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Plan of the talk

• The theory of topos-theoretic ‘bridges’

• Topos-empowered automatic theorem generation

• Central themes and subprojects

• Other applications to computer science and artificial
intelligence

• The Grothendieck Institute
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The “unifying notion” of topos

“C’est le thème du topos qui est ce “lit”, ou cette “rivière profonde” où
viennent s’épouser la géométrie et l’algèbre, la topologie et

l’arithmétique, la logique mathématique et la théorie des catégories,
le monde du continu et celui des structures “discontinues” ou “discrètes”.

Il est ce que j’ai conçu de plus vaste, pour saisir avec finesse,
par un même langage riche en résonances géométriques,

une “essence” commune à des situations des plus éloignées
les unes des autres provenant de telle région ou de telle autre

du vaste univers des choses mathématiques”.

A. Grothendieck

Since the times of my Ph.D. studies, I have developed a theory
and a number of techniques allowing one to exploit the unifying
potential of the notion of topos for establishing ‘bridges’ across
different mathematical theories, by building in particular on the
notion of classifying topos educed by categorical logicians.
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Toposes as unifying ‘bridges’
This theory, introduced in the programmatic paper “The unification
of Mathematics via Topos Theory” of 2010, allows one to exploit
the technical flexibility inherent to the concept of topos - most
notably, the possibility of presenting a topos in a multitude of
different ways - for building unifying ‘bridges’ useful for transferring
notions, ideas and results across different mathematical contexts.

In the last years, besides leading to the solution of a number of
long-standing problems in categorical logic, these techniques
have generated several substantial applications in different
mathematical fields. Still, much remains to be done so that
toposes become a key tool universally used for investigating
mathematical theories and their relations.

In fact, these ‘bridges’ have proved useful not only for connecting
different mathematical theories with each other, but also for
investigating a given theory from multiple points of view.

Moreover, the construction of ‘bridges’ can be automatized in
many cases, leading to significant applications to computer
science (notably, in connection with ATP) and AI.
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Bridge objects
• Given two objects a and b, imagine to be able to associate with

a an object f (a) through a certain ‘construction’ f and with b an
object g(b) through a ‘construction’ g, in such a way that f (a)
and g(b) be related by a certain equivalence relation ≃. Then
a and b can be seen as two distinct representations of a
unique object u, equivalent on the one hand to f (a) and on the
other hand to g(b), which can be used as a ‘bridge’ for
transferring invariants across its different presentations:

Invariant I

f (a)≃ u ≃ g(b) characterization
for I

a
Property Pa

characterization
for I

b
Property Qb

• In the topos-theoretic implementation of the ‘bridge’ technique,
the objects a and b are formalized contexts or theories while
f (a) and g(b) are toposes associated with them. Note that a
and b may also be seen as different ‘points of view’ on the
bridge object u.
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Toposes as bridges

• The existence of theories which are sematically equivalent to
each other translates into the existence of different
presentations for the same Grothendieck topos.

• Grothendieck toposes can be effectively used as ‘bridges’ for
transferring notions, properties and results across different
sematically equivalent theories:

ET ≃ ET′

��
T

11

T′

• The transfer of information takes place by expressing
topos-theoretic invariants in terms of different presentations
for the given topos.

• As such, different properties (resp. constructions) arising in
the context of theories classified by the same topos are seen
to be different manifestations of a unique property (resp.
construction) lying at the topos-theoretic level.
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A new way of doing mathematics

As a matter of fact, the method of ‘bridges’ defines a new way of
doing Mathematics which is, in a sense, ‘upside-down’ compared
with the ‘usual’ ones.

Indeed, instead of starting with simple ingredients and combining
them to build more complicated structures, one assumes as
primitive ingredients rich and sophisticated mathematical entities,
namely topos equivalences and topos-theoretic invariants, and
extracts from them a huge amount of information relevant for
classical mathematics.

Due to the strong element of automatism inherent to these
techniques (the computation of topos-theoretic invariants is
essentially canonical), one can generate new mathematical
results without really making any creative effort: indeed, in many
cases one can just readily apply the general characterizations
connecting properties of sites and topos-theoretic invariants to
the particular equivalence under consideration.
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A new way of doing mathematics

The results generated in this way are in general non-trivial, they
can be rather ‘weird’ according to the usual mathematical
standards (in spite of being technically quite deep) but, with a
careful choice of topos equivalences and invariants, one can
easily get interesting and naturalmathematical results.

The level of mathematical depth of the results thus generated
varies enourmously, depending on the complexity of the chosen
topos-theoretic invariants and of the given equivalence of
toposes. It can range from trivialities to very deep results (think,
for instance, of the complexity inherent to the computation of
cohomological invariants).

A lot of information that is not visible with the usual ‘glasses’ is
revealed by the application of this machinery.

The range of applicability of these methods is boundless within
Mathematics, by the very generality of the notion of topos.
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A universal calculus on mathematical theories
Topos theory notably provides a very broad and effective setting
for studying any aspects of mathematical theories, both in
themselves and in relation to each other.

It yields a universal calculus on theories; in fact, topos theory
naturally leads to the introduction of several important operations
on theories, and also provides effective methods for computing
them. By way of analogy, as in arithmetic one makes
computations with numbers, so in topos theory one can make
computations with theories.

For example, in my 2017 book I have shown that the collection of
all mathematical theories (presented in geometric form) in a given
language has the structure of a lattice (in fact, of a Heyting
algebra); in particular, one can take the intersection, the union,
the pseudocomplement of theories, etc. By using these methods,
I have obtained effective computations for these operations, and
even managed to prove a very general deduction theorem for
geometric logic without any creative effort, that is, by
mechanically calculating a certain Grothendieck topology!
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Automatic generation of theorems
We aim at implementing the theory of topos-theoretic ‘bridges’ on a
computer, so as to obtain a proof assistant capable to generate
new results in any field of mathematics in an automatic way:
• Once an equivalence between two different presentations of

the same topos is established, the calculation of how invariants
express in terms of the two presentations is essentially
canonical and can be automatized in many cases: descriptions
of classes of invariants, of logical or geometric nature, for
which such calculations can be performed in a semi-automatic
way are provided in my papers.

• In order to obtain insights on the equivalence of toposes under
consideration, in many cases one can just readily apply to it
general characterizations connecting properties of sites and
topos-theoretic invariants. Still, the results generated in this
way are in general non-trivial.

• This means that a computer could well be programmed in
order to generate a huge amount of new (non-trivial) results in
different mathematical fields by implementing these
techniques.
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An automatic theorem prover

More specifically, such a proof assistant should take as inputs:

(1) a database of topos equivalences, that is of pairs of different
presentations for a given topos;

(2) a database of characterizations of topos-theoretic invariants
in terms of different presentations for toposes (what we
called above the ‘encyclopedia of invariants and their
characterizations’).

Starting from them, it could combine (1) (that is, the ‘decks’ of
bridges) with (2) (that is, the ‘arches’ of bridges) to generate
concrete correspondences between ‘unravelings’ of a given
invariant in terms of different presentations for a given topos.

The system should ideally also automatically update the two
databases generating by itself characterizations of topos-theoretic
invariants and equivalences of toposes.
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Central themes and subprojects

The project will involve a number of different subprojects, on each
of which we expect an intense collaboration with computer
scientists with different skills:

1 Preliminary work on the formalisation of the necessary
topos-theoretic background in a proof assistant (notably,
Lean)

2 Geometrisation of theories

3 Representation of objects in toposes

4 An ‘encyclopedia of invariants and their characterizations’

5 A database of topos equivalences

6 An important case study: the duality between quotients and
subtoposes

7 Tactics and rewriting rules

8 Integration of AI tools and ‘syntactic learning’ techniques
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Preliminary formalisation work

• The plan is to formalise the relevant topos-theoretic notions
and results in the proof assistant Lean.

• It is essential to dispose of a complete formalisation of the
basic notions of geometric theory, of site, of Grothendieck
topos, of classifying topos, of invariant, etc. before
undertaking the more advanced stages of the project.

• Lean appears to be the most suitable system for our needs,
mainly because of the existence of a large amount of already
formalized mathematical results in different fields, as well as
of tactics and rewriting systems (e.g. Aesop), which could be
further developed and improved.
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Geometrization of theories

• In order to compute the classifying topos of a (first-order)
mathematical theory, the latter must be geometrized. This
can be done in a fully canonical through the Morleyization
construction.

• However, this construction is not economical at all (it actually
requires the addition of a infinite number of new predicates),
so it is not apt for a computer implementation.

• There is scope for the development of algorithms for
geometrizing theories in a most economical way (e.g. by
replacing only the non-geometric elements arising in the
syntax of the theory with geometric ones).
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Representation of objects in toposes

• It will be crucial, in connection with the generation of ‘arches’
of topos-theoretic ‘bridges’, to develop a computer
representation of objects of a Grothendieck topos in terms of
generators and relations.

• More specifically, any object of the topos Sh(C ,J) of sheaves
on a site (C ,J) can be represented as a definable quotient of
a coproduct of objects coming from C .

• These ‘codings’ make it possible to describe whatever
happens inside a topos in combinatorial terms, so they can
be useful, in particular, for obtaining site-characterizations for
topos-theoretic invariants.

15 / 33



Topos-
empowered
automatic
theorem

generation

Olivia Caramello

The theory of
topos-theoretic
‘bridges’

Topos-
empowered
automatic
theorem
generation
Relevant subprojects

Other
applications to
computer science
and AI
Towards a theory of
semantic information

Modelling of learning
processes via proofs

The logic and
geometry of images

Structural
approximation theory

Transformers from a
topos-theoretic
perspective

The
Grothendieck
Institute

For further
reading

New proof systems for geometric theories

We have showed that the classical proof system of geometric
logic over a given geometric theory is equivalent to new proof
systems based on the notion of Grothendieck topology.

These equivalences result from a proof-theoretic interpretation of
a duality between the quotients (i.e. geometric theory extensions
over the same signature) of a given geometric theory and the
subtoposes of its classifying topos.

Interestingly, these alternative proof systems turn out to be
computationally better-behaved than the classical one for many
purposes, as shown in my 2017 book.

More generally, we plan to further investigate the proof-theoretic
equivalences arising from different presentations of the classifying
topos of a theory.
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Tactics and rewriting rules

• It will be indispensable for a successful realisation of the
project to dispose of rewriting systems allowing to turn
machine generated results into human readable statements.

• Some of such systems already exist, but a great amount of
further work should be done in this direction in order to make,
at least, whatever is ‘routine’ for a mathematician also
‘routine’ for the proof system.

• We expect advanced AI tools (including LLMs), combined
with syntactic learning techniques, to be very relevant in this
connection, in particular for rewriting mathematical
statements in a way which is most readable or meaningful to
the human mind, as well as for recognizing new patterns in
the way in which mathematicians generate proofs and
express their findings.
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Towards a theory of semantic information
• As we explained above, toposes are objects which embody

the semantic content of a wide class of theories, or the
essence of a great number of mathematical contexts
(pertaining to different areas of mathematics).

• It is therefore natural to develop a theory of semantic
information based on toposes and on the invariants that one
can define on them.

• As a matter of fact, the fundamental invariants of
mathematical structures are actually invariants of toposes
associated with these structures.

• Indeed, it is at the topos-theoretic level that invariants
naturally live. This is due to the fact that toposes, unlike
ordinary mathematical structures, have a very rich internal
structure, actually being completions of concrete theories or
structures with respect to all the natural operations that one
might want to perform on them.
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Communication through ‘bridges’
Topos-theoretic ‘bridges’ have proved to be very effective in acting
as ‘universal translators’, that is, as tools for unifying different
presentations of a given semantic content and for transferring
knowledge between them.

We thus expect communication between different intelligent
agents to be profitably understandable in terms of ‘bridges’
induced by equivalences (or more general relations) between
toposes which describe their functioning. More generally, toposes
embodying a given semantic content can act as ‘bridges’ across
different knowledge representations:
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Modelling of learning processes via proofs
We plan to explore the possibility of modelling the functioning of
(artificial) learning processes, in particular of deep neural
networks, by building on the notion of mathematical proof:

• Note that any intelligent agent must, in order to get an
effective understanding of (aspects of) the world, derive
knowledge starting from certain ‘sensory’ inputs, which play
a similar role to that of axioms for a mathematical theory, by
following certain dynamical rules, which correspond to the
inference rules of the logical system inside which the
mathematical theory is formulated.

• As every mathematical theory can be enriched by the
addition of new axioms, so the functioning of an agent can be
updated by the integration of new information which becomes
available to it.

• The functioning of a learning system can thus be modelled by
a sequence of a mathematical theories, each of which more
refined (that is, with more axioms, or fewer models) than the
previous ones.
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Modelling of learning processes via proofs
• In principle, any learning sequence, as any process

‘approximating truth’, is infinite, but for practical purposes one
is normally satisfied by the result of a learning process when
the last theory in the sequence leaves a degree of ambiguity
which is sufficiently low for the desired applications. (For
example, for a car with an object detection system, it is
important to be able to identify the kind of animal that might
cross the road, but not necessarily the color of its hair!).

• All the theories in the sequence should extend (that is, be
defined over) the basic theory of the agent formalizing its
essential features. More generally, every theory in the
sequence can be seen as theory defined over each of the
preceding ones.

• Note that any constraints embedded in the logical formalism
(or integrated at some step of the sequence of theories) will
allow to significantly reduce the space of parameters that the
agent has to explore and hence correspondingly decrease
the computational complexity of the learning process.
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Geometric logic
Among the possible formalisms for modelling the functioning of
intelligent agents, we plan to focus in particular on (relative)
geometric logic.

Geometric logic is the logic underlying Grothendieck toposes.
Indeed, any theory formulated within geometric logic admits a
classifying topos and, conversely, any Grothendieck topos is the
classifying topos of some (actually, of infinitely many) geometric
theories.

In fact, Grothendieck toposes geometrically embody, in a ‘maximally
structured’ way, the logical information contained in geometric
theories.

Geometric logic is a particular kind of (infinitary) first-order logic
(actually not of inferior expressiveness). It is widely considered as
the “logic of finite observations”, and is particularly amenable to
computation and automated theorem proving.

Indeed, geometric logic is inherently constructive. This is very
relevant from a computer science perspective, by the well-known
paradigm identifying programs with constructive proofs.
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Geometric logic

Whilst higher-order logic is clearly more expressive than
first-order logic, the model theory of geometric theories is much
better-behaved and more amenable to computation, as witnessed
for instance by the existence theorem for classifying toposes and
universal models.
The development of relative geometric logic (in the context of our
joint work with Riccardo Zanfa on relative toposes) will allow us to
formalize a great number of higher-order notions whilst preserving
geometricity and the computational advantages arising from it.
(A nice illustration of the expressive power of relative theories is
provided by the ongoing work on a refoundation of functional
analysis (which is second-order) as algebra (which is first-order)
over a suitable base topos by Fields Medalist Peter Scholze and
his collaborator Dustin Clausen.)
Thus our sequence of theories formalizing the functioning, say, of
a neural network, will correspond to a sequence of relative
toposes, the base topos being the one formalizing the
architecture of the network.
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Computational power of Grothendieck topologies

One of the reasons for the computational effectiveness of
geometric logic is the connection with Grothendieck toposes,
given by the classifying topos construction.
In my 2017 book it is shown that the classical proof system of
geometric logic over a given geometric theory is equivalent to new
proof systems whose inference rules correspond to the axioms of
Grothendieck topologies. These equivalences actually result from
topos-theoretic ‘bridges’ between different presentations of the
classifying topos of the theory.

Interestingly, these alternative proof systems turn out to be
computationally much better-behaved than the classical one. In
fact, instead of having several axioms and inference rules, they
only have two inference rules, making it much more manegeable
to compute inside them. In fact, there is even a formula
characterizing the ‘theorems’ provable in such systems!
‘Bridges’ involving Grothendieck topologies have also proved very
useful for building a great variety of structures presented by
generators and relations in most explicit ways.
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Syntactic learning
In order to practically implement the above ideas, one should, first
of all, empower any learning system with large formal
vocabularies that will serve for expressing the concepts that the
system will learn from data.

The idea is to enforce the learning to take place at the abstract
level of syntax, rather than at that of a particular semantics, as it
currently happens.

While the vocabulary should be given at the outset, we could let
the system discover any (non-already embedded) logical rules
expressible in that vocabulary by itself, by using the usual
techniques. Also, we should let it suggest enrichments of the
vocabulary on the basis of invariances empirically discovered in
the data, thereby achieving a form of ‘emergence of concepts’.

In this way, we could obtain systems capable of inferring all sorts
of ‘syntactic rules’ from data (e.g. the grammar rules of a
language from a great amount of samples of texts, or the rules of
a game from a big collection of matches, etc.): these rules could,
of course, be of different nature and complexity (e.g.,
propositional, first-order, higher-order, etc.).
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Making AI systems ‘speak’
All of this goes in the direction of constructing logical languages
for AI agents, allowing them, in a sense, to ‘speak’. After all, how
can we expect a system to learn in a robust way if we do not give
it the possibility of reasoning linguistically? Think about how our
learning, as human beings, would be impaired without the
possibility of expressing, testing and communicating our ideas by
using languages.

Think also about the process of learning of a natural language.
Little babies have no other possibility to learn a language than to
merely rely on data (note, however, that their brain has already a
lot of a priori structures which are used to organize and
categorize the knowledge that they gather from the environment).
Still, their knowledge of the language remains fragile until they are
brought into contact, notably at school, with grammar, which
represents syntax in this context.

The role of grammar is crucial in making explicit a lot of the
implicit which had been accumulated in the previous ‘bottop-up’
learning process, and in bringing the understanding to a higher
level, notably in terms of explainability.

26 / 33



Topos-
empowered
automatic
theorem

generation

Olivia Caramello

The theory of
topos-theoretic
‘bridges’

Topos-
empowered
automatic
theorem
generation
Relevant subprojects

Other
applications to
computer science
and AI
Towards a theory of
semantic information

Modelling of learning
processes via proofs

The logic and
geometry of images

Structural
approximation theory

Transformers from a
topos-theoretic
perspective

The
Grothendieck
Institute

For further
reading

Uncovering hidden structures and rules

Syntax represents the ‘skeleton’ of structures, whose concrete
manifestations we access through data. Trying to ‘lift’ from a
particular concrete setting to the level of syntax represents an
abstract form of understanding which enjoys much more
relisience and adaptability than the usual forms of
statistically-based learning.

The deep reasons for the regularities that we may observe in
concrete contexts actually live at the syntactic level (think, for
instance, of motives in Algebraic Geometry, or to definability and
preservation theorems in Logic).

Philosophically speaking, we need to teach learning systems to
lift from the phenomenological level (of concrete manifestations of
topos invariants) to the ontological one (of toposes themselves,
regarded as classifying toposes of logical theories).

In conclusion, we advocate for an integration of a ‘bottop-up’
approach to artificial learning, such as the one which is dominant
today, with a ‘top-down’ one based on logic and topos invariants.
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A topos-theoretic analysis of images
We also plan to investigate images from a topos-theoretic
perspective:

• Logical axiomatisations of the objects (in the
three-dimensional space) that images are meant to
represent, together with a study of their two-dimensional
projections, would greatly improve the systems for image
recognition.

• On the other hand, images can also be profitably understood
from a geometric, sheaf-theoretic, perspective, as arising
from the glueing of local regions admitting simpler
descriptions.

• The integration between logic and geometry provided by
topos theory would allow one to switch from the logical point
of view to the geometric one, thus taking advantage of both.
In particular, a topos-theoretic treatment would allow a swift
passage between different scales.
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Structural approximation theory

The classical theory of neural networks is based on the
approximation of real-valued functions and hence, ultimately, on a
very particular metric space: R (with the usual Euclidean metric).

Numbers are not semantically meaningful by themselves; this
makes any theory of deep learning which is based merely on
them necessarily fragile, i.e. exposed to the risk of overfitting. In
order to make a learning process robust and capable of
generalisation, we need to make it structural.

As observed by Laurent Lafforgue, numbers should be thought of
as ‘traces’ of geometric structures. Accordingly, we should
develop an approximation theory for structures rather than for
mere numerical functions. These structures should result from
logical constraints imposed at the outset (analogously to the a
priori structures of our brain, which make us organize the data
that we infer from our sensory inputs in a certain way) as well as
from symmetries of the object of the learning process.
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Transformers from a topos-theoretic perspective

As observed by Michael Robinson, trasformers should be
formalized and investigated through a sheaf-theoretic perspective.

Indeed, the process of building a global view from a family of
compatible local views is akin to the construction of elements of a
sheaf as amalgamations of matching families of local data.

In order to formalize semantic information collected from different
sets of sensory inputs, each of which using its own knowledge
representation, it is more sensible, in order to have a common
language in which all the data coming from the different inputs are
formulated, to formalize the local view of each of the sensors by a
topos, and to think of a transformer as a stack of such toposes.

Note that the use of toposes of local views as opposed to sets (as
in Robinson’s proposal) allows one to formalize non-trivial
symmetries in the views of sensory inputs.
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The Grothendieck Institute

• The Grothendieck Institute is an international foundation
devoted to cutting-edge research in mathematics and its
interactions with other disciplines.

• Established in 2022 and based in Mondovì (Italy), the
Institute is named after great mathematician Alexander
Grothendieck, whose work it is committed to valorize and
disseminate.

• Its main focus is interdisciplinarity, with particular reference to
the development of unifying methods, both within
mathematics and in relation to other areas of knowledge.

• The Institute pursues its mission notably through its research
centres, and by collaborating with academic institutions and
scientific associations which share its interests.

• It also offers doctoral studentships and research fellowships
to outstanding young scholars selected by its Scientific
Council, which includes among its members three Fields
Medalists.
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Toposes in Mondovì
In September 2024, the fourth edition of the international topos
theory school and conference, organized by the Grothendieck
Institute, has taken place in Mondovì:
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For further reading

O. Caramello
Grothendieck toposes as unifying ‘bridges’: a mathematical
morphogenesis,
in the Springer book Philosophy of Mathematics. Objects,
Structures, and Logics.

O. Caramello
Grothendieck toposes as unifying ‘bridges’ in Mathematics,
Mémoire d’habilitation à diriger des recherches,
Université de Paris 7, 2016,
available from my website www.oliviacaramello.com.

O. Caramello
Theories, Sites, Toposes: Relating and studying mathematical
theories through topos-theoretic ‘bridges’,
Oxford University Press, 2017.
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Grothendieck topologies

Definition
A Grothendieck topology on a small category C is a function J
which assigns to each object c of C a collection J(c) of sieves on
c in such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c}
is in J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such
that f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are said
to be J-covering.

A site is a pair (C ,J) consisting of a category C and a
Grothendieck topology J on C .
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The syntactic category of a geometric theory
Definition (Makkai and Reyes 1977)

• Let T be a geometric theory over a signature Σ. The syntactic
category CT of T has as objects the ‘renaming’-equivalence
classes of geometric formulae-in-context {⃗x . φ} over Σ and as
arrows {⃗x . φ}→ {⃗y . ψ} (where the contexts x⃗ and y⃗ are
supposed to be disjoint without loss of generality) the
T-provable-equivalence classes [θ ] of geometric formulae
θ (⃗x , y⃗) which are T-provably functional i.e. such that the
sequents

(φ ⊢⃗x (∃y)θ),
(θ ⊢⃗x ,⃗y φ ∧ψ), and

((θ ∧θ [⃗z/⃗y ]) ⊢⃗x ,⃗y ,⃗z (⃗y = z⃗))

are provable in T.
• The composite of two arrows

{⃗x . φ}
[θ ] // {⃗y . ψ}

[γ] // {⃗z . χ}

is defined as the T-provable-equivalence class of the formula
(∃⃗y)θ ∧ γ.

• The identity arrow on an object {⃗x . φ} is the arrow

{⃗x . φ}
[φ∧x⃗ ′=⃗x ] // {x⃗ ′ . φ [x⃗ ′/⃗x ]}
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Syntactic sites

• For any geometric theory T, its syntactic category CT is a
geometric category, i.e. a well-powered cartesian category in
which images of morphisms and arbitrary unions of
subobjects exist and are stable under pullback.

• For a geometric theory T, the geometric topology on CT is
the Grothendieck topology JT whose covering sieves are
those which contain small covering families.

Definition
The syntactic topology JT on the syntactic category CT of a
geometric theory T is the geometric topology on it; in particular,

a small family {[θi ] : {x⃗i . φi}→ {⃗y . ψ}} in CT is JT-covering

if and only if

the sequent (ψ ⊢⃗y ∨i∈I
(∃x⃗i)θi) is provable in T.
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Grothendieck toposes

One can define sheaves on an arbitrary site in a formally
analogous way to how one defines sheaves on a topological
space. This leads to the following

Definition
• A Grothendieck topos is a category (equivalent to the

category) Sh(C ,J) of sheaves on a (small-generated) site
(C ,J).

• A geometric morphism of toposes f : E → F is a pair of
adjoint functors whose left adjoint (called the inverse image
functor) f ∗ : F → E preserves finite limits.
For instance, the inclusion Sh(C ,J) ↪→ [C op,Set] of a
Grothendieck topos Sh(C ,J) in the corresponding presheaf
topos [C op,Set] yields a geometric morphism between these
toposes (whose inverse image is the associated sheaf
functor).
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Subtoposes

Definition
A subtopos of a topos E is an equivalence class of geometric
inclusions to E .

Fact
• The notion of subtopos is a topos-theoretic invariant.

• If E is the topos Sh(C ,J) of sheaves on a site (C ,J), the
subtoposes of E are in bijective correspondence with the
Grothendieck topologies J ′ on C which contain J (i.e. such
that every J-covering sieve is J ′-covering).
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A duality theorem

Definition
• Let T be a geometric theory over a signature Σ. A quotient of
T is a geometric theory T′ over Σ such that every axiom of T
is provable in T′.

• Let T and T′ be geometric theories over a signature Σ. We
say that T and T′ are syntactically equivalent, and we write
T≡s T′, if for every geometric sequent σ over Σ, σ is
provable in T if and only if σ is provable in T′.

Theorem
Let T be a geometric theory over a signature Σ. Then the
assignment sending a quotient of T to its classifying topos defines
a bijection between the ≡s-equivalence classes of quotients of T
and the subtoposes of the classifying topos Set[T] of T.
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Some consequences
This duality theorem has several implications; in particular, it allows
one to import many notions and results from topos theory into the
realm of geometric logic. For instance, one can deduce from it that

Theorem
Let T be a geometric theory over a signature Σ. Then the collection
ThTΣ of (syntactic-equivalence classes of) geometric theories over Σ
which are quotients of T, endowed with the order defined by
‘T′ ≤ T′′ if and only if all the axioms of T′ are provable in T′′’, is a
Heyting algebra.
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‘Bridges’ between quotients and topologies

This duality also allows one to establish ‘bridges’ of the following
form:

Subtopos of

Sh(C ,J)≃ Set[T]

Grothendieck topology on
C containing J Quotient of T

That is, if the classifying topos of a geometric theory T can be
represented as the category Sh(C ,J) of sheaves on a (small) site
(C ,J) then we have a natural, order-preserving bijection

quotients of T
9

Grothendieck topologies on C which contain J

41 / 33



Topos-
empowered
automatic
theorem

generation

Olivia Caramello

The duality
between
quotients and
subtoposes
Syntactic sites

A duality theorem

The proof-theoretic
interpretation

Theories of presheaf
type and their
quotients

Usefulness of these
equivalences

Some references

Two notable cases
We shall focus on two particular cases of this result:

(1) (C ,J) is the syntactic site (CT,JT) of T
(2) - T is a theory of presheaf type (e.g. a finitary algebraic, or more

generally cartesian, theory),
- C is the opposite of its category f.p.T-mod(Set) of finitely

presentable models, and
- J is the trivial topology on it.

In the first case, we obtain an order-preserving bijective
correspondence between the quotients of T and the Grothendieck
topologies on CT which contain JT.

In the second case, we obtain an order-preserving bijective
correspondence between the quotients of T and the Grothendieck
topologies on f.p.T-mod(Set)op.

In both cases, these correspondences can be naturally
interpreted as proof-theoretic equivalences between the classical
proof system of geometric logic over T and new proof systems for
sieves whose inference rules correspond to the axioms of
Grothendieck topologies.
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Proof systems for sieves
Given a collection A of sieves on a given category C , the notion of
Grothendieck topology on C naturally gives rise to a proof system
T A

C , as follows: the axioms of T A
C are the sieves in A plus all the

maximal sieves, while the inference rules of T A
C are the

proof-theoretic versions of the well-known axioms for Grothendieck
topologies, i.e. the following rules:
- Stability rule:

R
f ∗(R)

where R is any sieve on an object c of C and f is any arrow in C
with codomain c.
- Transitivity rule:

Z {f ∗(R) | f ∈ Z}
R

where R and Z are sieves in C on a given object of C .

N.B. The ‘closed theories’ of this proof system are precisely the
Grothendieck topologies on C which contain the sieves in A as
covering sieves. The closure of a ‘theory’ in T A

C , i.e. of a collection
U of sieves in C , is exactly the Grothendieck topology on C
generated by A and U .
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The first correspondence

Let T be a geometric theory over a signature Σ, S the collection
of geometric sequents over Σ and S(CT) the collection of
(small-generated) sieves in the syntactic category CT.

• Given a geometric sequent σ ≡ (φ ⊢⃗x ψ) over Σ, we set
F (σ) equal to the principal sieve in CT generated by the
monomorphism

{x⃗ ′ . φ ∧ψ}
[(φ∧ψ∧x⃗ ′=⃗x)] // {⃗x . φ} .

• Given a small-generated sieve R = {[θi ] : {x⃗i . φi}→ {⃗y . ψ}}
in CT, we set G (R) equal to the sequent (ψ ⊢⃗y ∨i∈I

(∃x⃗i)θi).
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The first equivalence
Let V → V

T
and U → U

T
respectively be the operations

consisting in taking the Grothendieck topology V
T

generated by
JT plus the sieves in V and in taking the collection U

T
of

geometric sequents provable in T∪U by using geometric logic.
Let F : P(S )→ P(S(CT)) be the composite (−)

T ◦P(F ) and
G : P(S(CT))→ P(S ) be the composite (−)

T
S̃ ◦P(G ). Then

Theorem
(i) For any U ∈ P(S ), F (U

T
)⊆ F (U)

T
.

(ii) For any V ∈ P(S(CT)), G (V
T
)⊆ G (V )

T
.

(iii) For any U ∈ P(S ), G(F (U)) = U
T
.

(iv) For any V ∈ P(S(CT)), F (G(V )) = V
T

.

In other words, the maps F and G define a proof-theoretic
equivalence between the classical deduction system for
geometric logic over T and the proof system T JT

CT
.
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Describing the second equivalence
Recall that a geometric theory is said to be of presheaf type if it is
classified by a presheaf topos (equivalently, by the topos
[f.p.T-mod(Set),Set]). Theories of presheaf type are very important
in that they constitute the basic ‘building blocks’ from which every
geometric theory can be built. Indeed, as every Grothendieck topos
is a subtopos of a presheaf topos, so every geometric theory is a
‘quotient’ of a theory of presheaf type.
Every finitary algebraic (or more generally any cartesian) theory is
of presheaf type, but this class also contain many other interesting
mathematical theories.

Definition
Let T be a geometric theory over a signature Σ. Then a geometric
formula φ (⃗x) over Σ is said to be T-irreducible if, regarded as an
object of the syntactic category CT of T, it does not admit any
non-trivial JT-covering sieves.

Theorem
A geometric theory T over a signature Σ is of presheaf type if and
only if every geometric formula φ (⃗x) over Σ, when regarded as an
object of CT, is JT-covered by T-irreducible formulae over Σ.
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Irreducible formulae and finitely presentable models

Theorem
Let T be a theory of presheaf type over a signature Σ. Then

(i) Any finitely presentable T-model in Set is presented by a
T-irreducible geometric formula φ (⃗x) over Σ;

(ii) Conversely, any T-irreducible geometric formula φ (⃗x) over Σ
presents a T-model.

In fact, the category f.p.T-mod(Set)op is equivalent to the full
subcategory C irr

T of CT on the T-irreducible formulae.

Irreducible object
[f.p.T-mod(Set),Set]≃ Sh(CT,JT)

f.p.T-mod(Set)op

Every object

(
CT,JT)

T-irreducible
formula
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Sequents and sieves on f.p. models

• By using the fact that every geometric formula over Σ can be
JT-covered in CT by T-irreducible formulae, one can show
that every geometric sequent over Σ is provably equivalent in
T to a collection of sequents σ of the form (φ ⊢⃗x ∨i∈I

(∃y⃗i)θi)

where, for each i ∈ I, [θi ] : {y⃗i . ψi}→ {⃗x . φ} is an arrow in
CT and φ (⃗x), ψ(y⃗i) are geometric formulae over Σ presenting
respectively T-models M{⃗x .φ} and M{y⃗i .ψi}.

• To such a sequent σ , we can associate the cosieve Sσ on
M{⃗x .φ} in f.p.T-mod(Set) defined as follows. For each i ∈ I,
[[θi ]]M{y⃗i .ψi }

is the graph of a morphism
[[y⃗i . ψi ]]M{y⃗i .ψi }

→ [[⃗x . φ ]]M{y⃗i .ψi }
; then the image of the

generators of M{y⃗i .ψi} via this morphism is an element of
[[⃗x . φ ]]M{y⃗i .ψi }

and this in turn determines, by definition of
M{⃗x .φ}, a unique arrow si : M{⃗x .φ} → M{y⃗i .ψi} in T-mod(Set).
We set Sσ equal to the sieve in f.p.T-mod(Set)op on Mφ

generated by the arrows si as i varies in I.
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Sequents and sieves on f.p. models
Conversely, by the equivalence f.p.T-mod(Set)op ≃ C irr

T , every
sieve in f.p.T-mod(Set)op is clearly of the form Sσ for such a
sequent σ .

These correspondences define, similarly to above, a
proof-theoretic equivalence between the classical deduction
system for geometric logic over T and the proof system
T T

f.p.T-mod(Set)op (where T is the trivial Grothendieck topology).

In particular, the Grothendieck topology J on f.p.T-mod(Set)op

associated with a quotient T′ of T is generated by the sieves Sσ ,
where σ varies among the sequents associated with the axioms
of T′ as above.
Moreover, for any σ of the above form, σ is provable in T′ if and
only if Sσ belongs to J.

This generalizes Coste-Lombardi-Roy’s correspondence between
dynamical theories (viewed as coherent quotients of universal
Horn theories) and the coherent Grothendieck topologies
associated with them.
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Why are these equivalences interesting?

These equivalences are useful in that they allow us to study (the
proof theory of) geometric theories through the associated
Grothendieck topologies: the condition of provability of a sequent
in a geometric theory gets transformed in the requirement for a
sieve (or a family of sieves) to belong to a certain Grothendieck
topology, something which is often much easier to investigate.

Indeed, we have shown that Grothendieck topologies are
particularly amenable to computation by deriving
• An explicit formula for the Grothendieck topology generated

by a given family of sieves

• Explicit descriptions of the lattice operations on Grothendieck
topologies on a given category which refine a certain
topology (recall that these correspond to the lattice
operations on quotients via the above duality).
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Formulas for Grothendieck topologies
Meet of Grothendieck topologies
If J1 and J2 are Grothendieck topologies on a category C
respectively generated by bases K1 and K2, the meet J1 ∧J2 is
generated by the collection of sieves which are unions of sieves in
K1 with sieves in K2.
Grothendieck topology generated by a family of sieves
The Grothendieck topology GD generated by a family D of sieves
in C which is stable under pullback is given by

GD(c) = {S sieve on c | for any sieve T on c,
[(for any arrow d

g→ c and sieve Z on d
(Z ∈ D(d) and Z ⊆ g∗(T )) implies g ∈ T ) and (S ⊆ T )]
implies T = Mc}

for any object c ∈ C .
Heyting implication of Grothendieck topologies

(J1⇒J2)(c) = {S sieve on c | for any arrow d f→ c and sieve Z on d ,
[Z is J1-covering and J2-closed and f ∗(S)⊆ Z ]
implies Z = Md} .
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Some applications

Theorem (A deduction theorem for geometric logic)
Let T be a geometric theory over a signature Σ and φ ,ψ
geometric sentences over Σ such that the sequent (⊤ ⊢[] ψ) is
provable in the theory T∪{(⊤ ⊢[] φ)}. Then the sequent (φ ⊢[] ψ)
is provable in the theory T.

We have proved this theorem by showing (using the
above-mentioned formula for the Grothendieck topology
generated by a given family of sieves) that if the principal sieve in

CT generated by the arrow {[] . ψ}
[ψ]
↣ {[] . ⊤} belongs to the

Grothendieck topology on CT generated over JT by the principal

sieve generated by the arrow {[] . φ}
[φ ]
↣ {[] . ⊤}, then [φ ]≤ [ψ] in

SubCT({[] . ⊤}).
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Some applications

Theorem
The meet of the theory of local rings and that of integral domains in
the lattice of quotients of the theory of commutative rings with unit is
obtained from the latter theory by adding the sequents

(0 = 1 ⊢[] ⊥)

and

( ∧
1≤s≤m

Ps (⃗x) = 0 ⊢⃗x ∨1≤i≤k
(∃y)(Gi (⃗x) . y = 1)∨ ∨

1≤j≤l
Hj (⃗x) = 0)

where for each 1 ≤ s ≤ m, 1 ≤ i ≤ k and 1 ≤ j ≤ l the Ps ’s, Gi ’s and
Hj ’s are any polynomials in a finite string x⃗ = (x1, . . . ,xn) of variables
with the property that {P1, . . . ,Ps,G1, . . . ,Gk} is a set of elements of
Z[x1, . . . ,xn] which is not contained in any proper ideal of
Z[x1, . . . ,xn] and Π

1≤j≤l
Hj ∈ (P1, . . . ,Ps) in Z[x1, . . . ,xn].

We have derived this result by calculating the meet of the
Grothendieck topologies associated with the two quotients by using
suitable bases for them.
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Theorem
Let T be a geometric theory over a signature Σ and T1,T2 two
quotients of T. Then the Heyting implication T1⇒T2 in ThTΣ is the
theory obtained from T by adding all the geometric sequents
(ψ ⊢⃗y ψ ′) over Σ with the property that (ψ ′ ⊢⃗y ψ) is provable in T
and for any T-provably functional geometric formula θ (⃗x , y⃗) from
a geometric formula-in-context {⃗x . φ} to {⃗y . ψ} and any
geometric formula χ in the context x⃗ such that (χ ⊢⃗x φ) is
provable in T, the conjunction of the facts

(i) (φ ⊢⃗x χ) is provable in T1

(ii) ((∃⃗y)(θ (⃗x , y⃗)∧ψ ′(⃗y)) ⊢⃗x χ) is provable in T
implies that (φ ⊢⃗x χ) is provable in T2.
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Relevant references
• The papers Topologies for intermediate logics and Site

characterizations for geometric invariants of toposes provide
general recipes for automatically computing large classes of
logical (resp. geometric) invariants of toposes.

• A machinery for automatically building Stone-type dualities has
been built in the paper A topos-theoretic approach to
Stone-type dualities.

• An infinite class of new dualities for MV-algebras has been
generated in the paper On the geometric theory of local
MV-algebras (joint with A.C. Russo) by using the ‘bridge’
technique.

• The book Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic ‘bridges’
contains the above-mentioned results on quotients and
subtoposes.

• A forthcoming paper with Laurent Lafforgue treats the problem
of generation of Grothendieck topologies from arbitrary
families of sieves in a systematic way, deriving a number of
new applications.

• The paper Densenss conditions, morphisms and equivalences
of toposes provides several criteria that can be implemented to
test whether a given functor between sites induces an
equivalence between the corresponding toposes.

55 / 33


	The theory of topos-theoretic `bridges'
	Topos-empowered automatic theorem generation
	Relevant subprojects

	Other applications to computer science and AI
	Towards a theory of semantic information
	Modelling of learning processes via proofs
	The logic and geometry of images
	Structural approximation theory
	Transformers from a topos-theoretic perspective 

	The Grothendieck Institute
	For further reading
	Appendix
	The duality between quotients and subtoposes
	Syntactic sites
	A duality theorem
	The proof-theoretic interpretation
	Theories of presheaf type and their quotients
	Usefulness of these equivalences

	Some references


