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Geometric logic

Geometric logic is the logic underlying Grothendieck toposes.
Indeed, any theory formulated within geometric logic admits a
classifying topos and, conversely, any Grothendieck topos is the
classifying topos of some (actually, of infinitely many) geometric
theories.

In fact, Grothendieck toposes geometrically embody, in a
‘maximally structured’ way, the logical information contained in
geometric theories.

Geometric logic is a particular kind of (infinitary) first-order logic
(actually not of inferior expressiveness). It is widely considered as
the “logic of finite observations”, and is particularly amenable to
computation and automated theorem proving.

Indeed, geometric logic is inherently constructive. This is very
relevant from a computer science perspective, by the well-known
paradigm identifying programs with constructive proofs.
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Higher-order and relative logic

Whilst higher-order logic is clearly more expressive than
first-order logic, the model theory of geometric theories is much
better-behaved and more amenable to computation, as witnessed
for instance by the existence theorem for classifying toposes and
universal models.
The development of relative geometric logic will allow us to
formalize a great number of higher-order notions whilst preserving
geometricity and the computational advantages arising from it.
(A nice illustration of the expressive power of relative theories is
provided by the ongoing work on a refoundation of functional
analysis (which is second-order) as algebra (which is first-order)
over a suitable base topos by Fields Medalist Peter Scholze and
his collaborator Dustin Clausen.)
Also recall that, in the context of ‘syntactic learning’, knowledge is
represented in a stratified way, by means of sequences of relative
theories lying at increasing levels of abstraction.
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Computational power of Grothendieck topologies

One of the reasons for the computational effectiveness of
geometric logic is the connection with Grothendieck toposes,
given by the classifying topos construction.
In my 2017 book it is shown that the classical proof system of
geometric logic over a given geometric theory is equivalent to new
proof systems whose inference rules correspond to the axioms of
Grothendieck topologies. These equivalences actually result from
topos-theoretic ‘bridges’ between different presentations of the
classifying topos of the theory.

Interestingly, these alternative proof systems turn out to be
computationally much better-behaved than the classical one. In
fact, instead of having several axioms and inference rules, they
only have two inference rules, making it much more manegeable
to compute inside them. In fact, there is even a formula
characterizing the ‘theorems’ provable in such systems!
‘Bridges’ involving Grothendieck topologies have also proved very
useful for building a great variety of structures presented by
generators and relations in most explicit ways.
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Model theory in toposes
We can consider models of arbitrary first-order theories in any
Grothendieck topos, thanks to the rich categorical structure
present on it.

The notion of model of a first-order theory in a topos is a natural
generalization of the usual Taskian definition of a (set-based)
model of the theory.

Let Σ be a (possibly multi-sorted) first-order signature. A structure
M over Σ in a category E with finite products is specified by the
following data:

• any sort A of Σ is interpreted by an object MA of E
• any function symbol f : A1, . . . ,An → B of Σ is interpreted as

an arrow Mf : MA1 × · · · × MAn → MB in E
• any relation symbol R ↣ A1, . . . ,An of Σ is interpreted as a

subobject MR ↣ MA1 × · · · × MAn in E

Any formula {x⃗ . ϕ} in a given context x⃗ over Σ is interpreted as a
subobject [[x⃗ . ϕ]]M ↣ MA1 × · · · × MAn defined recursively on the
structure of the formula.
A model of a theory T over a first-order signature Σ is a structure
over Σ in which all the axioms of T are satisfied.
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Geometric theories

Definition
A geometric theory T is a theory over a first-order signature Σ
whose axioms can be presented in the form (ϕ ⊢x⃗ ψ), where ϕ
and ψ are geometric formulae, that is formulae in the context x⃗
built up from atomic formulae over Σ by only using finitary
conjunctions, infinitary disjunctions and existential quantifications.

Remark
Inverse image functors of geometric morphisms of toposes
always preserve models of a geometric theory (but in general not
those of an arbitrary first-order theory).

Most of the first-order theories naturally arising in Mathematics
are geometric; anyway, if a finitary first-order theory is not
geometric, one can always canonically associate with it a
geometric theory, called its Morleyization, having the same
set-based models.
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Classifying toposes

It was realized in the seventies (thanks to the work of several
people, notably including W. Lawvere, A. Joyal, G. Reyes and M.
Makkai) that:

• Every geometric theory T has a classifying topos ET which is
characterized by the following representability property: for
any Grothendieck topos E we have an equivalence of
categories

Geom(E , ET) ≃ T-mod(E)
natural in E , where

- Geom(E , ET) is the category of geometric morphisms E → ET
and

- T-mod(E) is the category of T-models in E .

• The classifying topos of a geometric theory T can be
canonically built as the category Sh(CT, JT) of sheaves on the
syntactic site (CT, JT) of T.
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The syntactic category of a geometric theory
Definition (Makkai and Reyes 1977)

• Let T be a geometric theory over a signature Σ. The syntactic
category CT of T has as objects the ‘renaming’-equivalence
classes of geometric formulae-in-context {x⃗ . ϕ} over Σ and as
arrows {x⃗ . ϕ} → {y⃗ . ψ} (where the contexts x⃗ and y⃗ are
supposed to be disjoint without loss of generality) the
T-provable-equivalence classes [θ] of geometric formulae
θ(x⃗ , y⃗) which are T-provably functional i.e. such that the
sequents

(ϕ ⊢x⃗ (∃y)θ),
(θ ⊢x⃗ ,⃗y ϕ ∧ ψ), and

((θ ∧ θ[z⃗/y⃗ ]) ⊢x⃗ ,⃗y ,⃗z (y⃗ = z⃗))

are provable in T.
• The composite of two arrows

{x⃗ . ϕ}
[θ] // {y⃗ . ψ}

[γ] // {z⃗ . χ}

is defined as the T-provable-equivalence class of the formula
(∃y⃗)θ ∧ γ.

• The identity arrow on an object {x⃗ . ϕ} is the arrow

{x⃗ . ϕ}
[ϕ∧x⃗ ′=x⃗ ] // {x⃗ ′ . ϕ[x⃗ ′/x⃗ ]}
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The syntactic site
On the syntactic category of a geometric theory it is natural to put
the Grothendieck topology defined as follows:

Definition
The syntactic topology JT on the syntactic category CT of a
geometric theory T is given by:

a small family {[θi ] : {x⃗i . ϕi} → {y⃗ . ψ}} in CT is JT-covering

if and only if

the sequent (ψ ⊢y⃗ ∨
i∈I

(∃x⃗i)θi) is provable in T.

This notion is instrumental for identifying the models of the theory
T in any geometric category C (and in particular in any
Grothendieck topos) as suitable functors defined on the syntactic
category CT with values in C; indeed, these are precisely the
JT-continuous cartesian functors CT → C. So if C is a
Grothendieck topos they correspond precisely to the geometric
morphisms from C to Sh(CT, JT). This topos therefore classifies T.
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Interpretations and expansions
Definition
An interpretation (resp. a generalized interpretation) of a
geometric theory S into a geometric theory T is a geometric
functor CS → CT (resp. a geometric functor CS → ET).
[Note that the objects of ET can be represented as “definable” quotients
of coproducts of objects coming from CT.]

Remark
Any expansion T of a geometric theory S (i.e. a theory written
over a larger signature in which every axiom of S is provable)
yields an interpretation of S into T.
Any (generalized) interpretation I of S into T induces a geometric
morphism fI : ET → ES (and, conversely, any morphism f : ET → ES
arises uniquely from a generalized interpretation I).
Semantically, composition with fI yields, for any topos E , a functor

sE
I : T-mod(E) → S-mod(E)

such that, for any geometric formula ϕ(x⃗) over the signature of S,
for any T-model M in E , the interpretation of I(ϕ(x⃗)) in M
coincides with the interpretation of ϕ(x⃗) in sE

I (M).
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A theorem for interwining theories
The following result allows us to turn any morphism f between the
classifying toposes of two theories T and S into a richer theory Tf

S
“interwining T and S along f ”: indeed, the theory Tf

S extends the
theory T through the addition of new sorts, function and relation
symbols corresponding to the way in which S is interpreted in the
classifying topos of T via the morphism f .

Theorem
Let T and S geometric theories and f : ET → ES a morphism
between their classifying toposes. Then there exists an expansion
Tf
S of the theory T which is also an expansion of the theory S such

that the canonical interpretations H : (CT, JT) → (CTf
S
, JTf

S
) and

K : (CS, JS) → (CTf
S
, JTf

S
) make the following diagram commute and

fH is an equivalence of toposes:

Sh(CTf
S
, JTf

S
)

Sh(CT, JT) Sh(CS, JS)

fH∼

fK

f
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Examples
The theorem is naturally applied in the context of morphisms f
induced by (generalized) interpretations of S into T, e.g.

• Given an “alphabet” A, the propositional theory A with one
symbol Pa for each a ∈ A and the axioms (⊤ ⊢

∨
a∈A Pa) and

(Pa ∧ Pa′ ⊢ ⊥) for any a ̸= a′ in A. The (one-sorted) abstract
theory L of “letters” interprets in A by sending {xL . ⊤} to the
coproduct

∐
a∈A Pa. ‘The’ resulting theory AL can be seen as

the theory of “letters in the alphabet A”; indeed, it extends
the theory obtained from L by adding a constant ca for each
a ∈ A and the following axioms:

ca = ca′ ⊢ ⊥ for any a ̸= a′;

(T ⊢x

∨
a∈A

x = ca) .

• The theory W of “words” is obtained from the theory L of
“letters” by the same method, using the interpretation of W
into L sending {xW . ⊤} to the list object L({xL . ⊤}).

Note the role of the interpretation functor I as a geometric
“constructor” of higher-level entities from lower-level ones.
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Modelling of Raven matrices I

We may use the theorem also to
model the different levels of ab-
stractions involved in Raven ma-
trices problems.
Solving a Raven matrix requires
the identification of certain invari-
ances, whose logical expression
lies entirely within the framework
of (relative) geometric logic.

We can identify four relevant theories, defined on top of each
other, as follows:
• the theory M of matrices.
• the theory R of rows;
• the theory C of cells;
• the theory I of the internal structure of a cell.
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Modelling of Raven matrices II

• The theory I is meant to axiomatize the internal structure of
cells: so, it should have unary predicates corresponding to
the usual attributes of individual objects lying inside cells
(e.g. Type, Size, Color, Position) as well as predicates for
expressing the relations between them (for instance, the
difference relations - useful for counting the number of
elements inside a cell - or the interior/exterior relations).

• The theory C is the one that axiomatizes cells, i.e. the
structures obtained by putting together, in a single set, the
objects in the inner structure of a cell (that is, the elements of
a model of the theory I). For building it, one interprets the
empty theory with one sort in the theory I by sending
{xC . ⊤} to S({x I . ⊤}), where S is the geometric constructor
assigning to an object A the coproduct (over the natural
numbers) of the quotients An by the permutation group on n
elements.
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Modelling of Raven matrices III

• The theory R is meant to axiomatize the rows of the matrix,
intended as lists of cells. Accordingly, this theory arises by
considering the interpretation of the empty theory with one
sort in the theory C which sends {xR . ⊤} to L({xC . ⊤}). If
one wants to consider only rows with a fixed lenght n, then
one considers the interpretation sending {xR . ⊤} to
{xC . ⊤}n.

• The theory M is the one that axiomatizes matrices, viewed as
lists of rows. It can be obtained from the theory R of rows by
using the interpretation of the empty theory with one sort in
the theory R which sends {xM . ⊤} to L({xR . ⊤}). Matrices
with a fixed number of rows correspond to quotients of this
theory (we have predicates in it, indexed by the natural
numbers, which correspond to the subobjects {xR . ⊤}n of
L({xR . ⊤})).
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Global and local properties

Note that, in applying the theorem, instead of considering
interpretations from empty theories, one could consider
interpretations from richer theories, in case there are natural
“global” operations expressible in their abstract language (such
as, in the case of the theory of cells, the rotations of all the
elements of a cell, or, in the case of the theory of rows, the
permutation of cells of a row).

Within an “interwined” theory, we can notably distinguish between
properties which are inherently global and properties which
instead are local (i.e. whose definition requires referring to
elements lying at lower levels): indeed, by identifying properties
with subtoposes, the former correspond precisely to the
subtoposes obtainable by taking the fibered products of
subtoposes of the classifying topos of S along the interpretation
geometric morphism f : ET → ES.
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The language of invariances

In our formalization, the theories resulting from n successive
applications of the theorem have stratified vocabularies with n
levels.

Starting from from predicates {Ti | i ∈ I} lying at level n and
tuples of terms t⃗i , one can inductively generate predicates
P{Ti |i∈I} lying at level n + 1 by the following very general scheme:

P{Ti |i∈I}(y⃗) ⊣⊢y⃗

∨
i∈I

∃x⃗i(y⃗ = t⃗i(x⃗i) ∧ Ti(x⃗i)) .

(the terms t⃗i are typically those which arise in the construction of
the elements y⃗ at level n + 1 in terms of the elements x⃗i at level n
according to the interpretation morphism I; so, they belong to the
vocabulary of the interwined theory constructed by applying the
theorem).
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Solving Raven matrices

The classical Raven matrix problems require the identification of
properties of rows, i.e. properties lying at level 2 in our
formalization (recall that a Raven matrix is constructed in such a
way that all the rows share a characteristic property given by the
application of certain rules acting on the attributes of the innner
structures of cells composing it).

These rules lie at level 2 but arise from functions or predicates
lying at the ground level, i.e. involving the sets which parametrize
the predicates of the ground theory I. Recall that, at level 0, we
have predicates that are indexed by certain (finite) sets, endowed
with certain operations, the so-called rules for attributes (e.g.
Constant, Arithmetic, Progression, Distribute).

Solving a Raven matrix thus requires making an abstraction leap
from level 0 (that of inner structures of cells) to level 2 (that of
rows) so as to identify the right geometric formula in the language
of the theory R which expresses the given invariance.
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An example

As an example, suppose that the matrix is a 3 × 3 one, and that
the rule to be identified, acting on the attribute Position, is the
Arithmetic one. Let

g : Pos × Pos → Pos .

be the function formalizing this rule.

For any predicate Ri indexed by i ∈ Pos, we have, by following the
previous generation scheme, a unary predicate PRi (x

C) given by
∃z⃗i(x = πi(z⃗i) ∧ Ri(z⃗i)), where πi is the function symbol in the
interwined theory corresponding to the canonical projection from
{x I . ⊤}3 to the quotient by the permutation group.

Then the invariance property is expressed by the geometric
formula in the language of the theory R∨
(i1,i2,i3)∈Graph(g)

∃x1∃x2∃x3(y⃗ = (x1, x2, x3)∧PRi1
(x1)∧PRi2

(x2)∧PRi3
(x3)) .
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Integration with deep learning techniques

We have seen that Raven matrices problems can be reformulated
in terms of the identification of a certain geometric formula lying at
level 2 (namely, the one which expresses the given invariance).

More generally, ARC-type problems can be reinterpreted in terms
of generation of formal stratified vocabularies and identification of
geometric formulas written in them which express the given
regularities.

Our techniques can thus be very useful in significantly reducing
the space of parameters to be tested in training artificial systems,
leading to AI systems that are much more efficient, but also more
conceptually inspired and explainable.

They could be swiftly integrated with LLMs, through algorithms for
“lifting” the statistically discovered invariances to sequents
provable in geometric theories. The likelihood of a sequent being
true could be estimated on the basis of the available data, as well
as on its logical complexity (one can start testing the sequents
which are simpler from the arithmetic or logical point of view).
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Modelling of stratified phenomena
These techniques can be used in all situations where we need to
model stratified phenomena:

They could also be applied to the study of games, formalized in
such a way that “tactics” and even “playing styles” can be
expressed as geometric sequents in stratified vocabularies. The
resulting AI systems would then be able to infer and formally
express all sorts of (meta-)rules relevant for game playing.

In music, the formal identification of the invariances which make a
piece of music beautiful would be crucial for designing systems
for artificially composing good music (as well as for better
understanding and emulating the styles of great composers).
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