Olivia Caramello

Preliminaries

Theories of presheaf type

The characterization theorem

Corollaries and other results

New examples

For further reading

Extensions of flat functors and theories of presheaf type

Olivia Caramello

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Olivia Caramello

Preliminaries

- Theories of presheaf type
- The characterizatio theorem
- Corollaries and other results
- New examples
- For further reading

Geometric theories

Definition

- A geometric formula over a signature Σ is any formula (with a finite number of free variables) built from atomic formulae over Σ by only using finitary conjunctions, infinitary disjunctions and existential quantifications.
- A geometric theory over a signature Σ is any theory whose axioms are of the form (φ ⊢_{x̄} ψ), where φ and ψ are geometric formulae over Σ and x̄ is a context suitable for both of them.

Fact

Most of the first-order theories naturally arising in Mathematics are geometric; and if a finitary first-order theory is not geometric, we can always associate to it a finitary geometric theory over a larger signature (the so-called Morleyization of the theory) with essentially the same models in the category **Set** of sets.

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterization theorem

Corollaries and other results

New examples

For further reading

Classifying toposes

Definition

Let \mathbb{T} be a geometric theory over a given signature. A classifying topos of \mathbb{T} is a Grothendieck topos **Set**[\mathbb{T}] such that for any Grothendieck topos \mathscr{E} we have an equivalence of categories

```
\textbf{Geom}(\mathscr{E},\textbf{Set}[\mathbb{T}])\simeq\mathbb{T}\text{-}mod(\mathscr{E})
```

natural in \mathcal{E} .

Theorem (Joyal-Makkai-Reyes, '70s)

Every geometric theory (over a given signature) has a classifying topos. Conversely, every Grothendieck topos arises as the classifying topos of some geometric theory.

The classifying topos of a geometric theory \mathbb{T} can always be constructed canonically from the theory by means of a syntactic construction, namely as the topos of sheaves $\mathbf{Sh}(\mathscr{C}_{\mathbb{T}}, J_{\mathbb{T}})$ on the geometric syntactic category $\mathscr{C}_{\mathbb{T}}$ of \mathbb{T} with respect to the syntactic topology $J_{\mathbb{T}}$ on it (i.e. the canonical Grothendieck topology on $\mathscr{C}_{\mathbb{T}}$).

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterizatic theorem

Corollaries and other results

New examples

For further reading

The duality theorem

Definition

- Let T be a geometric theory over a signature Σ. A quotient of T is a geometric theory T' over Σ such that every axiom of T is provable in T'.
- Let T and T' be geometric theories over a signature Σ. We say that T and T' are syntactically equivalent, and we write T ≡_s T', if for every geometric sequent σ over Σ, σ is provable in T if and only if σ is provable in T'.

Theorem (O.C., 2008)

Let \mathbb{T} be a geometric theory over a signature Σ . Then the assignment sending a quotient of \mathbb{T} to its classifying topos defines a bijection between the \equiv_s -equivalence classes of quotients of \mathbb{T} and the subtoposes of the classifying topos **Set**[\mathbb{T}] of \mathbb{T} .

<ロ><回><回><回><回><目><目><目><目><目><目><の別</td>

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterization theorem

Corollaries and other results

New examples

For further reading

Theories of presheaf type

Definition

Following T. Beke, we say that a geometric theory is of presheaf type if it is classified by a presheaf topos.

Theories of presheaf type occupy a central role in Logic and Mathematics, as they are the basic 'building blocks' from which every geometric theory can be built.

Indeed, as every Grothendieck topos is a subtopos of a presheaf topos, so every geometric theory is a quotient of a theory of presheaf type (cf. the above-mentioned duality theorem).

In this talk, we shall present a characterization theorem providing explicit necessary and sufficient conditions for a theory to be of presheaf type.

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterization theorem

Corollaries and other results

New examples

For further reading

Some examples

The class of theories of presheaf type contains a great variety of theories pertaining to different areas of Mathematics. For instance:

- All finitary algebraic (or, more generally, all cartesian) theories (Hakim, Gabriel-Ulmer)
- The theory of abstract intervals (classified by the simplicial topos) (Joyal)
- The theory of abstract circles (classified by Connes' topos) (Moerdijk)
- · The theory of decidable objects (Johnstone and Wraith)
- The theory of Diers' fields (Johnstone)
- · The geometric theory of finite sets (Johnstone and Wraith)
- The theory of flat modules over a commutative ring with unit (Beke)

・ロト・4日・4日・4日・4日・日、ついいの

... and many more!

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterizatio theorem

Corollaries and other results

New examples

For further reading

Finitely presentable models

Definition

A model *M* of a theory of presheaf type \mathbb{T} in the category **Set** is said to be finitely presentable if the functor $Hom_{\mathbb{T}-\mathrm{mod}(\mathbf{Set})}(M, -) : \mathbb{T}-\mathrm{mod}(\mathbf{Set}) \to \mathbf{Set}$ preserves filtered colimits.

We denote by f.p.T-mod(Set) the category of finitely presentable \mathbb{T} -models and \mathbb{T} -model homomorphisms between them.

The centrality of the notion of theory of presheaf type is also explained by the fact that *every small category is, up to Cauchy-completion, of the form* $f.p.\mathbb{T}$ *-mod*(**Set**) *for some theory of presheaf type* \mathbb{T} .

Fact

For any theory of presheaf type \mathscr{C} , we have two different representations of its classifying topos:

 $[f.p.\mathbb{T}\text{-}mod(\textbf{Set}),\textbf{Set}] \simeq \textbf{Sh}(\mathscr{C}_{\mathbb{T}},J_{\mathbb{T}})$

<ロ > < 回 > < 目 > < 目 > < 目 > 目 ののの

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterizatio theorem

Corollaries and other results

New examples

For further reading

Applying the 'bridge' technique

The existence of this double representation for the classifying topos allows the 'bridge' technique to be fruitfully applied, leading to a variety of results on theories of presheaf type (cf. my papers). For instance:

Theorem

Let M be a set-based model of a theory of presheaf type \mathbb{T} . Then M is finitely presented by a geometric formula over the signature of \mathbb{T} if and only if it is finitely presentable.

Theorem

Let \mathbb{T} be a theory of presheaf type over a signature Σ , A_1, \ldots, A_n a string of sorts of Σ and suppose we are given, for every finitely presentable **Set**-model M of \mathbb{T} a subset R_M of $MA_1 \times \cdots \times MA_n$ in such a way that each \mathbb{T} -model homomorphism $h: M \to N$ maps R_M into R_N . Then there exists a geometric formula-in-context $\phi(x^{A_1}, \ldots, x^{A_n})$ such that $R_M = [[\phi]]_M$ for each M.

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterizatio theorem

Corollaries and other results

New examples

For further reading

Characterizing theories of presheaf type I

By Diaconescu's theorem, a geometric theory ${\mathbb T}$ is of presheaf type if and only if there exists an equivalence

 $\mathbb{T}\text{-}mod(\mathscr{E}) \simeq \textbf{Flat}(f.p.\mathbb{T}\text{-}mod(\textbf{Set})^{op}, \mathscr{E}),$

natural in \mathscr{E} .

In fact, without loss of generality, we can suppose this equivalence to be of the following form:

$$M \xrightarrow{\mathcal{B}} Hom^{\mathscr{E}}_{\underline{\mathbb{T}}\text{-}\mathrm{mod}(\mathscr{E})}(\gamma^*_{\mathscr{E}}(-), M)$$

$$\tilde{F}(M_{\mathbb{T}})$$
 \prec

where the functor $\tilde{F}: \mathscr{C}_{\mathbb{T}} \to \mathscr{E}$ denotes the extension of the flat functor F along the canonical geometric morphism

$$[\mathrm{f.p.}\mathbb{T}\text{-}\mathrm{mod}(\textbf{Set}), \textbf{Set}] \rightarrow \textbf{Sh}(\mathscr{C}_{\mathbb{T}}, \textit{J}_{\mathbb{T}})$$

and $M_{\mathbb{T}}$ denotes the universal model of \mathbb{T} inside $\mathscr{G}_{\mathbb{T}}$.

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterizatio theorem

Corollaries and other results

New examples

For further reading

Characterizing theories of presheaf type II

- As these functors are always defined for *any* geometric theory, the requirement that they should be categorical inverses to each other naturally in *&* is logically equivalent to the property of T to be of presheaf type.
- But these requirements look very abstract and hardly useful in practice!
- Can we express them as a family of 'concrete' conditions that can be effectively used in practice to test whether a given theory is of presheaf type?
- The following theorem provides a positive answer to this question.
- We shall first give an abstract version of the theorem, and then proceed to obtain concrete reformulations of the various conditions.

<ロト<通ト<注ト<注入 注 10/20

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterization theorem

Corollaries and other results

New examples

For further reading

The characterization theorem I

Let \mathbb{T} be a geometric theory over a signature Σ . Then \mathbb{T} is of presheaf type if and only if all of the following conditions are satisfied:

(i) For any \mathbb{T} -model M in a Grothendieck topos \mathscr{E} , the functor

$$\textit{H}_{\textit{M}} := \textit{Hom}_{\mathbb{T}\text{-}mod(\mathscr{E})}^{\mathscr{E}}(\gamma_{\mathscr{E}}^{*}(-),\textit{M}) : \mathrm{f.p.}\mathbb{T}\text{-}mod(\textbf{Set})^{\mathrm{op}} \rightarrow \mathscr{E}$$

is flat;

(ii) The canonical morphism $\widetilde{H_M}(M_{\mathbb{T}}) \to M$ is an isomorphism;

- (iii) Any of the following conditions (equivalent, under the assumptions (*i*) and (*ii*)) is satisfied:
 - (a) The correspondence $M \to H_M$ is natural in \mathscr{E} ; that is, for any finitely presentable \mathbb{T} -model c and any \mathbb{T} -model M in a Grothendieck topos \mathscr{E} , for any geometric morphism $f : \mathscr{F} \to \mathscr{E}$, the canonical morphism

$$f^*(\mathit{Hom}_{\mathbb{T}\operatorname{-mod}(\mathscr{E})}^{\mathscr{E}}(\gamma_{\mathscr{E}}^*(c),M)) o \mathit{Hom}_{\mathbb{T}\operatorname{-mod}(\mathscr{F})}^{\mathscr{F}}(\gamma_{\mathscr{F}}^*(c),f^*(M))$$

is an isomorphism;

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterization theorem

Corollaries and other results

New examples

For further reading

The characterization theorem II

(b) For any flat functor F : f.p. \mathbb{T} -mod(**Set**)^{op} $\rightarrow \mathscr{E}$, the canonical natural transformation

$$F \to Hom^{\mathscr{E}}_{\underline{\mathbb{T}}\operatorname{-mod}(\mathscr{E})}(\gamma^*_{\mathscr{E}}(-), \tilde{F}(M_{\mathbb{T}})) \cong Hom^{\mathscr{E}}_{\mathsf{Flat}_{J_{\mathbb{T}}}(\mathscr{C}_{\mathbb{T}}, \mathscr{E})}(\gamma^*_{\mathscr{E}} \circ y(-), \tilde{F})$$

is an isomorphism;

(c) The canonical functor

 $\textbf{Flat}(f.p.\mathbb{T}\text{-}mod(\textbf{Set})^{op},\mathscr{E}) \rightarrow \textbf{Flat}_{\mathcal{J}_{\mathbb{T}}}(\mathscr{C}_{\mathbb{T}},\mathscr{E}) \simeq \mathbb{T}\text{-}mod(\mathscr{E})$

is full and faithful;

(d) Any finitely presentable T-model is presented by a geometric formula over Σ and for any finitely presentable models *M* and *N* of T presented respectively by formulae {*x* . *φ*} and {*y* . *ψ*} and any T-model homomorphism *h* : *M* → *N* there exists a T-provably functional geometric formula θ(*x*, *y*) : {*x* . *φ*} → {*y* . *ψ*} which induces *h*.

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterizatio theorem

Corollaries and other results

New examples

For further reading

Concrete reformulations - condition (i)

Theorem

Let \mathbb{T} be a geometric theory, and let M be a \mathbb{T} -model in a Grothenieck topos \mathscr{E} with a separating set S. Then condition (i) of the characterization theorem holds for M if and only if

- (a) There exists an epimorphic family {E_i → 1_𝔅 | i ∈ I, E_i ∈ S} and for each i ∈ I a finitely presentable T-model c_i and a Σ-structure homomorphism c_i → Hom_𝔅(E_i, M);
- (b) For any finitely presentable \mathbb{T} -models c and d and Σ -structure homomorphisms $x : c \to Hom_{\mathscr{E}}(E, M)$ (where $E \in S$) and
 - $y: d \to Hom_{\mathscr{E}}(E, M)$ there exists an epimorphic family
 - $\{e_i : E_i \to E \mid i \in I, E_i \in S\}$ and for each $i \in I$ a finitely presentable \mathbb{T} -model b_i , \mathbb{T} -model homomorphisms $u_i : c \to b_i$, $v_i : d \to b_i$ and a Σ -structure homomorphism

 $z_i : b_i \to Hom_{\mathscr{E}}(E_i, M)$ such that $Hom_{\mathscr{E}}(e_i, M) \circ x = z_i \circ u_i$ and $Hom_{\mathscr{E}}(e_i, M) \circ y = z_i \circ v_i$;

(c) For any two parallel arrows $u, v : d \to c$ between finitely presentable \mathbb{T} -models and any Σ -structure homomorphism $x : c \to Hom_{\mathscr{C}}(E, M)$ in \mathscr{E} (where $E \in S$) for which $x \circ u = x \circ v$, there is an epimorphic family $\{e_i : E_i \to E \mid i \in I, E_i \in S\}$ in \mathscr{E} and for each index *i* a homomorphism of finitely presentable \mathbb{T} -models $w_i : c \to b_i$ and a Σ -structure homomorphism $y_i : b_i \to Hom_{\mathscr{E}}(E_i, M)$ such that $w_i \circ u = w_i \circ v$ and $y_i \circ w_i = Hom_{\mathscr{E}}(e_i, M) \circ x$.

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterizatio theorem

Corollaries and other results

New examples

For further reading

Concrete reformulations - condition (ii)

Theorem

Let \mathbb{T} be a geometric theory, and let M be a \mathbb{T} -model in a Grothenieck topos \mathscr{E} with a separating set S. Then condition (ii) of the characterization theorem holds for M if and only if for any sort A over Σ , both of the following conditions are satisfied (where $\mathscr{A}_{\{x^{A}, T\}}$ denotes the collection of pairs of the form (c, z), where c is a finitely presentable \mathbb{T} -model and $z \in cA$):

(a) For any generalized element x : E → MA there exists an epimorphic family {e_i : E_i → E | i ∈ I} and for each index i ∈ I an element (c_i, z_i) of 𝒴_{x^A.⊤} and a Σ-homomorphism f_i : c_i → Hom_𝔅(E_i, M) such that (f_iA)(z_i) = x ∘ e_i;

(b) For any two elements (c, z) and (d, w) of A_{{x^A, T}}</sub> and any Σ-structure homomorphisms f : c → Hom_E(E, M) and f' : d → Hom_E(E, M), we have that f(z) = f'(w) if and only if there exists an epimorphic family {e_j : E_j → E | j ∈ J} and for each index j ∈ J a finitely presentable T-model b_j, a Σ-structure homomorphism h_j : b_j → Hom_E(E_j, M) and two T-model homomorphisms f_j : c → b_j and f'_j : d → b_j such that f_j(z) = f'_j(w), h_j ∘ f_j = Hom_E(e_j, M) ∘ f and h_j ∘ f'_j = Hom_E(e_j, M) ∘ f and

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterizati theorem

Corollaries and other results

New examples

For further reading

Concrete reformulations - condition (iii)

Theorem

Let \mathbb{T} be a geometric theory over a signature Σ and let $F : f.p.\mathbb{T}\text{-mod}(\mathbf{Set})^{op} \to \mathscr{E}$ be a flat functor. Then F satisfies condition (iii) of the characterization theorem if and only if the following conditions are satisfied (where for any pair (c, x) consisting of a finitely presentable \mathbb{T} -model c and a generalized element $x : E \to F(c)$ the Σ -structure homomorphism $\xi_{(c,x)}$ is defined by setting for each sort A over Σ

 $\xi_{(c,x)}A : cA \to Hom_{\mathscr{E}}(E, \tilde{F}(M_{\mathbb{T}})A)$ equal to the function $y \to \chi_{(c,y)} \circ x$, where $\chi_{(c,y)} : F(c) \to \tilde{F}(M_{\mathbb{T}})A$ is the canonical colimit arrow).

- (a) for any finitely presentable T-model c and any generalized elements x, x' : E → F(c), the Σ-structure homomorphisms ξ_(c,x) and ξ_(c,x') are equal if and only if x = x'.
- (b) for any finitely presentable T-model c, any object E of *E* and any Σ-structure homomorphism z : c → Hom_E(E, F(M_T)) there exists an epimorphic family {e_i : E_i → E | i ∈ I} and for each index i ∈ I a generalized element x_i : E_i → F(c) such that Hom(e_i, M) ∘ z = ξ_(c,x_i) for all i ∈ I.

Olivia Caramello

Corollaries and other results

Some corollaries

Corollary

Let \mathbb{T} be a one-sorted geometric theory over a finite signature Σ with a finite number of axioms each of which is of the form $(\top \vdash_{\vec{x}} \forall \phi_i)$, where the ϕ_i are atomic formulae. Suppose that for i∈I

every \mathbb{T} -model M in a Grothendieck topos \mathscr{E} any object E of \mathscr{E} , any finitely generated Σ -substructure of Hom $\mathscr{E}(E, M)$ has only a finite number of elements besides the constants (for instance, when the signature Σ does not contain function symbols except for a finite number of constants). Then \mathbb{T} is of presheaf type, classified by the category of covariant set-valued functors from the category of finite models of \mathbb{T} .

Corollary

Let \mathbb{S} be a quotient of a theory of presheaf type \mathbb{T} over a signature Σ such that all the finitely presentable \mathbb{S} -models are finitely presentable as \mathbb{T} -models. Suppose moreover that for any object E of \mathscr{E} , S-model M in \mathscr{E} , Σ -structure homomorphism $x: c \to Hom_{\mathscr{E}}(E, M)$ and finitely presentable \mathbb{T} -model c, there exists an epimorphic family $\{e_i : E_i \to E \mid i \in I\}$ in \mathscr{E} and for each $i \in I$ a \mathbb{T} -model homomorphism $f_i : c \to c_i$, where c_i is a finitely presentable S-model, and a Σ -structure homomorphism $x_i: c_i \to Hom_{\mathscr{E}}(E_i, M)$ such that $x_i \circ f_i = Hom_{\mathscr{E}}(e_i, M) \circ x$ for all $i \in I$. Then S is of presheaf type. □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterization theorem

Corollaries and other results

New examples

For further reading

Other relevant results I

Theorem

Let $\mathbb T$ a geometric theory. Then $\mathbb T$ is of presheaf type if and only if $\mathbb T$ has enough finitely presentable models and

- (i) for any finitely presentable model of T there exists a geometric formula over the signature of T which presents it;
- (ii) for any finitely presentable models M and N of T presented respectively by formulae {x ⋅ φ} and {y ⋅ ψ} and any T-model homomorphism h : M → N there exists a T-provably functional geometric formula θ(x,y) : {x ⋅ φ} → {y ⋅ ψ} which induces h.

Theorem

Let \mathbb{T} be a theory of presheaf type and \mathbb{T}' be a quotient of \mathbb{T} . Suppose that there exists a set \mathscr{A} of finitely presentable \mathbb{T}' -models which are finitely presentable as \mathbb{T} -models. Then the theory \mathbb{T}'' consisting of the set of all geometric sequents which are valid in all models in \mathscr{A} is of presheaf type, and every finitely presentable \mathbb{T}'' -model is a retract of a model in \mathscr{A} . In particular, if the models in \mathscr{A} are jointly conservative for \mathbb{T}' then \mathbb{T}' is of presheaf type, and every finitely presentable \mathbb{T}' -model is a retract of a model in \mathscr{A} .

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterization theorem

Corollaries and other results

New examples

For further reading

Other relevant results II

Theorem

Let \mathbb{T} be a geometric theory over a signature Σ . Then \mathbb{T} is of presheaf type if and only if the following conditions are satisfied:

- Every finitely presentable model is presented by a geometric formula over Σ;
- (ii) Every property of finite strings of elements of a (finitely presentable) T-model which is preserved by T-model homomorphisms is definable by a geometric formula over Σ;
- (iii) The finitely presentable $\mathbb T$ -models are jointly conservative for $\mathbb T.$

Theorem

Let \mathbb{T} be a geometric theory. Then there exists an expansion of \mathbb{T} (by no means unique) to a theory of presheaf type classified by the topos [f.p. \mathbb{T} -mod(**Set**), **Set**].

Any such theory will be said to be a presheaf completion of \mathbb{T} .

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterizatio theorem

Corollaries and other results

New examples

•

For further reading

New examples

Our characterization theorem subsumes all the previous results obtained on the subject, it is fully constructive, and can be concretely applied in practice to test whether a given theory is of presheaf type. New examples of theories of presheaf type obtained through this method include:

- The theory of algebraic (resp. separable) extensions of a base field
- The theory of vector spaces with linear independence predicates;
- · The theory of locally finite groups and its injectification
- The theory of /-groups with strong unit
- · A presheaf completion of the theory of decidable groups
- The theory of Diers' fields and of abstract circles (without assuming any form of the axiom of choice)

<ロト<通ト<注ト<注入</td>
 19/20

Olivia Caramello

Preliminaries

Theories of presheaf type

The characterization theorem

Corollaries and other results

New examples

For further reading

For further reading

O. Caramello.

Extensions of flat functors and theories of presheaf type, arxiv:math.CT/1404.4610 (2014)

