

Toposes for the
working
mathematician

Olivia Caramello

Sheaves on a
topological space

Sheaves on a site

Categories of
sheaves

Basic properties
of Grothendieck
toposes

Subobjects in a
Grothendieck topos

Geometric
morphisms

Classifying
toposes

For further
reading

Toposes for the working mathematician

Lecture II: Sheaves on a site

Lecture III: Classifying toposes

Olivia Caramello

University of Insubria (Como), Grothendieck Institute and MICS - CentraleSupélec

Laboratoire MICS, CentraleSupélec
University of Paris-Saclay, 21 and 28 March 2024

Presheaves on a topological space

Definition

Let X be a topological space. A **presheaf** \mathcal{F} on X consists of the data:

- (i) for every open subset U of X , a set $\mathcal{F}(U)$ and
- (ii) for every inclusion $V \subseteq U$ of open subsets of X , a function $\rho_{U,V} : \mathcal{F}(U) \rightarrow \mathcal{F}(V)$ subject to the conditions
 - $\rho_{U,U}$ is the identity map $\mathcal{F}(U) \rightarrow \mathcal{F}(U)$ and
 - if $W \subseteq V \subseteq U$ are three open subsets, then $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$.

The maps $\rho_{U,V}$ are called **restriction maps**, and we sometimes write $s|_V$ instead of $\rho_{U,V}(s)$, if $s \in \mathcal{F}(U)$.

A **morphism of presheaves** $\mathcal{F} \rightarrow \mathcal{G}$ on a topological space X is a collection of maps $\mathcal{F}(U) \rightarrow \mathcal{G}(U)$ which is compatible with respect to restriction maps.

Remark

Categorically, a presheaf \mathcal{F} on X is a **functor** $\mathcal{F} : \mathcal{O}(X)^{\text{op}} \rightarrow \mathbf{Set}$, where $\mathcal{O}(X)$ is the poset category corresponding to the lattice of open sets of the topological space X (with respect to the inclusion relation).

A morphism of presheaves is then just a **natural transformation** between the corresponding functors.

So we have a category $[\mathcal{O}(X)^{\text{op}}, \mathbf{Set}]$ of presheaves on X .

Sheaves on a topological space

Definition

A **sheaf** \mathcal{F} on a topological space X is a presheaf on X satisfying the additional conditions

- (i) if U is an open set, if $\{V_i \mid i \in I\}$ is an open covering of U , and if $s, t \in \mathcal{F}(U)$ are elements such that $s|_{V_i} = t|_{V_i}$ for all i , then $s = t$;
- (ii) if U is an open set, if $\{V_i \mid i \in I\}$ is an open covering of U , and if we have elements $s_i \in \mathcal{F}(V_i)$ for each i , with the property that for each $i, j \in I$, $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$, then there is an element $s \in \mathcal{F}(U)$ (necessarily unique by (i)) such that $s|_{V_i} = s_i$ for each i .

A morphism of sheaves is defined as a morphism of the underlying presheaves.

Examples

- the sheaf of continuous real-valued functions on any topological space
- the sheaf of regular functions on a variety
- the sheaf of differentiable functions on a differentiable manifold
- the sheaf of holomorphic functions on a complex manifold

In each of the above examples, the restriction maps of the sheaf are the usual set-theoretic restrictions of functions to a subset.

Sheaves from a categorical point of view

Sheaves arising in Mathematics are often equipped with more structure than the mere set-theoretic one; for example, one may wish to consider sheaves of modules (resp. rings, abelian groups, ...) on a topological space X .

The natural categorical way of looking at these notions is to consider them as **models** of certain (geometric) theories in a category $\mathbf{Sh}(X)$ of sheaves of sets.

Remarks

- *Categorically, a sheaf is a functor $\mathcal{O}(X)^{\text{op}} \rightarrow \mathbf{Set}$ which satisfies certain conditions expressible in categorical language entirely in terms of the poset category $\mathcal{O}(X)$ and of the usual notion of covering on it. The category $\mathbf{Sh}(X)$ of sheaves on a topological space X is thus a full subcategory of the category $[\mathcal{O}(X)^{\text{op}}, \mathbf{Set}]$ of presheaves on X .*
- *Many important properties of topological spaces X can be naturally formulated as (invariant) properties of the categories $\mathbf{Sh}(X)$ of sheaves of sets on the spaces.*

These remarks led Grothendieck to introduce a significant **categorical generalization** of the notion of sheaf, and hence the notion of **Grothendieck topos**.

Adjunctions induced by points

Let x be a point of a topological space X .

Definition

Let A be a set. Then the **skyscraper sheaf** $\text{Sky}_x(A)$ of A at x is the sheaf on X defined as

- $\text{Sky}_x(A)(U) = A$ if $x \in U$
- $\text{Sky}_x(A)(U) = 1 = \{*\}$ if $x \notin U$

and in the obvious way on arrows.

The assignment $A \rightarrow \text{Sky}_x(A)$ is clearly functorial.

Theorem

The stalk functor $\text{Stalk}_x : \mathbf{Sh}(X) \rightarrow \mathbf{Set}$ at x is left adjoint to the skyscraper functor $\text{Sky}_x : \mathbf{Set} \rightarrow \mathbf{Sh}(X)$.

In fact, as we shall see later in the course, **points** in topos theory are defined as suitable kinds of **functors** (more precisely, colimit and finite-limit preserving ones).

Open sets as subterminal objects

Since limits in a category $\mathbf{Sh}(X)$ are computed as in the category of presheaves $[\mathcal{O}(X)^{\text{op}}, \mathbf{Set}]$, a subobject of a sheaf F in $\mathbf{Sh}(X)$ is just a **subsheaf**, that is a subfunctor which is a sheaf.

Notice that a subfunctor $S \subseteq F$ is a sheaf if and only if for every open covering $\{U_i \subseteq U \mid i \in I\}$ and every element $x \in F(U)$, $x \in S(U)$ if and only if $x|_{U_i} \in S(U_i)$.

Definition

In a category with a terminal object, a **subterminal object** is an object whose unique arrow to the terminal object is a monomorphism.

Theorem

Let X be a topological space. Then we have a frame isomorphism

$$\text{Sub}_{\mathbf{Sh}(X)}(1) \cong \mathcal{O}(X) .$$

between the subterminal objects of $\mathbf{Sh}(X)$ and the open sets of X .

Sieves

In order to ‘categorify’ the notion of sheaf of a topological space, the first step is to introduce an abstract notion of covering (of an object by a family of arrows to it) in a category.

Definition

- Given a category \mathcal{C} and an object $c \in \text{Ob}(\mathcal{C})$, a **presieve** P in \mathcal{C} on c is a collection of arrows in \mathcal{C} with codomain c .
- Given a category \mathcal{C} and an object $c \in \text{Ob}(\mathcal{C})$, a **sieve** S in \mathcal{C} on c is a collection of arrows in \mathcal{C} with codomain c such that

$$f \in S \Rightarrow f \circ g \in S$$

whenever this composition makes sense.

- We say that a sieve S is **generated** by a presieve P on an object c if it is the smallest sieve containing it, that is if it is the collection of arrows to c which factor through an arrow in P .

If S is a sieve on c and $h : d \rightarrow c$ is any arrow to c , then

$$h^*(S) := \{g \mid \text{cod}(g) = d, h \circ g \in S\}$$

is a sieve on d .

Grothendieck topologies

Definition

- A **Grothendieck topology** on a category \mathcal{C} is a function J which assigns to each object c of \mathcal{C} a collection $J(c)$ of sieves on c in such a way that
 - (maximality axiom) the maximal sieve $M_c = \{f \mid \text{cod}(f) = c\}$ is in $J(c)$;
 - (stability axiom) if $S \in J(c)$, then $f^*(S) \in J(d)$ for any arrow $f : d \rightarrow c$;
 - (transitivity axiom) if $S \in J(c)$ and R is any sieve on c such that $f^*(R) \in J(d)$ for all $f : d \rightarrow c$ in S , then $R \in J(c)$.

The sieves S which belong to $J(c)$ for some object c of \mathcal{C} are said to be **J -covering**.

- A **site** is a pair (\mathcal{C}, J) where \mathcal{C} is a small category and J is a Grothendieck topology on \mathcal{C} .

Examples of Grothendieck topologies

- For any (small) category \mathcal{C} , the **trivial topology** on \mathcal{C} is the Grothendieck topology in which the only sieve covering an object c is the maximal sieve M_c .
- The **dense topology** D on a category \mathcal{C} is defined by: for a sieve S ,

$$S \in D(c) \quad \text{if and only if} \quad \text{for any } f : d \rightarrow c \text{ there exists} \\ g : e \rightarrow d \text{ such that } f \circ g \in S.$$

If \mathcal{C} satisfies the **right Ore condition** i.e. the property that any two arrows $f : d \rightarrow c$ and $g : e \rightarrow c$ with a common codomain c can be completed to a commutative square

$$\begin{array}{ccc} \bullet & \dashrightarrow & d \\ | & & \downarrow f \\ | & & \\ \Downarrow & g & \downarrow \\ e & \xrightarrow{g} & c \end{array}$$

then the dense topology on \mathcal{C} specializes to the **atomic topology** on \mathcal{C} i.e. the topology J_{at} defined by: for a sieve S ,

$$S \in J_{at}(c) \text{ if and only if } S \neq \emptyset.$$

Examples of Grothendieck topologies

- If X is a topological space, the **usual notion of covering** in Topology gives rise to the following Grothendieck topology $J_{\mathcal{O}(X)}$ on the poset category $\mathcal{O}(X)$: for a sieve $S = \{U_i \hookrightarrow U \mid i \in I\}$ on $U \in \text{Ob}(\mathcal{O}(X))$,

$$S \in J_{\mathcal{O}(X)}(U) \text{ if and only if } \bigcup_{i \in I} U_i = U.$$

- More generally, given a **frame** (or complete Heyting algebra) H , we can define a Grothendieck topology J_H , called the *canonical topology on H* , by:

$$\{a_i \mid i \in I\} \in J_H(a) \text{ if and only if } \bigvee_{i \in I} a_i = a.$$

- Given a small category of topological spaces which is closed under finite limits and under taking open subspaces, one may define the **open cover topology** on it by specifying as basis the collection of open embeddings $\{Y_i \hookrightarrow X \mid i \in I\}$ such that $\bigcup_{i \in I} Y_i = X$.
- The **Zariski topology** on the opposite of the category $\mathbf{Rng}_{\text{f.g.}}$ of finitely generated commutative rings with unit is defined by: for any cosieve S in $\mathbf{Rng}_{\text{f.g.}}$ on an object A , $S \in Z(A)$ if and only if S contains a finite family $\{\xi_i : A \rightarrow A_{f_i} \mid 1 \leq i \leq n\}$ of canonical maps $\xi_i : A \rightarrow A_{f_i}$ in $\mathbf{Rng}_{\text{f.g.}}$ where $\{f_1, \dots, f_n\}$ is a set of elements of A which is not contained in any proper ideal of A .

Sheaves on a site

Definition

- A **presheaf** on a (small) category \mathcal{C} is a functor $P : \mathcal{C}^{\text{op}} \rightarrow \mathbf{Set}$.
- Let $P : \mathcal{C}^{\text{op}} \rightarrow \mathbf{Set}$ be a presheaf on \mathcal{C} and S be a sieve on an object c of \mathcal{C} .

A **matching family** for S of elements of P is a function which assigns to each arrow $f : d \rightarrow c$ in S an element $x_f \in P(d)$ in such a way that

$$P(g)(x_f) = x_{f \circ g} \quad \text{for all } g : e \rightarrow d .$$

An **amalgamation** for such a family is a single element $x \in P(c)$ such that

$$P(f)(x) = x_f \quad \text{for all } f \text{ in } S .$$

- Given a site (\mathcal{C}, J) , a presheaf on \mathcal{C} is a **J -sheaf** if every matching family for any J -covering sieve on any object of \mathcal{C} has a unique amalgamation.
- The category $\mathbf{Sh}(\mathcal{C}, J)$ of **sheaves on the site** (\mathcal{C}, J) is the full subcategory of $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$ on the presheaves which are J -sheaves.
- A **Grothendieck topos** is any category equivalent to the category of sheaves on a site.

Examples of toposes

The following examples show that toposes can be naturally attached to mathematical notions as different as (small) categories, topological spaces, or groups.

Examples

- For any (small) category \mathcal{C} , $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$ is the category of sheaves $\mathbf{Sh}(\mathcal{C}, T)$ where T is the trivial topology on \mathcal{C} .
- For any topological space X , $\mathbf{Sh}(\mathcal{O}(X), J_{\mathcal{O}(X)})$ is equivalent to the usual category $\mathbf{Sh}(X)$ of sheaves on X .
- For any (topological) group G , the category $BG = \mathbf{Cont}(G)$ of continuous actions of G on discrete sets is a Grothendieck topos (equivalent, as we shall see, to the category $\mathbf{Sh}(\mathbf{Cont}_t(G), J_{\text{at}})$ of sheaves on the full subcategory $\mathbf{Cont}_t(G)$ on the non-empty transitive actions with respect to the atomic topology).

Basic properties of Grothendieck toposes

Grothendieck toposes satisfy all the categorical properties that one might hope for:

Theorem

Let (\mathcal{C}, J) be a site. Then

- the inclusion $\mathbf{Sh}(\mathcal{C}, J) \hookrightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}]$ has a left adjoint $a : [\mathcal{C}^{\text{op}}, \mathbf{Set}] \rightarrow \mathbf{Sh}(\mathcal{C}, J)$ (called the *associated sheaf functor*), which preserves finite limits.
- The category $\mathbf{Sh}(\mathcal{C}, J)$ has all (small) limits, which are preserved by the inclusion functor $\mathbf{Sh}(\mathcal{C}, J) \hookrightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}]$; in particular, limits are computed pointwise and the terminal object $1_{\mathbf{Sh}(\mathcal{C}, J)}$ of $\mathbf{Sh}(\mathcal{C}, J)$ is the functor $T : \mathcal{C}^{\text{op}} \rightarrow \mathbf{Set}$ sending each object $c \in \text{Ob}(\mathcal{C})$ to the singleton $\{*\}$.
- The associated sheaf functor $a : [\mathcal{C}^{\text{op}}, \mathbf{Set}] \rightarrow \mathbf{Sh}(\mathcal{C}, J)$ preserves colimits; in particular, $\mathbf{Sh}(\mathcal{C}, J)$ has all (small) colimits.
- The category $\mathbf{Sh}(\mathcal{C}, J)$ has *exponentials*, which are constructed as in the topos $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$.
- The category $\mathbf{Sh}(\mathcal{C}, J)$ has a *subobject classifier*.
- The category $\mathbf{Sh}(\mathcal{C}, J)$ has a *separating set of objects*.

Subobjects in a Grothendieck topos

Since limits in a topos $\mathbf{Sh}(\mathcal{C}, J)$ are computed as in the presheaf topos $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$, a subobject of a sheaf F in $\mathbf{Sh}(\mathcal{C}, J)$ is just a **subsheaf**, that is a subfunctor which is a sheaf.

Notice that a subfunctor $F' \subseteq F$ is a sheaf if and only if for every J -covering sieve S and every element $x \in F(c)$, $x \in F'(c)$ if and only if $F(f)(x) \in F'(\text{dom}(f))$ for every $f \in S$.

Theorem

- For any Grothendieck topos \mathcal{E} and any object a of \mathcal{E} , the poset $\text{Sub}_{\mathcal{E}}(a)$ of all subobjects of a in \mathcal{E} is a **complete Heyting algebra**.
- For any arrow $f : a \rightarrow b$ in a Grothendieck topos \mathcal{E} , the pullback functor $f^* : \text{Sub}_{\mathcal{E}}(b) \rightarrow \text{Sub}_{\mathcal{E}}(a)$ has both a left adjoint $\exists_f : \text{Sub}_{\mathcal{E}}(a) \rightarrow \text{Sub}_{\mathcal{E}}(b)$ and a right adjoint $\forall_f : \text{Sub}_{\mathcal{E}}(a) \rightarrow \text{Sub}_{\mathcal{E}}(b)$.

The Heyting operations on subobjects

Proposition

The collection $\text{Sub}_{\mathbf{Sh}(\mathcal{C}, J)}(E)$ of subobjects of an object E in $\mathbf{Sh}(\mathcal{C}, J)$ has the structure of a complete Heyting algebra with respect to the natural ordering $A \leq B$ if and only if for every $c \in \mathcal{C}$, $A(c) \subseteq B(c)$. We have that

- $(A \wedge B)(c) = A(c) \cap B(c)$ for any $c \in \mathcal{C}$;
- $(A \vee B)(c) = \{x \in E(c) \mid \{f : d \rightarrow c \mid E(f)(x) \in A(d) \cup B(d)\} \in J(c)\}$ for any $c \in \mathcal{C}$;
(the infinitary analogue of this holds)
- $(A \Rightarrow B)(c) = \{x \in E(c) \mid \text{for every } f : d \rightarrow c, E(f)(x) \in A(d) \text{ implies } E(f)(x) \in B(d)\}$ for any $c \in \mathcal{C}$.
- *the bottom subobject $0 \rightarrow E$ is given by the embedding into E of the initial object 0 of $\mathbf{Sh}(\mathcal{C}, J)$ (given by: $0(c) = \emptyset$ if $\emptyset \notin J(c)$ and $0(c) = \{*\}$ if $\emptyset \in J(c)$);*
- *the top subobject is the identity one.*

The interpretation of quantifiers

Let $\phi : E \rightarrow F$ be a morphism in $\mathbf{Sh}(\mathcal{C}, J)$.

- The **pullback functor**

$$\phi^* : \text{Sub}_{\mathbf{Sh}(\mathcal{C}, J)}(F) \rightarrow \text{Sub}_{\mathbf{Sh}(\mathcal{C}, J)}(E)$$

is given by: $\phi^*(B)(c) = \phi(c)^{-1}(B(c))$ for any subobject $B \rightarrowtail F$ and any $c \in \mathcal{C}$.

- The **left adjoint**

$$\exists_\phi : \text{Sub}_{\mathbf{Sh}(\mathcal{C}, J)}(E) \rightarrow \text{Sub}_{\mathbf{Sh}(\mathcal{C}, J)}(F)$$

is given by: $\exists_\phi(A)(c) = \{y \in E(c) \mid \{f : d \rightarrow c \mid (\exists a \in A(d))(\phi(d)(a) = E(f)(y))\} \in J(c)\}$
for any subobject $A \rightarrowtail E$ and any $c \in \mathcal{C}$.

- The **right adjoint**

$$\forall_\phi : \text{Sub}_{\mathbf{Sh}(\mathcal{C}, J)}(E) \rightarrow \text{Sub}_{\mathbf{Sh}(\mathcal{C}, J)}(F)$$

is given by $\forall_\phi(A)(c) = \{y \in E(c) \mid \text{for all } f : d \rightarrow c, \phi(d)^{-1}(E(f)(y)) \subseteq A(d)\}$
for any subobject $A \rightarrowtail E$ and any $c \in \mathcal{C}$.

Geometric morphisms

The natural, topologically motivated, notion of morphism of Grothendieck toposes is that of **geometric morphism**. The natural notion of morphism of geometric morphisms is that of **geometric transformation**.

Definition

- ① Let \mathcal{E} and \mathcal{F} be toposes. A **geometric morphism** $f : \mathcal{E} \rightarrow \mathcal{F}$ consists of a pair of functors $f_* : \mathcal{E} \rightarrow \mathcal{F}$ (the **direct image** of f) and $f^* : \mathcal{F} \rightarrow \mathcal{E}$ (the **inverse image** of f) together with an adjunction $f^* \dashv f_*$, such that f^* preserves finite limits.
- ② Let f and $g : \mathcal{E} \rightarrow \mathcal{F}$ be geometric morphisms. A **geometric transformation** $\alpha : f \rightarrow g$ is defined to be a natural transformation $\alpha : f^* \rightarrow g^*$.
- ③ A **point** of a topos \mathcal{E} is a geometric morphism $\mathbf{Set} \rightarrow \mathcal{E}$.
 - Grothendieck toposes and geometric morphisms between them form a 2-category.
 - Given two toposes \mathcal{E} and \mathcal{F} , geometric morphisms from \mathcal{E} to \mathcal{F} and geometric transformations between them form a category, denoted by **Geom**(\mathcal{E}, \mathcal{F}).

Examples of geometric morphisms

- A continuous function $f : X \rightarrow Y$ between topological spaces gives rise to a geometric morphism $\mathbf{Sh}(f) : \mathbf{Sh}(X) \rightarrow \mathbf{Sh}(Y)$. The direct image $\mathbf{Sh}(f)_*$ sends a sheaf $F \in \text{Ob}(\mathbf{Sh}(X))$ to the sheaf $\mathbf{Sh}(f)_*(F)$ defined by $\mathbf{Sh}(f)_*(F)(V) = F(f^{-1}(V))$ for any open subset V of Y . The inverse image $\mathbf{Sh}(f)^*$ acts on étale bundles over Y by sending an étale bundle $p : E \rightarrow Y$ to the étale bundle over X obtained by pulling back p along $f : X \rightarrow Y$.
- Every Grothendieck topos \mathcal{E} has a unique geometric morphism $\mathcal{E} \rightarrow \mathbf{Set}$. The direct image is the **global sections functor** $\Gamma : \mathcal{E} \rightarrow \mathbf{Set}$, sending an object $e \in \mathcal{E}$ to the set $\text{Hom}_{\mathcal{E}}(1_{\mathcal{E}}, e)$, while the inverse image functor $\Delta : \mathbf{Set} \rightarrow \mathcal{E}$ sends a set S to the coproduct $\bigsqcup_{s \in S} 1_{\mathcal{E}}$.
- For any site (\mathcal{C}, J) , the pair of functors formed by the inclusion $\mathbf{Sh}(\mathcal{C}, J) \hookrightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}]$ and the associated sheaf functor $a : [\mathcal{C}^{\text{op}}, \mathbf{Set}] \rightarrow \mathbf{Sh}(\mathcal{C}, J)$ yields a geometric morphism $i : \mathbf{Sh}(\mathcal{C}, J) \rightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}]$.

Geometric morphisms to $\mathbf{Sh}(\mathcal{C}, J)$ I

Given a cartesian category (i.e. a category with all finite limits) \mathcal{C} , a functor $F : \mathcal{C} \rightarrow \mathcal{E}$ is said to be **cartesian** if it preserves finite limits. We shall denote by $\mathbf{Cart}(\mathcal{C}, \mathcal{E})$ the category of cartesian functors $\mathcal{C} \rightarrow \mathcal{E}$ and natural transformations between them.

Definition

Let \mathcal{E} be a Grothendieck topos.

- A family $\{f_i : a_i \rightarrow a \mid i \in I\}$ of arrows in \mathcal{E} with common codomain is said to be **epimorphic** if for any pair of arrows $g, h : a \rightarrow b$ with domain a , $g = h$ if and only if $g \circ f_i = h \circ f_i$ for all $i \in I$.
- If (\mathcal{C}, J) is a site, a functor $F : \mathcal{C} \rightarrow \mathcal{E}$ is said to be **J -continuous** if it sends J -covering sieves to epimorphic families.

The full subcategory of $\mathbf{Cart}(\mathcal{C}, \mathcal{E})$ on the J -continuous flat functors will be denoted by $\mathbf{Cart}_J(\mathcal{C}, \mathcal{E})$.

Geometric morphisms to $\mathbf{Sh}(\mathcal{C}, J)$ II

Theorem

For any cartesian site (\mathcal{C}, J) and Grothendieck topos \mathcal{E} , we have an equivalence of categories

$$\mathbf{Geom}(\mathcal{E}, \mathbf{Sh}(\mathcal{C}, J)) \simeq \mathbf{Cart}_J(\mathcal{C}, \mathcal{E})$$

natural in \mathcal{E} .

This equivalence sends a geometric morphism $f : \mathcal{E} \rightarrow \mathbf{Sh}(\mathcal{C}, J)$ to the functor given by the composite $f^* \circ I$ of $f^* : [\mathcal{C}^{\text{op}}, \mathbf{Set}] \rightarrow \mathcal{E}$ with the canonical functor $I : \mathcal{C} \rightarrow \mathbf{Sh}(\mathcal{C}, J)$.

Fact

This theorem generalizes to the case of an arbitrary site (\mathcal{C}, J) , replacing the notion of cartesian functor by that of flat functor.

Model theory in toposes

We can consider models of arbitrary first-order theories in any Grothendieck topos, thanks to the rich categorical structure present on it.

The notion of model of a first-order theory in a topos is a natural **generalization** of the usual Taskian definition of a (set-based) model of the theory.

Let Σ be a (possibly multi-sorted) first-order signature. A *structure* M over Σ in a category \mathcal{E} with finite products is specified by the following data:

- any sort A of Σ is interpreted by an *object* MA of \mathcal{E}
- any function symbol $f : A_1, \dots, A_n \rightarrow B$ of Σ is interpreted as an *arrow* $Mf : MA_1 \times \dots \times MA_n \rightarrow MB$ in \mathcal{E}
- any relation symbol $R \rightarrow A_1, \dots, A_n$ of Σ is interpreted as a *subobject* $MR \rightarrow MA_1 \times \dots \times MA_n$ in \mathcal{E}

Any formula $\{\vec{x} . \phi\}$ in a given context \vec{x} over Σ is interpreted as a subobject $[[\vec{x} . \phi]]_M \rightarrow MA_1 \times \dots \times MA_n$ defined recursively on the structure of the formula.

A **model** of a theory \mathbb{T} over a first-order signature Σ is a structure over Σ in which all the axioms of \mathbb{T} are satisfied.

Geometric theories

Sheaves on a
topological space

Sheaves on a site

Categories of
sheaves

Basic properties
of Grothendieck
toposes

Subobjects in a
Grothendieck topos

Geometric
morphisms

Classifying
toposes

For further
reading

Definition

A **geometric theory** \mathbb{T} is a theory over a first-order signature Σ whose axioms can be presented in the form $(\phi \vdash_{\vec{x}} \psi)$, where ϕ and ψ are *geometric formulae*, that is formulae in the context \vec{x} built up from atomic formulae over Σ by only using finitary conjunctions, infinitary disjunctions and existential quantifications.

Remark

Inverse image functors of geometric morphisms of toposes always preserve models of a geometric theory (but in general not those of an arbitrary first-order theory).

Most of the first-order theories naturally arising in Mathematics are geometric; anyway, if a finitary first-order theory is not geometric, one can always canonically associate with it a geometric theory, called its *Morleyization*, having the same set-based models.

Classifying toposes

It was realized in the seventies (thanks to the work of several people, notably including W. Lawvere, A. Joyal, G. Reyes and M. Makkai) that:

- Every geometric theory \mathbb{T} has a **classifying topos** $\mathcal{E}_{\mathbb{T}}$ which is characterized by the following **representability** property: for any Grothendieck topos \mathcal{E} we have an equivalence of categories

$$\mathbf{Geom}(\mathcal{E}, \mathcal{E}_{\mathbb{T}}) \simeq \mathbb{T}\text{-mod}(\mathcal{E})$$

natural in \mathcal{E} , where

- $\mathbf{Geom}(\mathcal{E}, \mathcal{E}_{\mathbb{T}})$ is the category of geometric morphisms $\mathcal{E} \rightarrow \mathcal{E}_{\mathbb{T}}$ and
- $\mathbb{T}\text{-mod}(\mathcal{E})$ is the category of \mathbb{T} -models in \mathcal{E} .

- The classifying topos of a geometric theory \mathbb{T} can be canonically built as the category $\mathbf{Sh}(\mathcal{C}_{\mathbb{T}}, J_{\mathbb{T}})$ of sheaves on the **syntactic site** $(\mathcal{C}_{\mathbb{T}}, J_{\mathbb{T}})$ of \mathbb{T} .

The syntactic category of a geometric theory

Definition (Makkai and Reyes 1977)

- Let \mathbb{T} be a geometric theory over a signature Σ . The **syntactic category** $\mathcal{C}_{\mathbb{T}}$ of \mathbb{T} has as **objects** the 'renaming'-equivalence classes of geometric formulae-in-context $\{\vec{x} . \phi\}$ over Σ and as **arrows** $\{\vec{x} . \phi\} \rightarrow \{\vec{y} . \psi\}$ (where the contexts \vec{x} and \vec{y} are supposed to be disjoint without loss of generality) the \mathbb{T} -provable-equivalence classes $[\theta]$ of geometric formulae $\theta(\vec{x}, \vec{y})$ which are \mathbb{T} -provably functional i.e. such that the sequents

$$\begin{aligned} & (\phi \vdash_{\vec{x}} (\exists y) \theta), \\ & (\theta \vdash_{\vec{x}, \vec{y}} \phi \wedge \psi), \text{ and} \\ & ((\theta \wedge \theta[\vec{z}/\vec{y}]) \vdash_{\vec{x}, \vec{y}, \vec{z}} (\vec{y} = \vec{z})) \end{aligned}$$

are provable in \mathbb{T} .

- The **composite** of two arrows

$$\{\vec{x} . \phi\} \xrightarrow{[\theta]} \{\vec{y} . \psi\} \xrightarrow{[\gamma]} \{\vec{z} . \chi\}$$

is defined as the \mathbb{T} -provable-equivalence class of the formula $(\exists \vec{y}) \theta \wedge \gamma$.

- The **identity** arrow on an object $\{\vec{x} . \phi\}$ is the arrow

$$\{\vec{x} . \phi\} \xrightarrow{[\phi \wedge \vec{x}' = \vec{x}]} \{\vec{x}' . \phi[\vec{x}'/\vec{x}]\}$$

The syntactic site

On the syntactic category of a geometric theory it is natural to put the Grothendieck topology defined as follows:

Definition

The **syntactic topology** $J_{\mathbb{T}}$ on the syntactic category $\mathcal{C}_{\mathbb{T}}$ of a geometric theory \mathbb{T} is given by:

a small family $\{[\theta_i] : \{\vec{x}_i . \phi_i\} \rightarrow \{\vec{y} . \psi\}\}$ in $\mathcal{C}_{\mathbb{T}}$ is **$J_{\mathbb{T}}$ -covering**
if and only if

the sequent $(\psi \vdash_{\vec{y}} \bigvee_{i \in I} (\exists \vec{x}_i) \theta_i)$ is **provable in \mathbb{T}** .

This notion is instrumental for identifying the **models** of the theory \mathbb{T} in any geometric category \mathcal{C} (and in particular in any Grothendieck topos) as suitable **functors** defined on the syntactic category $\mathcal{C}_{\mathbb{T}}$ with values in \mathcal{C} ; indeed, these are precisely the $J_{\mathbb{T}}$ -continuous cartesian functors $\mathcal{C}_{\mathbb{T}} \rightarrow \mathcal{C}$. So if \mathcal{C} is a Grothendieck topos they correspond precisely to the geometric morphisms from \mathcal{C} to $\mathbf{Sh}(\mathcal{C}_{\mathbb{T}}, J_{\mathbb{T}})$. This topos therefore classifies \mathbb{T} .

Morita equivalence

- Two mathematical theories are said to be **Morita-equivalent** if have the same classifying topos (up to equivalence): this means that they have equivalent categories of models in every Grothendieck topos \mathcal{E} , naturally in \mathcal{E} .
- Every Grothendieck topos is the classifying topos of *some* geometric theory (and in fact, of infinitely many theories).
- So a Grothendieck topos can be seen as a **canonical representative** of equivalence classes of theories modulo Morita-equivalence.

For further reading

M. Artin, A. Grothendieck, and J. L. Verdier,

Théorie des topos et cohomologie étale des schémas (SGA 4),
second edition published as Lecture Notes in Mathematics, vols.
269, 270 and 305
Springer-Verlag (1972).

S. Mac Lane and I. Moerdijk.

Sheaves in geometry and logic: a first introduction to topos theory
Springer-Verlag, 1992.

O. Caramello

Grothendieck toposes as unifying ‘bridges’ in Mathematics,
Mémoire d’habilitation à diriger des recherches,
Université de Paris 7 (2016),
available at www.oliviacaramello.com.

O. Caramello

*Theories, Sites, Toposes: Relating and studying mathematical
theories through topos-theoretic ‘bridges’*,
Oxford University Press (2017).

Toposes for the
working
mathematician

Olivia Caramello

Toposes as
bridges

Examples of
'bridges'

Topological
Galois theory

Theories of
presheaf type

Topos-theoretic
Fraïssé theorem

Stone-type
dualities

Future directions

For further
reading

Toposes for the working mathematician

Lecture IV: Toposes as 'bridges'

Olivia Caramello

University of Insubria (Como), Grothendieck Institute and MICS - CentraleSupélec

Laboratoire MICS, CentraleSupélec
University of Paris-Saclay, 4 April 2024

Toposes as *bridges*

- The notion of Morita-equivalence is **ubiquitous** in Mathematics; indeed, it formalizes in many situations the feeling of 'looking at the same thing in different ways', or 'constructing a mathematical object through different methods'.
- In fact, many important **dualities** and **equivalences** in Mathematics can be naturally interpreted in terms of **Morita-equivalences**.
- On the other hand, **Topos Theory** itself is a primary source of Morita-equivalences. Indeed, different representations of the same topos can be interpreted as Morita-equivalences between different mathematical theories.
- Any two theories which are **bi-interpretable** in each other are Morita-equivalent but, very importantly, the converse does not hold.
- We can expect most of the categorical equivalences between categories of set-based models of geometric theories to **lift** to Morita equivalences.

Toposes as *bridges*

- In the topos-theoretic study of theories, the latter are represented by **sites** (of definition of their classifying topos or of some other topos naturally attached to them).
- The existence of theories which are Morita-equivalent to each other translates into the existence of **different sites of definition** (or, more generally, presentations) for the same Grothendieck topos.
- Grothendieck toposes can be effectively used as '**bridges**' for transferring notions, properties and results across different Morita-equivalent theories:

$$\begin{array}{ccc} & \mathcal{E}_T \simeq \mathcal{E}_{T'} & \\ T \dashv & & \dashv T' \end{array}$$

- The **transfer of information** takes place by expressing topos-theoretic **invariants** in terms of the different sites of definition (or, more generally, presentations) for the given topos.
- As such, different properties (resp. constructions) arising in the context of theories classified by the same topos are seen to be different **manifestations** of a **unique** property (resp. construction) lying at the topos-theoretic level.

Toposes as *bridges*

Toposes as
bridges

Examples of
'bridges'

Topological
Galois theory

Theories of
presheaf type

Topos-theoretic
Fraïssé theorem

Stone-type
dualities

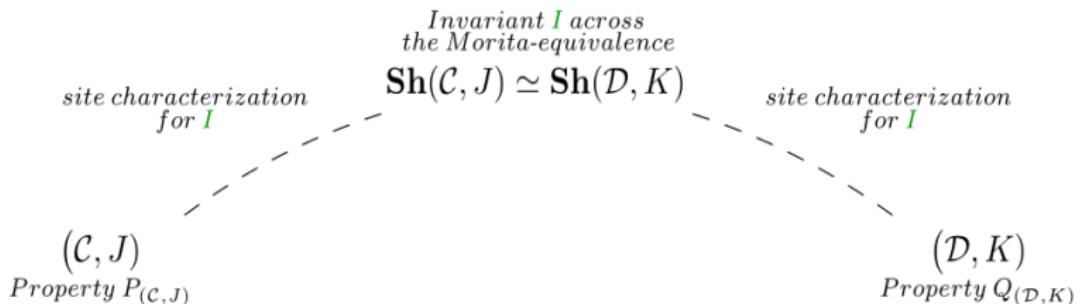
Future directions

For further
reading

- This methodology is technically effective because the relationship between a topos and its representations is often **very natural**, enabling us to easily **transfer invariants** across different representations (and hence, between different theories).
- On the other hand, the 'bridge' technique is highly non-trivial, in the sense that it often yields **deep** and **surprising** results. This is due to the fact that a given invariant can manifest itself in significantly different ways in the context of different presentations.
- The **level of generality** represented by topos-theoretic invariants is ideal to capture several important features of mathematical theories and constructions.

The 'bridge-building' technique

- **Decks** of 'bridges': **Morita-equivalences** (or more generally morphisms or other kinds of relations between toposes)
- **Arches** of 'bridges': **Site characterizations for topos-theoretic invariants** (or more generally 'unravelings' of topos-theoretic invariants in terms of concrete representations of the relevant topos)



The 'bridge' yields a logical equivalence (or an implication) between the 'concrete' properties $P_{(\mathcal{C}, J)}$ and $Q_{(\mathcal{D}, K)}$, interpreted in this context as **manifestations** of a **unique** property / lying at the level of the topos.

A few selected applications

Since the theory of topos-theoretic 'bridges' was introduced in 2010, several applications of it have been obtained in different fields of Mathematics, such as:

- **Model theory** (topos-theoretic Fraïssé theorem)
- **Proof theory** (various results for first-order theories)
- **Algebra** (topos-theoretic generalization of topological Galois theory)
- **Topology** (topos-theoretic interpretation/generation of Stone-type and Priestley-type dualities)
- **Functional analysis** (various results on Gelfand spectra and Wallman compactifications)
- **Many-valued logics and lattice-ordered groups** (two joint papers with A. C. Russo)
- **Cyclic homology**, as reinterpreted by A. Connes (work on "cyclic theories", jointly with N. Wentzlaff)
- **Algebraic geometry** (logical analysis of (co)homological motives, cf. the paper "*Syntactic categories for Nori motives*" joint with L. Barbieri-Viale and L. Lafforgue)

Some examples of 'bridges'

We shall now discuss a few 'bridges' established in the context of the above-mentioned applications:

- Topological Galois theory
- Topos-theoretic Fraïssé theorem
- Stone-type dualities

The results are completely *different*... but the methodology is always the *same*!

Topological Galois theory

Recall that classical topological Galois theory provides, given a Galois extension $F \subseteq L$, a bijective correspondence between the intermediate **field extensions** (resp. **finite** field extensions) $F \subseteq K \subseteq L$ and the closed (resp. **open**) **subgroups** of the Galois group $\text{Aut}_F(L)$.

This admits the following categorical reformulation: the functor $K \rightarrow \text{Hom}(K, L)$ defines an equivalence of categories

$$(\mathcal{L}_F^L)^{\text{op}} \simeq \mathbf{Cont}_t(\text{Aut}_F(L)),$$

where \mathcal{L}_F^L is the category of finite intermediate field extensions and $\mathbf{Cont}_t(\text{Aut}_F(L))$ is the category of continuous non-empty transitive actions of $\text{Aut}_F(L)$ on discrete sets.

A natural question thus arises: can we **characterize** the categories \mathcal{C} whose dual is equivalent to (or fully embeddable into) the category of (non-empty transitive) actions of a topological automorphism group?

The topos-theoretic interpretation

Key observation: the above equivalence extends to an equivalence of toposes

$$\mathbf{Sh}(\mathcal{L}_F^{L^{\text{op}}}, J_{\text{at}}) \simeq \mathbf{Cont}(\text{Aut}_F(L)),$$

where J_{at} is the **atomic topology** on $\mathcal{L}_F^{L^{\text{op}}}$ and $\mathbf{Cont}(\text{Aut}_F(L))$ is the topos of continuous actions of $\text{Aut}_F(L)$ on discrete sets.

It is therefore natural to investigate our problem by using the methods of **topos theory**: more specifically, we shall look for conditions on a small category \mathcal{C} and on an object u of its ind-completion for the existence of an equivalence of toposes of the form

$$\mathbf{Sh}(\mathcal{C}^{\text{op}}, J_{\text{at}}) \simeq \mathbf{Cont}(\text{Aut}(u)) .$$

We will then be able to obtain, starting from such an equivalence, an answer to our question, and hence build **Galois-type theories** in a great variety of different mathematical contexts.

The key notions I

- A category \mathcal{C} is said to satisfy the **amalgamation property (AP)** if for every objects $a, b, c \in \mathcal{C}$ and morphisms $f : a \rightarrow b$, $g : a \rightarrow c$ in \mathcal{C} there exists an object $d \in \mathcal{C}$ and morphisms $f' : b \rightarrow d$, $g' : c \rightarrow d$ in \mathcal{C} such that $f' \circ f = g' \circ g$:

$$\begin{array}{ccc} a & \xrightarrow{f} & b \\ g \downarrow & & \downarrow f' \\ c & \xrightarrow{g'} & d \end{array}$$

- A category \mathcal{C} is said to satisfy the **joint embedding property (JEP)** if for every pair of objects $a, b \in \mathcal{C}$ there exists an object $c \in \mathcal{C}$ and morphisms $f : a \rightarrow c$, $g : b \rightarrow c$ in \mathcal{C} :

$$\begin{array}{ccc} a & & \\ | & & \\ | f & & \\ b & \xrightarrow{g} & c \end{array}$$

The key notions II

- An object $u \in \text{Ind-}\mathcal{C}$ is said to be **\mathcal{C} -universal** if for every $a \in \mathcal{C}$ there exists an arrow $\chi : a \rightarrow u$ in $\text{Ind-}\mathcal{C}$:

$$a \xrightarrow{\chi} u$$

- An object $u \in \text{Ind-}\mathcal{C}$ is said to be **\mathcal{C} -ultrahomogeneous** if for any object $a \in \mathcal{C}$ and arrows $\chi_1 : a \rightarrow u$, $\chi_2 : a \rightarrow u$ in $\text{Ind-}\mathcal{C}$ there exists an automorphism $j : u \rightarrow u$ such that $j \circ \chi_1 = \chi_2$:

$$\begin{array}{ccc} a & \xrightarrow{\chi_1} & u \\ & \searrow \chi_2 & \downarrow j \\ & & u \end{array}$$

Topological Galois theory as a 'bridge'

Theorem

Let \mathcal{C} be a small category satisfying the *amalgamation* and *joint embedding* properties, let u be a \mathcal{C} -universal et \mathcal{C} -ultrahomogeneous object of the ind-completion $\text{Ind-}\mathcal{C}$ of \mathcal{C} . Then there is an equivalence of toposes

$$\mathbf{Sh}(\mathcal{C}^{\text{op}}, J_{\text{at}}) \simeq \mathbf{Cont}(\text{Aut}(u)),$$

where $\text{Aut}(u)$ is endowed with the topology in which a basis of open neighbourhoods of the identity is given by the subgroups of the form $I_{\chi} = \{\alpha \in \text{Aut}(u) \mid \alpha \circ \chi = \chi\}$ for $\chi : c \rightarrow u$ an arrow in $\text{Ind-}\mathcal{C}$ from an object c of \mathcal{C} .

This equivalence is induced by the functor

$$F : \mathcal{C}^{\text{op}} \rightarrow \mathbf{Cont}(\text{Aut}(u))$$

which sends any object c of \mathcal{C} on the set $\text{Hom}_{\text{Ind-}\mathcal{C}}(c, u)$ (endowed with the obvious action of $\text{Aut}(u)$) and any arrow $f : c \rightarrow d$ in \mathcal{C} to the $\text{Aut}(u)$ -equivariant map

$$- \circ f : \text{Hom}_{\text{Ind-}\mathcal{C}}(d, u) \rightarrow \text{Hom}_{\text{Ind-}\mathcal{C}}(c, u).$$

Topological Galois theory as a 'bridge'

The following result arises from two 'bridges', respectively obtained by considering the invariant notions of **atom** and of **arrow between atoms**.

Theorem

*Under the hypotheses of the last theorem, the functor F is **full and faithful** if and only if every arrow of \mathcal{C} is a **strict monomorphism**, and it is an **equivalence** on the full subcategory $\mathbf{Cont}_t(\mathrm{Aut}(u))$ of $\mathbf{Cont}(\mathrm{Aut}(u))$ on the non-empty transitive actions if \mathcal{C} is moreover **atomically complete**.*

$$\mathbf{Sh}(\mathcal{C}^{\mathrm{op}}, J_{\mathrm{at}}) \simeq \mathbf{Cont}(\mathrm{Aut}(u))$$
$$\mathcal{C}^{\mathrm{op}}$$
$$\mathbf{Cont}_t(\mathrm{Aut}(u))$$

This theorem generalizes **Grothendieck's theory of Galois categories** and can be applied for generating Galois-type theories in different fields of Mathematics, for example that of **finite groups** and that of **finite graphs**.

Moreover, if a category \mathcal{C} satisfies the first but not the second condition of the theorem, our topos-theoretic approach gives us a fully explicit way to **complete** it, by means of the addition of 'imaginaries', so that also the second condition gets satisfied.

Theories of presheaf type

Definition

A geometric theory is said to be of **presheaf type** if it is classified by a presheaf topos.

Theories of presheaf type are very important in that they constitute the basic '**building blocks**' from which every geometric theory can be built. Indeed, as every Grothendieck topos is a **subtopos** of a presheaf topos, so every geometric theory is a 'quotient' of a theory of presheaf type.

These theories are the **logical counterpart of small categories**, in the sense that:

- For any theory of presheaf type \mathbb{T} , its category $\mathbb{T}\text{-mod}(\mathbf{Set})$ of (set-based) models is equivalent to the ind-completion of the full subcategory $\text{f.p.}\mathbb{T}\text{-mod}(\mathbf{Set})$ on the finitely presentable models.
- Any small category \mathcal{C} is, up to idempotent splitting completion, equivalent to the category $\text{f.p.}\mathbb{T}\text{-mod}(\mathbf{Set})$ for some theory of presheaf type \mathbb{T} .

Moreover, any geometric theory \mathbb{T} can be **expanded** to a theory classified by the topos $[\text{f.p.}\mathbb{T}\text{-mod}(\mathbf{Set}), \mathbf{Set}]$.

Topos-theoretic Fraïssé theorem

The following result, which generalizes Fraïssé's theorem in classical model theory, arises from a triple 'bridge'.

Definition

A set-based model M of a geometric theory \mathbb{T} is said to be **homogeneous** if for any arrow $y : c \rightarrow M$ in $\mathbb{T}\text{-mod}(\mathbf{Set})$ and any arrow f in $\text{f.p.}\mathbb{T}\text{-mod}(\mathbf{Set})$ there exists an arrow u in $\mathbb{T}\text{-mod}(\mathbf{Set})$ such that $u \circ f = y$:

$$\begin{array}{ccc} c & \xrightarrow{y} & M \\ f \downarrow & \nearrow u & \\ d & & \end{array}$$

Theorem

Let \mathbb{T} be a theory of presheaf type such that the category $\text{f.p.}\mathbb{T}\text{-mod}(\mathbf{Set})$ is non-empty and has AP and JEP. Then the theory \mathbb{T}' of homogeneous \mathbb{T} -models is complete and atomic.

Toposes for the
working
mathematician

Olivia Caramello

Toposes as
bridges

Examples of
'bridges'

Topological
Galois theory

Theories of
presheaf type

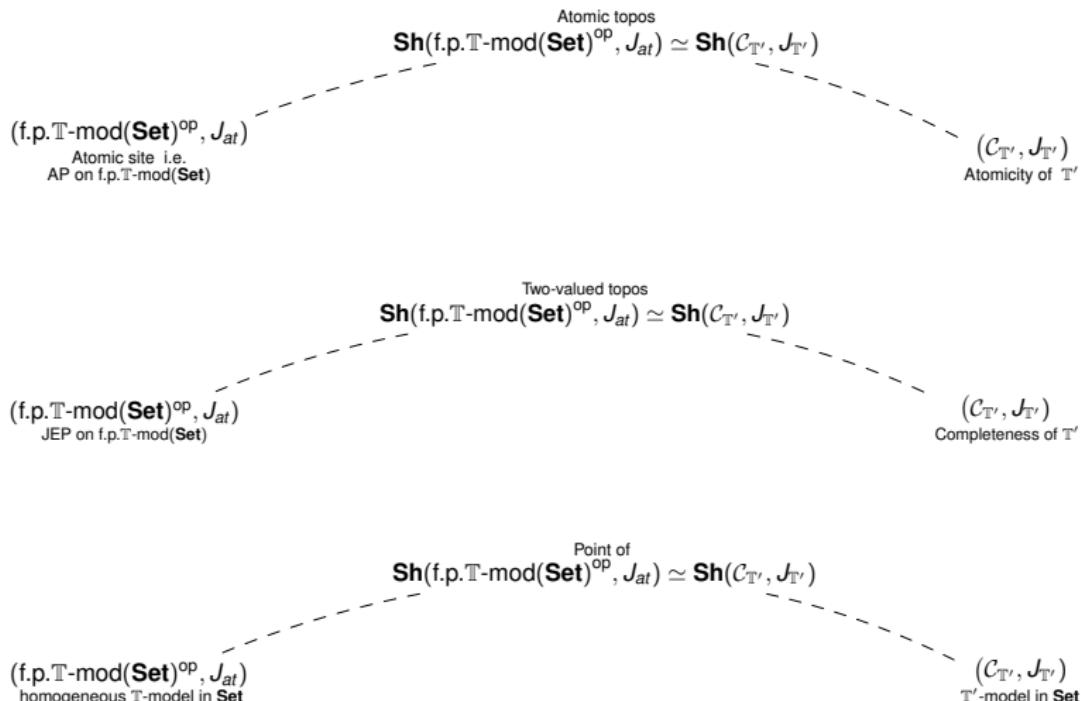
Topos-theoretic
Fraïssé theorem

Stone-type
dualities

Future directions

For further
reading

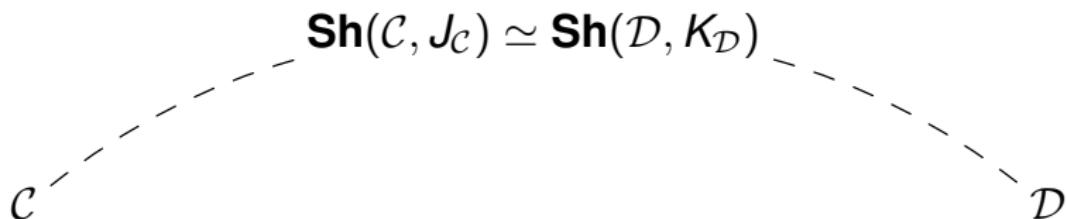
Topos-theoretic Fraïssé theorem



Stone-type dualities through 'bridges'

The 'bridge-building' technique allows one to **unify** all the classical Stone-type dualities between special kinds of preorders and partial orders, locales or topological spaces as instances of just one topos-theoretic phenomenon, and to generate many new such dualities.

More precisely, this machinery generates Stone-type dualities/equivalences by **functorializing** 'bridges' of the form

$$\mathbf{Sh}(\mathcal{C}, J_{\mathcal{C}}) \simeq \mathbf{Sh}(\mathcal{D}, K_{\mathcal{D}})$$


where

- \mathcal{C} is a preorder (regarded as a category),
- $J_{\mathcal{C}}$ is a (subcanonical) Grothendieck topology on \mathcal{C} ,
- \mathcal{C} is a $K_{\mathcal{D}}$ -dense full subcategory of \mathcal{D} , and
- $J_{\mathcal{C}}$ is the induced Grothendieck topology $(K_{\mathcal{D}})|_{\mathcal{C}}$ on \mathcal{C} .

Stone-type dualities through 'bridges'

Our machinery relies on the following **key points**:

- The possibility of **defining Grothendieck topologies** on posets in an **intrinsic** way which exploits the lattice-theoretic structure present on them.
- The possibility of **functorializing** the assignments $\mathcal{C} \rightarrow \mathbf{Sh}(\mathcal{C}, J_{\mathcal{C}})$ and $\mathcal{D} \rightarrow \mathbf{Sh}(\mathcal{D}, K_{\mathcal{D}})$ by means of the (covariant or contravariant) theory of morphisms of sites.
- The possibility of **recovering** (under suitable hypotheses which are satisfied in a great number of cases) a given preordered structure from the associated topos by means of a topos-theoretic **invariant**.

More precisely, if the topologies $K_{\mathcal{D}}$ (resp. $J_{\mathcal{C}}$) can be 'uniformly described through an invariant \mathbf{C} of families of subterminals in a topos' then the elements of \mathcal{D} (resp. of \mathcal{C}) can be recovered as the subterminal objects of the topos $\mathbf{Sh}(\mathcal{D}, K_{\mathcal{D}})$ (resp. $\mathbf{Sh}(\mathcal{C}, J_{\mathcal{C}})$) which satisfy a condition of **\mathbf{C} -compactness**.

Future directions

The evidence provided by the results obtained so far shows that toposes can effectively act as **unifying spaces** for transferring information between distinct mathematical theories and for generating new equivalences, dualities and symmetries across different fields of Mathematics.

In fact, toposes have an authentic **creative power** in Mathematics, in the sense that their study naturally leads to the discovery of a great number of notions and 'concrete' results in different mathematical fields, which are pertinent but often unsuspected.

In the next years, we intend to continue pursuing the development of these general unifying methodologies both at the **theoretical** level and at the **applied** level, in order to continue developing the potential of toposes as fundamental tools in the study of mathematical theories and their relations, and as key concepts defining a **new way of doing Mathematics** liable to bring distinctly new insights in a great number of different subjects.

Future directions

Central themes in this programme will be:

- investigation of important **dualities** or **correspondences** in Mathematics from a topos-theoretic perspective (in particular, the theory of motives, class field theory and the Langlands programme)
- systematic study of **invariants** of toposes in terms of their presentations, and introduction of new invariants which capture important aspects of concrete mathematical problems
- interpretation and generalization of important parts of classical and modern model theory in terms of toposes and development of a **functorial model theory**
- introduction of new methodologies for generating **Morita-equivalences**
- development of general techniques for building **spectra** by using classifying toposes
- generalization of the 'bridge' technique to the setting of higher categories and toposes through the introduction of **higher geometric logic**
- development of a **relative theory** of classifying toposes

For further reading

O. Caramello

*Grothendieck toposes as unifying 'bridges' in Mathematics,
Mémoire d'habilitation à diriger des recherches,
Université de Paris 7 (2016),
available at www.oliviacaramello.com.*

O. Caramello

*Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic 'bridges',
Oxford University Press (2017).*