p ≤ ci for a unique i ∈ I.
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Examples of new dualities
• A duality between the category DirIrrPFrm of directedly generated

preframes whose objects are the directedly generated preframes
and whose arrows D →D ′ are the preframe homomorphisms
f : D →D ′ between them such that the frame homomorphism
A(f ) : IdJD

(D)→ IdJ ′D
(D ′) which sends an ideal I of D to the ideal

of D ′ generated by f (I) preserves arbitrary infima, and the category
Posdir having as objects the posets P such that for any a,b ∈P
there is c ∈P such that c ≤ a and c ≤ b and for any elements
d ,e ∈P such that d ,e ≤ a and d ,e ≤ b there exists z ∈P such
that z ≤ a, z ≤ b, d ,e ≤ z, and as arrows P →P ′ the monotone
maps g : P →P ′ with the property that for any b ∈P ′ there exists
a ∈P such that g(a)≤ b and for any two u,v ∈P such that
g(u)≤ b and g(v)≤ b there exists z ∈P such that u,v ≤ z and
g(z)≤ b.
This duality restricts to the duality between algebraic lattices and
sup-semilattices.

• An equivalence between the category of meet-semilattices and the
category whose objects are the the meet-semilattices F with a
bottom element 0F which have the property that for any a,b ∈ F
with a,b 6= 0, a∧b 6= 0 and whose arrows are the meet-semilattice
homomorphisms F → F ′ which send 0F to 0F ′ and any non-zero
element of F to a non-zero element of F ′.
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Examples of new dualities
• A duality between the category IrrDLat whose objects are the

irreducibly generated distributive lattices and whose arrows
D →D ′ are the distributive lattices homomorphisms f : D →D ′

between them such that the frame homomorphism
A(f ) : IdJD

(D)→ IdJ ′D
(D ′) which sends an ideal I of D to the

ideal of D ′ generated by f (I) preserves arbitrary infima, and the
category Poscomp whose objects are the posets P such that for
any a,b ∈P there exists a finite set of elements {ck | k ∈ K}
such that for any p ∈P, p ≤ a and p ≤ b if and only if p ≤ ck for
some k ∈ K , and whose arrows P →P ′ are the monotone
maps g : P →P ′ such that for any q ∈P ′, there exists a finite
family {ak | k ∈ K} of elements of P such that for any p ∈P,
g(p)≤ q if and only if p ≤ ak for some k ∈ K .
This duality restricts to Birkhoff duality.

• A duality between the category AtDLat whose objects are the
atomic distributive lattices and whose arrows D →D ′ are the
distributive lattices homomorphisms f : D →D ′ between them
such that the frame homomorphism A(f ) : IdJD

(D)→ IdJ ′D
(D ′)

which sends an ideal I of D to the ideal of D ′ generated by f (I)
preserves arbitrary infima, and the category Setf whose objects
are the sets and whose arrows A→ B are the functions f : A→ B
such that the inverse image under f of any finite subset of B is a
finite subset of A.

• ...
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Other applications
The construction and study of new dualities generated through
our machinery is a priori interesting since they have essentially
the same level of ‘mathematical depth’ as the classical Stone
duality.

On the other hand, a great amount of applications can be
established by applying the technique of ‘toposes as bridges’ in
the context of toposes associated with preordered structures.
Examples include:

• Representation theorems for preordered structures (arising
whenever one can recover a structure from a topos
intrinsically built from another structure).

• Adjunctions between categories of preorders and categories
of posets, frames or topological spaces resulting from
geometric morphisms between toposes associated with
these structures.

• Links between Stone-type dualities and free structures
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Other applications

• Translations of properties of preordered structures into
properties of the corresponding posets or topological spaces
by means of suitable topos-theoretic invariants. This can be
particularly useful for investigating the relationships between
different ‘bases’ for the same structure (or more generally
between different representations of a given structure or
different languages for describing it).

• Construction and spatial realization of structures presented
by generators and relations (by using the theory of classifying
toposes and syntactic categories). In fact, the toposes of
sheaves on preorder sites are precisely the classifying
toposes of propositional theories.

• Completeness theorems for propositional logics

• Generation of dualities for other, possibly more complex,
algebraic or topological structures (e.g. Priestley-type
dualities).
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Duality and Morita equivalence
• The methodology that we have used to produce our

machinery can be adapted in a great variety of other
situations to build dualities or equivalences; in fact, in every
situation in which one disposes of different representations
for certain toposes by means of some objects, one can try to
‘functorialize’ these representations and ‘reconstruct’ the
given objects from the associated toposes to obtain a duality
or equivalence for categories of such objects.

• Even when it is not possible to recover the objects from the
corresponding topos by means of invariants, one can still
effectively investigate how properties of the given objects (or
constructions on them) reformulate in terms of properties of
(or constructions on) the toposes associated with them and
then how these rephrase in terms of other possible
representations for the same toposes.

• This indicates that the notion of Morita equivalence (i.e.
toposes associated with different structures being equivalent)
is in a sense more fundamental than duality/categorical
equivalence since it goes well beyond the traditional notion of
‘dictionary’.
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For further reading
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