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Topos-theoretic model theory
• We can call topos-theretic model theory the study of the

syntax and semantics of (first-order) mathematical theories
through the lenses of topos theory.

• Topos theory can be regarded as a unifying subject in
Mathematics, with great relevance as a framework for
systematically investigating the relationships between
different mathematical theories and studying them by means
of a multiplicity of different points of view. In particular, the
‘bridge’ technique allows one to generate insights which
would be hardly attainable otherwise and to establish deep
connections that allow effective transfers of knowledge
between different contexts.

• As we shall see in the course, the topos-theoretic study of
the semantics of first-order mathematical theories presents
several advantages, notably including the greater generality,
functorial nature, and constructiveness of the methods and
the presence of classification results unavailable in the
restricted setting of set theory.

2 / 108



An invitation to
topos-theoretic
model theory

Olivia Caramello

Introduction

Toposes as
generalized
spaces

Toposes as
mathematical
universes

Categorical logic

Classifying
toposes

Toposes as
bridges

Topological
Galois theory

Theories of
presheaf type

Topos-theoretic
Fraïssé theorem

Quotients of
theories of
presheaf type

Future directions

Plan of the course

• Background on toposes and categorical semantics

• Classifying toposes and the ‘bridge’ technique

• Some examples of model-theoretic results proved through
topos theory

• Future perspectives
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The multifaceted nature of toposes

The role of toposes as unifying spaces is intimately tied to their
multifaceted nature.

For instance, a topos can be seen as:

• a generalized space

• a mathematical universe

• a theory modulo ‘Morita-equivalence’

We shall now briefly review each of these classical points of view,
and then present the more recent theory of topos-theoretic
‘bridges’, which combines all of them to provide tools for making
toposes effective means for studying mathematical theories from
multiple points of view, relating and unifying theories with each
other and constructing ‘bridges’ across them.
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Presheaves on a topological space
Definition
Let X be a topological space. A presheaf F on X consists of the data:

(i) for every open subset U of X , a set F (U) and
(ii) for every inclusion V ⊆ U of open subsets of X , a function

ρU,V : F (U)→F (V ) subject to the conditions
• ρU,U is the identity map F (U)→F (U) and
• if W ⊆ V ⊆ U are three open subsets, then ρU,W = ρV ,W ◦ρU,V .

The maps ρU,V are called restriction maps, and we sometimes write s|V
instead of ρU,V (s), if s ∈F (U).
A morphism of presheaves F → G on a topological space X is a
collection of maps F (U)→ G (U) which is compatible with respect to
restriction maps.

Remark
Categorically, a presheaf F on X is a functor F : O(X )op→ Set, where
O(X ) is the poset category corresponding to the lattice of open sets of
the topological space X (with respect to the inclusion relation).
A morphism of presheaves is then just a natural transformation
between the corresponding functors.
So we have a category [O(X )op,Set] of presheaves on X.
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Sheaves on a topological space
Definition
A sheaf F on a topological space X is a presheaf on X satisfying the
additional conditions

(i) if U is an open set, if {Vi | i ∈ I} is an open covering of U, and if
s, t ∈F (U) are elements such that s|Vi = t |Vi for all i, then s = t ;

(ii) if U is an open set, if {Vi | i ∈ I} is an open covering of U, and if we
have elements si ∈F (Vi ) for each i , with the property that for each
i , j ∈ I, si |Vi∩Vj = sj |Vi∩Vj , then there is an element s ∈F (U)

(necessarily unique by (i)) such that s|Vi = si for each i .

A morphism of sheaves is defined as a morphism of the underlying
presheaves.

Examples

• the sheaf of continuous real-valued functions on any topological
space

• the sheaf of regular functions on a variety
• the sheaf of differentiable functions on a differentiable manifold
• the sheaf of holomorphic functions on a complex manifold

In each of the above examples, the restriction maps of the sheaf are the
usual set-theoretic restrictions of functions to a subset.
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Sheaves from a categorical point of view
Sheaves arising in Mathematics are often equipped with more structure
than the mere set-theoretic one; for example, one may wish to consider
sheaves of modules (resp. rings, abelian groups, ...) on a topological
space X .
The natural categorical way of looking at these notions is to consider
them as models of certain (geometric) theories in a category Sh(X ) of
sheaves of sets.

Remarks
• Categorically, a sheaf is a functor O(X )op→ Set which satisfies

certain conditions expressible in categorical language entirely in
terms of the poset category O(X ) and of the usual notion of
covering on it. The category Sh(X ) of sheaves on a topological
space X is thus a full subcategory of the category [O(X )op,Set] of
presheaves on X.

• Many important properties of topological spaces X can be naturally
formulated as (invariant) properties of the categories Sh(X ) of
sheaves of sets on the spaces.

These remarks led Grothendieck to introduce a significant categorical
generalization of the notion of sheaf, and hence the notion of
Grothendieck topos.
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Limits and colimits in Sh(X )

Theorem
(i) The category Sh(X ) is closed in [O(X )op,Set] under

arbitrary (small) limits.
(ii) The associated sheaf functor a : [O(X )op,Set]→ Sh(X )

(having a right adjoint) preserves all (small) colimits.

• Part (i) follows from the fact that limits commute with limits, in
light of the characterization of sheaves in terms of limits.

• From part (ii) it follows that Sh(X ) has all small colimits,
which are computed by applying the associated sheaf functor
to the colimit of the diagram considered with values in
[O(X )op,Set].
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Adjunctions induced by points

Let x be a point of a topological space X .

Definition
Let A be a set. Then the skyscraper sheaf Skyx (A) of A at x is the
sheaf on X defined as

• Skyx (A)(U) = A if x ∈ U
• Skyx (A)(U) = 1 = {∗} if x /∈ U

and in the obvious way on arrows.
The assignment A→ Skyx (A) is clearly functorial.

Theorem
The stalk functor Stalkx : Sh(X )→ Set at x is left adjoint to the
skyscraper functor Skyx : Set→ Sh(X ).

In fact, as we shall see later in the course, points in topos theory
are defined as suitable kinds of functors (more precisely, colimit
and finite-limit preserving ones).
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Open sets as subterminal objects

Since limits in a category Sh(X ) are computed as in the category
of presheaves [O(X )op,Set], a subobject of a sheaf F in Sh(X ) is
just a subsheaf, that is a subfunctor which is a sheaf.
Notice that a subfunctor S ⊆ F is a sheaf if and only if for every
open covering {Ui ⊆ U | i ∈ I} and every element x ∈ F (U),
x ∈ S(U) if and only if x |Ui ∈ S(Ui ).

Definition
In a category with a terminal object, a subterminal object is an
object whose unique arrow to the terminal object is a
monomorphism.

Theorem
Let X be a topological space. Then we have a frame isomorphism

SubSh(X )(1)∼= O(X ) .

between the subterminal objects of Sh(X ) and the open sets of X .
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Sieves
In order to ‘categorify’ the notion of sheaf of a topological space,
the first step is to introduce an abstract notion of covering (of an
object by a family of arrows to it) in a category.

Definition
• Given a category C and an object c ∈Ob(C ), a presieve P in

C on c is a collection of arrows in C with codomain c.
• Given a category C and an object c ∈Ob(C ), a sieve S in C

on c is a collection of arrows in C with codomain c such that

f ∈ S ⇒ f ◦g ∈ S

whenever this composition makes sense.
• We say that a sieve S is generated by a presieve P on an

object c if it is the smallest sieve containing it, that is if it is the
collection of arrows to c which factor through an arrow in P.

If S is a sieve on c and h : d → c is any arrow to c, then

h∗(S) := {g | cod(g) = d , h ◦g ∈ S}

is a sieve on d .
11 / 108
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Grothendieck topologies

Definition
• A Grothendieck topology on a category C is a function J

which assigns to each object c of C a collection J(c) of
sieves on c in such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c} is
in J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such that
f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are
said to be J-covering.

• A site is a pair (C ,J) where C is a small category and J is a
Grothendieck topology on C .
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Examples of Grothendieck topologies
• For any (small) category C , the trivial topology on C is the

Grothendieck topology in which the only sieve covering an
object c is the maximal sieve Mc .

• The dense topology D on a category C is defined by: for a
sieve S,

S ∈ D(c) if and only if for any f : d → c there exists
g : e→ d such that f ◦g ∈ S .

If C satisfies the right Ore condition i.e. the property that any
two arrows f : d → c and g : e→ c with a common codomain
c can be completed to a commutative square

• //

��

d

f
��

e
g // c

then the dense topology on C specializes to the atomic
topology on C i.e. the topology Jat defined by: for a sieve S,

S ∈ Jat (c) if and only if S 6= /0 .
13 / 108
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Examples of Grothendieck topologies
• If X is a topological space, the usual notion of covering in Topology

gives rise to the following Grothendieck topology JO(X ) on the poset
category O(X ): for a sieve S = {Ui ↪→ U | i ∈ I} on U ∈Ob(O(X )),

S ∈ JO(X )(U) if and only if ∪
i∈I

Ui = U .

• More generally, given a frame (or complete Heyting algebra) H, we
can define a Grothendieck topology JH , called the canonical
topology on H, by:

{ai | i ∈ I} ∈ JH(a) if and only if ∨
i∈I

ai = a .

• Given a small category of topological spaces which is closed under
finite limits and under taking open subspaces, one may define the
open cover topology on it by specifying as basis the collection of
open embeddings {Yi ↪→ X | i ∈ I} such that∪

i∈I
Yi = X .

• The Zariski topology on the opposite of the category Rngf.g. of
finitely generated commutative rings with unit is defined by: for any
cosieve S in Rngf.g. on an object A, S ∈ Z (A) if and only if S
contains a finite family {ξi : A→ Afi | 1≤ i ≤ n} of canonical maps
ξi : A→ Afi in Rngf.g. where {f1, . . . , fn} is a set of elements of A
which is not contained in any proper ideal of A.
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Sheaves on a site
Definition

• A presheaf on a (small) category C is a functor P : C op→ Set.
• Let P : C op→ Set be a presheaf on C and S be a sieve on an

object c of C .

A matching family for S of elements of P is a function which
assigns to each arrow f : d → c in S an element xf ∈ P(d) in
such a way that

P(g)(xf ) = xf◦g for all g : e→ d .

An amalgamation for such a family is a single element
x ∈ P(c) such that

P(f )(x) = xf for all f in S .

Remark
For any covering family F = {Ui ⊆ U | i ∈ I} in a topological space
X and any presheaf F on X, giving a family of elements
si ∈F (Ui ) such that for any i , j ∈ I si |Ui∩Uj = sj |Ui∩Uj is equivalent
to giving a family of elements {sW ∈F (W ) |W ∈ SF} such that for
any open set W ′ ⊆W, sW |W ′ = sW ′ , where SF is the sieve
generated by F. In other words, it is the same as giving a
matching family for SF of elements of F .
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Sheaves on a site

• Given a site (C ,J), a presheaf on C is a J-sheaf if every
matching family for any J-covering sieve on any object of C
has a unique amalgamation.

• The category Sh(C ,J) of sheaves on the site (C ,J) is the full
subcategory of [C op,Set] on the presheaves which are
J-sheaves.

• A Grothendieck topos is any category equivalent to the
category of sheaves on a site.
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Examples of toposes

The following examples show that toposes can be naturally
attached to mathematical notions as different as (small)
categories, topological spaces, or groups.

Examples

• For any (small) category C , [C op,Set] is the category of
sheaves Sh(C ,T ) where T is the trivial topology on C .

• For any topological space X , Sh(O(X ),JO(X )) is equivalent to
the usual category Sh(X ) of sheaves on X .

• For any (topological) group G, the category BG = Cont(G) of
continuous actions of G on discrete sets is a Grothendieck
topos (equivalent, as we shall see, to the category
Sh(Contt(G),Jat) of sheaves on the full subcategory
Contt(G) on the non-empty transitive actions with respect to
the atomic topology).
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Basic properties of Grothendieck toposes
Grothendieck toposes satisfy all the categorical properties that
one might hope for:

Theorem
Let (C ,J) be a site. Then

• the inclusion Sh(C ,J) ↪→ [C op,Set] has a left adjoint
a : [C op,Set]→ Sh(C ,J) (called the associated sheaf functor),
which preserves finite limits.

• The category Sh(C ,J) has all (small) limits, which are
preserved by the inclusion functor Sh(C ,J) ↪→ [C op,Set]; in
particular, limits are computed pointwise and the terminal
object 1Sh(C ,J) of Sh(C ,J) is the functor T : C op→ Set
sending each object c ∈Ob(C ) to the singleton {∗}.

• The associated sheaf functor a : [C op,Set]→ Sh(C ,J)
preserves colimits; in particular, Sh(C ,J) has all (small)
colimits.

• The category Sh(C ,J) has exponentials, which are
constructed as in the topos [C op,Set].

• The category Sh(C ,J) has a subobject classifier.
• The category Sh(C ,J) has a separating set of objects.
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Geometric morphisms
The natural, topologically motivated, notion of morphism of
Grothendieck toposes is that of geometric morphism. The natural
notion of morphism of geometric morphisms if that of geometric
transformation.

Definition
(i) Let E and F be toposes. A geometric morphism f : E →F

consists of a pair of functors f∗ : E →F (the direct image of
f ) and f ∗ : F → E (the inverse image of f ) together with an
adjunction f ∗ a f∗, such that f ∗ preserves finite limits.

(ii) Let f and g : E →F be geometric morphisms. A geometric
transformation α : f → g is defined to be a natural
transformation a : f ∗→ g∗.

(iii) A point of a topos E is a geometric morphism Set→ E .

• Grothendieck toposes and geometric morphisms between
them form a 2-category.

• Given two toposes E and F , geometric morphisms from E to
F and geometric transformations between them form a
category, denoted by Geom(E ,F ).
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Examples of geometric morphisms

• A continuous function f : X → Y between topological spaces
gives rise to a geometric morphism Sh(f ) : Sh(X )→ Sh(Y ).
The direct image Sh(f )∗ sends a sheaf F ∈Ob(Sh(X )) to the
sheaf Sh(f )∗(F ) defined by Sh(f )∗(F )(V ) = F (f−1(V )) for
any open subset V of Y . The inverse image Sh(f )∗ acts on
étale bundles over Y by sending an étale bundle p : E → Y to
the étale bundle over X obtained by pulling back p along
f : X → Y .

• Every Grothendieck topos E has a unique geometric
morphism E → Set. The direct image is the global sections
functor Γ : E → Set, sending an object e ∈ E to the set
HomE (1E ,e), while the inverse image functor ∆ : Set→ E

sends a set S to the coproduct
⊔
s∈S

1E .

• For any site (C ,J), the pair of functors formed by the
inclusion Sh(C ,J) ↪→ [C op,Set] and the associated sheaf
functor a : [C op,Set]→ Sh(C ,J) yields a geometric
morphism i : Sh(C ,J)→ [C op,Set].
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Geometric morphisms as flat functors I

Theorem
Let C be a small category and E be a locally small cocomplete
category. Then, for any functor A : C → E the functor
RA : E → [C op,Set] defined for each e ∈Ob(E ) and c ∈Ob(C ) by:

RA(e)(c) = HomE (A(c),e)

has a left adjoint −⊗C A : [C op,Set]→ E .

Definition
• A functor A : C → E from a small category C to a

Grothendieck topos E is said to be flat if the functor
−⊗C A : [C op,Set]→ E preserves finite limits.

• The full subcategory of [C ,E ] on the flat functors will be
denoted by Flat(C ,E ).
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Geometric morphisms as flat functors II

Theorem
Let C be a small category and E be a Grothendieck topos. Then
we have an equivalence of categories

Geom(E , [C op,Set])' Flat(C ,E )

(natural in E ), which sends

• a flat functor A : C → E to the geometric morphism
E → [C op,Set] determined by the functors RA and −⊗C A,
and

• a geometric morphism f : E → [C op,Set] to the flat functor
given by the composite f ∗ ◦y of f ∗ : [C op,Set]→ E with the
Yoneda embedding y : C → [C op,Set].
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Geometric morphisms to Sh(C ,J) I

Definition
Let E be a Grothendieck topos.

• A family {fi : ai → a | i ∈ I} of arrows in E with common
codomain is said to be epimorphic if for any pair of arrows
g,h : a→ b with domain a, g = h if and only if g ◦ fi = h ◦ fi for
all i ∈ I.

• If (C ,J) is a site, a functor F : C → E is said to be
J-continuous if it sends J-covering sieves to epimorphic
families.

The full subcategory of Flat(C ,E ) on the J-continuous flat
functors will be denoted by FlatJ(C ,E ).
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Geometric morphisms to Sh(C ,J) II

Theorem
For any site (C ,J) and Grothendieck topos E , the above-mentioned
equivalence between geometric morphisms and flat functors restricts
to an equivalence of categories

Geom(E ,Sh(C ,J))' FlatJ(C ,E )

natural in E .

Sketch of proof.
Appeal to the previous theorem

• identifying the geometric morphisms E → Sh(C ,J) with the
geometric morphisms E → [C op,Set] which factor through the
canonical geometric inclusion Sh(C ,J) ↪→ [C op,Set], and

• using the characterization of such morphisms as the geometric
morphisms f : E → [C op,Set] such that the composite f ∗ ◦y of
the inverse image functor f ∗ of f with the Yoneda embedding
y : C → [C op,Set] sends J-covering sieves to colimits in E
(equivalently, to epimorphic families in E ).
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Flat = filtering
Definition
A functor F : C → E from a small category C to a Grothendieck
topos E is said to be filtering if it satisfies the following conditions:
(a) For any object E of E there exist an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C and
a generalized element Ei → F (bi ) in E .

(b) For any two objects c and d in C and any generalized element
〈x ,y〉 : E → F (c)×F (d) in E there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C with
arrows ui : bi → c and vi : bi → d in C and a generalized
element zi : Ei → F (bi ) in E such that 〈F (ui ),F (vi )〉 ◦zi =
〈x ,y〉 ◦ ei for all i ∈ I.

(c) For any two parallel arrows u,v : d → c in C and any
generalized element x : E → F (d) in E for which
F (u)◦x = F (v)◦x , there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an arrow wi : bi → d
and a generalized element yi : Ei → F (bi ) such that
u ◦wi = v ◦wi and F (wi )◦yi = x ◦ei for all i ∈ I.

Theorem
A functor F : C → E from a small category C to a Grothendieck
topos E is flat if and only if it is filtering.

Remarks
• For any small category C , a functor P : C → Set is filtering if

and only if its category of elements
∫

P is a filtered category
(equivalently, if it is a filtered colimit of representables).

• For any small cartesian category C , a functor C → E is flat if
and only if it preserves finite limits.
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Morphisms and comorphisms of sites
Geometric morphisms can be naturally induced by functors
between sites satisfying appropriate properties:

Definition
• A morphism of sites (C ,J)→ (D ,K ) is a functor F : C →D

such that the composite l ′ ◦F , where l ′ is the canonical
functor D → Sh(D ,K ), is flat and J-continuous. If C and D
have finite limits then F is a morphism of sites if and only if it
preserves finite limits and is cover-preserving.

• A comorphism of sites (D ,K )→ (C ,J) is a functor π : D → C
which is cover-reflecting (in the sense that for any d ∈D and
any J-covering sieve S on π(d) there is a K -covering sieve R
on d such that π(R)⊆ S).

Theorem
• Every morphism of sites (C ,J)→ (D ,K ) induces a geometric

morphism Sh(D ,K )→ Sh(C ,J).

• Every comorphism of sites (D ,K )→ (C ,J) induces a
geometric morphism Sh(D ,K )→ Sh(C ,J).
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Toposes as mathematical universes

W. Lawvere and M. Tierney discovered that a topos could not only
be seen as a generalized space, but also as a mathematical
universe in which one can do mathematics similarly to how one
does it in the classical context of sets, with the only important
exception that one must argue constructively. In fact, the internal
logic of a topos, captured to a great extent by its subobject
classifier, is in general intuitionistic.

Amongst other things, this view of toposes as mathematical
universes paved the way for:

• Exploiting the inherent ‘flexibility’ of the notion of topos to
construct ‘new mathematical worlds’ having particular
properties.

• Considering models of any kind of (first-order) mathematical
theory not just in the classical set-theoretic setting, but inside
every topos, and hence ‘relativise’ Mathematics.
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Subobjects in a Grothendieck topos

Since limits in a topos Sh(C ,J) are computed as in the presheaf
topos [C op,Set], a subobject of a sheaf F in Sh(C ,J) is just a
subsheaf, that is a subfunctor which is a sheaf.

Notice that a subfunctor F ′ ⊆ F is a sheaf if and only if for every
J-covering sieve S and every element x ∈ F (c), x ∈ F ′(c) if and
only if F (f )(x) ∈ F ′(dom(f )) for every f ∈ S.

Theorem
• For any Grothendieck topos E and any object a of E , the

poset SubE (a) of all subobjects of a in E is a complete
Heyting algebra.

• For any arrow f : a→ b in a Grothendieck topos E , the
pullback functor f ∗ : SubE (b)→ SubE (a) has both a left
adjoint ∃f : SubE (a)→ SubE (b) and a right adjoint
∀f : SubE (a)→ SubE (b).
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The Heyting operations on subobjects

Proposition
The collection SubSh(C ,J)(E) of subobjects of an object E in
Sh(C ,J) has the structure of a complete Heyting algebra with
respect to the natural ordering A≤ B if and only if for every c ∈ C ,
A(c)⊆ B(c). We have that

• (A∧B)(c) = A(c)∩B(c) for any c ∈ C ;
• (A∨B)(c) = {x ∈ E(c) | {f : d → c | E(f )(x) ∈ A(d)∪B(d)}
∈ J(c)} for any c ∈ C ;
(the infinitary analogue of this holds)

• (A⇒B)(c) = {x ∈ E(c) | for every f : d → c,E(f )(x) ∈ A(d)
implies E(f )(x) ∈ B(d)} for any c ∈ C .

• the bottom subobject 0� E is given by the embedding into E
of the initial object 0 of Sh(C ,J) (given by: 0(c) = /0 if /0 /∈ J(c)
and 0(c) = {∗} if /0 ∈ J(c));

• the top subobject is the identity one.

Remark
From the Yoneda Lemma it follows that the subobject classifier Ω in
Sh(C ,J) has the structure of an internal Heyting algebra in
Sh(C ,J).
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The interpretation of quantifiers
Let φ : E → F be a morphism in Sh(C ,J).

• The pullback functor

φ
∗ : SubSh(C ,J)(F )→ SubSh(C ,J)(E)

is given by: φ ∗(B)(c) = φ(c)−1(B(c)) for any subobject
B� F and any c ∈ C .

• The left adjoint

∃φ : SubSh(C ,J)(E)→ SubSh(C ,J)(F )

is given by: ∃φ (A)(c) = {y ∈ E(c) | {f : d → c | (∃a ∈
A(d))(φ(d)(a) = E(f )(y))} ∈ J(c)}
for any subobject A� E and any c ∈ C .

• The right adjoint

∀φ : SubSh(C ,J)(E)→ SubSh(C ,J)(F )

is given by ∀φ (A)(c) = {y ∈ E(c) | for all f : d →
c,φ(d)−1(E(f )(y))⊆ A(d)}
for any subobject A� E and any c ∈ C .
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Interpreting first-order logic in categories
• In Logic, first-order languages are a wide class of formal

languages used for talking about mathematical structures of
any kind (where the restriction ‘first-order’ means that
quantification is allowed only over individuals rather than over
collections of individuals or higher-order constructions on
them).

• A first-order language contains sorts, which are meant to
represent different kinds of individuals, terms, which denote
individuals, and formulae, which make assertions about the
individuals. Compound terms and formulae are formed by
using various logical operators.

• It is well-known that first-order languages can always be
interpreted in the context of (a given model of) set theory. In
this lecture, we will show that these languages can also be
meaningfully interpreted in a category, provided that the latter
possesses enough categorical structure to allow the
interpretation of the given fragment of logic. In fact, sorts will
be interpreted as objects, terms as arrows and formulae as
subobjects, in a way that respects the logical structure of
compound expressions.
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Signatures

Definition
A first-order signature Σ consists of the following data.
a) A set Σ-Sort of sorts.
b) A set Σ-Fun of function symbols, together with a map

assigning to each f ∈ Σ-Fun its type, which consists of a finite
non-empty list of sorts: we write

f : A1 · · ·An→ B

to indicate that f has type A1, . . . ,An,B (if n = 0, f is called a
constant of sort B).

c) A set Σ-Rel of relation symbols, together with a map assigning
to each Σ-Rel its type, which consists of a finite list of sorts:
we write

R� A1 · · ·An

to indicate that R has type A1, . . .An.
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Terms

For each sort A of a signature Σ we assume given a supply of
variables of sort A, used to denote individuals of kind A.
Starting from variables, terms are built-up by repeated
‘applications’ of function symbols to them, as follows.

Definition
Let Σ be a signature. The collection of terms over Σ is defined
recursively by the clauses below; simultaneously, we define the
sort of each term and write t : A to denote that t is a term of sort
A.
a) x : A, if x is a variable of sort A.
b) f (t1, . . . , tn) : B if f : A1 · · ·An→ B is a function symbol and

t1 : A1, . . . , tn : An.
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Formation rules for formulae I
Consider the following formation rules for recursively building
classes of formulae F over Σ, together with, for each formula φ ,
the (finite) set FV(φ) of free variables of φ .

(i) Relations: R(t1, . . . , tn) is in F , if R� A1 · · ·An is a relation
symbol and t1 : A1, . . . , tn : An are terms; the free variables of
this formula are all the variables occurring in some ti .

(ii) Equality: (s = t) is in F if s and t are terms of the same sort;
FV(s = t) is the set of variables occurring in s or t (or both).

(iii) Truth: > is in F ; FV(>) = /0.
(iv) Binary conjunction: (φ ∧ψ) is in F , if φ and ψ are in F ;

FV(φ ∧ψ) = FV(φ)∪FV(ψ).
(v) Falsity: ⊥ is in F; FV(⊥) = /0.
(vi) Binary disjunction: (φ ∨ψ) is in F , if φ and ψ are in F ;

FV(φ ∨ψ) = FV(φ)∪FV(ψ).
(vii) Implication: (φ⇒ψ) is in F , if φ and ψ are in F ;

FV(φ⇒ψ) = FV(φ)∪FV(ψ).
(viii) Negation: ¬φ is in F , if φ is in F ; FV(¬φ) = FV(φ).
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Formation rules for formulae II

(ix) Existential quantification: (∃x)φ is in F , if φ is in F and x is a
variable; FV((∃x)φ) = FV(φ)\{x}.

(x) Universal quantification: (∀x)φ is in F , if φ is in F and x is a
variable; FV((∀x)φ) = FV(φ)\{x}.

(xi) Infinitary disjunction:∨
i∈I

φi is in F, if I is a set, φi is in F for

each i ∈ I and FV(∨
i∈I

φi ) :=∪
i∈I

FV(φi ) is finite.

(xii) Infinitary conjunction:∧
i∈I

φi is in F, if I is a set, φi is in F for

each i ∈ I and FV(∧
i∈I

φi ) :=∪
i∈I

FV(φi ) is finite.

A context is a finite list~x = x1, . . . ,xn of distinct variables (the
empty context, for n = 0 is allowed and indicated by []).

Notation: We will often consider formulae-in-context, that is
formulae φ equipped with a context~x such that all the free
variables of φ occur among~x ; we will write either φ(~x) or {~x . φ}.
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Classes of formulae
Definition
In relation to the above-mentioned forming rules:

• The set of atomic formulae over Σ is the smallest set closed
under Relations and Equality).

• The set of Horn formulae over Σ is the smallest set containing
the class of atomic formulae and closed under Truth and Binary
conjunction.

• The set of regular formulae over Σ is the smallest set containing
the class of atomic formulae and closed under Truth, Binary
conjunction and Existential quantification.

• The set of coherent formulae over Σ is the smallest set
containing the set of regular formulae and closed under False
and Binary disjunction.

• The set of first-order formulae over Σ is the smallest set closed
under all the forming rules except for the infinitary ones.

• The class of geometric formulae over Σ is the smallest class
containing the class of coherent formulae and closed under
Infinitary disjunction.

• The class of infinitary first-order formulae over Σ is the smallest
class closed under all the above-mentioned forming rules.
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Sequents

Definition
• By a sequent over a signature Σ we mean a formal

expression of the form (φ ~̀x ψ), where φ and ψ are formulae
over Σ and~x is a context suitable for both of them. The
intended interpretation of this expression is that ψ is a logical
consequence of φ in the context~x , i.e. that any assignment
of individual values to the variables in~x which makes φ true
will also make ψ true.

• We say a sequent (φ ~̀x ψ) is Horn (resp. regular, coherent,
...) if both φ and ψ are Horn (resp. regular, coherent, ...)
formulae.

Notice that, in full first-order logic, the general notion of sequent is
not really needed, since the sequent (φ ~̀x ψ) expresses the same
idea as (> `[] (∀~x)(φ⇒ψ)).
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First-order theories

Definition
• By a theory over a signature Σ, we mean a set T of sequents

over Σ, whose elements are called the (non-logical) axioms
of T.

• We say that T is an algebraic theory if its signature Σ has a
single sort and no relation symbols (apart from equality) and
its axioms are all of the form > ~̀x φ where φ is an atomic
formula (s = t) and~x its canonical context.

• We say T is a Horn (resp. regular, coherent, ...) theory if all
the sequents in T are Horn (resp. regular, coherent, ...).
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Deduction systems for first-order logic I

• To each of the fragments of first-order logic introduced above,
we can naturally associate a deduction system, in the same
spirit as in classical first-order logic. Such systems will be
formulated as sequent-calculi, that is they will consist of
inference rules enabling us to derive a sequent from a
collection of others; we will write

Γ
σ

to mean that the sequent σ can be inferred by a collection of
sequents Γ. A double line instead of the single line will mean
that each of the sequents can be inferred from the other.

• Given the axioms and inference rules below, the notion of
proof is the usual one, and allowing the axioms of theory T to
be taken as premises yields the notion of proof relative to a
theory T.

Consider the following rules.
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Deduction systems for first-order logic II

• The rules for finite conjunction are the axioms

(φ ~̀x >) ((φ ∧ψ) ~̀x φ) ((φ ∧ψ) ~̀x ψ)

and the rule
(φ ~̀x ψ)(φ ~̀x χ)

(φ ~̀x (ψ ∧χ))

• The rules for finite disjunction are the axioms

(⊥ ~̀x φ) (φ ~̀x (φ ∨ψ)) (ψ ~̀x φ ∨ψ)

and the rule
(φ ~̀x χ)(ψ ~̀x χ)

((φ ∨ψ) ~̀x χ)

• The rules for infinitary conjunction (resp. disjunction) are the
infinitary analogues of the rules for finite conjunction (resp.
disjunction).
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Deduction systems for first-order logic III

• The rules for implication consist of the double rule

(φ ∧ψ ~̀x χ)

(ψ ~̀x (φ⇒χ))

• The rules for existential quantification consist of the double
rule

(φ ~̀x ,y ψ)

((∃y)φ ~̀x ψ)

provided that y is not free in ψ.
• The rules for universal quantification consist of the double

rule
(φ ~̀x ,y ψ)

(φ ~̀x (∀y)ψ)

• The distributive axiom is

((φ ∧ (ψ ∨χ)) ~̀x ((φ ∧ψ)∨ (φ ∧χ)))
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Deduction systems for first-order logic IV

• The Frobenius axiom is

((φ ∧ (∃y)ψ) ~̀x (∃y)(φ ∧ψ))

where y is a variable not in the context~x .

• The Law of excluded middle is

(> ~̀x φ ∨¬φ)
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Fragments of first-order logic

Definition
In addition to the usual structural rules of sequent-calculi (Identity
axiom, Equality rules, Substitution rule, and Cut rule), our
deduction systems consist of the following rules:

Horn logic finite conjunction
Regular logic finite conjunction, existential

quantification and Frobenius axiom
Coherent logic finite conjunction, finite disjunction,

existential quantification, distributive
axiom and Frobenius axiom

Geometric logic finite conjunction, infinitary
disjunction, existential quantification,
‘infinitary’ distributive axiom,
Frobenius axiom

Intuitionistic first-order logic all the finitary rules except for the law
of excluded middle

Classical first-order logic all the finitary rules
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Provability in fragments of first-order logic

Definition
We say a sequent σ is provable in an algebraic (regular, coherent,
...) theory T if there exists a derivation of σ relative to T, in the
appropriate fragment of first-order logic.
In geometric logic, intuitionistic and classical provability of
geometric sequents coincide.

Theorem
If a geometric sequent σ is derivable from the axioms of a
geometric theory T using ‘classical geometric logic’ (i.e. the rules
of geometric logic plus the Law of Excluded Middle), then there is
also a constructive derivation of σ , not using the Law of Excluded
Middle.
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Categorical semantics

• Generalizing the classical Tarskian definition of satisfaction of
first-order formulae in ordinary set-valued structures, one can
obtain, given a signature Σ, a notion of Σ-structure in a
category with finite products, and define, according to the
categorical structure present on the category, a notion of
interpretation of an appropriate fragment of first-order logic in
it.

• Specifically, we will introduce various classes of ‘logical’
categories, each of them providing a semantics for a
corresponding fragment of first-order logic:

Cartesian categories Horn logic
Regular categories Regular logic

Coherent categories Coherent logic
Geometric categories Geometric logic

Heyting categories First-order logic
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Structures in categories

Definition
Let C be a category with finite products and Σ be a signature. A
Σ-structure M in C is specified by the following data:

(i) A function assigning to each sort A in Σ-Sort, an object MA
of C . For finite strings of sorts, we define
M(A1, . . . ,An) = MA1×·· ·×MAn and set M([]) equal to the
terminal object 1 of C .

(ii) A function assigning to each function symbol f : A1 · · ·An→ B
in Σ-Fun an arrow Mf : M(A1, . . . ,An)→MB in C .

(iii) A function assigning to each relation symbol R� A1 · · ·An in
Σ-Rel a subobject MR�M(A1, . . . ,An) in C .
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Homomorphisms of structures
Definition
A Σ-structure homomorphism h : M → N between two Σ-structures M
and N in C is a collection of arrows hA : MA→ NA in C indexed by the
sorts of Σ and satisfying the following two conditions:

(i) For each function symbol f : A1 · · ·An→ B in Σ-Fun, the diagram

M(A1, . . . ,An)

hA1
×···×hAn

��

Mf // MB

hB
��

N(A1, . . . ,An)
Nf

// NB

commutes.
(ii) For each relation symbol R� A1 · · ·An in Σ-Rel, there is a

commutative diagram in C of the form

MR

��

// M(A1, . . . ,An)

hA1
×···×hAn

��
NR // M(A1, . . . ,An)
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The category of Σ-structures

Definition
Given a category C with finite products, Σ-structures in C and
Σ-homomorphisms between them form a category, denoted by
Σ-str(C ). Identities and composition in Σ-str(C ) are defined
componentwise from those in C .

Remark
If C and D are two categories with finite products, then any
functor T : C →D which preserves finite products and
monomorphisms induces a functor Σ-str(T ) : Σ-str(C )→ Σ-str(D)
in the obvious way.
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The interpretation of terms

Definition
Let M be a Σ-structure in a category C with finite products. If
{~x . t} is a term-in-context over Σ (with~x = x1, . . . ,xn,
xi : Ai (i = 1, ...,n) and t : B, say), then an arrow

[[~x . t ]]M : M(A1, . . . ,An)→MB

in C is defined recursively by the following clauses:
a) If t is a variable, it is necessarily xi for some unique i ≤ n, and

then [[~x . t ]]M = πi , the i th product projection.
b) If t is f (t1, . . . , tm) (where ti : Ci , say), then [[~x . t ]]M is the

composite

M(A1, . . . ,An)
([[~x .t1]]M ,...,[[~x .tm]]M ) // M(C1, . . . ,Cm)

Mf // MB
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Interpreting formulae in categories

• In order to interpret formulae in categories, we need to have
a certain amount of categorical structure present on the
category in order to give a meaning to the logical connectives
which appear in the formulae.

• In fact, the larger is the fragment of logic, the larger is the
amount of categorical structure required to interpret it. For
example, to interpret finitary conjunctions, we need to form
pullbacks, to interpret disjunctions we need to form unions of
subobjects, etc.

• Formulae will be interpreted as subobjects in our category;
specifically, given a category C and a Σ-structure M in it, a
formula φ(~x) over Σ where~x = (xA1

1 , . . . ,xAn
n ), will be

interpreted as a subobject

[[~x . φ ]]M �M(A1, . . . ,An)

defined recursively on the structure of φ .
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Cartesian categories

Recall that by a finite limit in a category C we mean a limit of a
functor F : J → C where J is a finite category (i.e. a category
with only a finite number of objects and arrows).
In any category C with pullbacks, pullbacks of monomorphisms
are again monomorphisms; thus, for any arrow f : a→ b in C , we
have a pullback functor

f ∗ : SubC (b)→ SubC (a) .

Definition
A cartesian category is any category with finite limits.
As we shall see below, in cartesian categories we can interpret
atomic formulae as well as finite conjunctions of them; in fact,
conjunctions will be interpreted as pullbacks (i.e. intersections) of
subobjects.
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Regular categories
Definition

• Given two subobjects m1 : a1� c and m2 : a2� c of an object c in a
category C , we say that m1 factors through m2 if there is a
(necessarily unique) arrow r : a1→ a2 in C such that m2 ◦ r = m1.
(Note that this defines a preorder relation ≤ on the collection
SubC (c) of subobjects of a given object c.)

• We say that a cartesian category C has images if we are given an
operation assigning to each morphism of C a subobject Im(f ) of its
codomain, which is the least (in the sense of the preorder ≤)
subobject of cod(f ) through which f factors.

• A regular category is a cartesian category C such that C has
images and they are stable under pullback.

Fact
Given an arrow f : a→ b in a regular category C , the pullback functor
f ∗ : SubC (b)→ SubC (a) has a left adjoint ∃f : SubC (a)→ SubC (b), which
assigns to a subobject m : c� a the image of the composite f ◦m.
As we shall see below, in regular categories we can interpret formulae
built-up from atomic formulae by using finite conjunctions and existential
quantifications; in fact, the existential quantifiers will be interpreted as
images of certain arrows.
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Coherent categories

Definition
A coherent category is a regular category C in which each
SubC (c) has finite unions and each f ∗ : SubC (b)→ SubC (a)
preserves them.
As we shall see below, in coherent categories we can interpret
formulae built-up from atomic formulae by using finite
conjunctions, existential quantifications, and finite disjunctions; in
fact, finite disjunctions will be interpreted as finite unions of
subobjects.

Note in passing that, if coproducts exist, a union of subobjects of
an object c may be constructed as the image of the induced arrow
from the coproduct to c.
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Geometric categories

Definition
• A (large) category C is said to be well-powered if each of the

preorders SubC (a), a ∈Ob(C ), is equivalent to a small
category.

• A geometric category is a well-powered regular category
whose subobject lattices have arbitrary unions which are
stable under pullback.

As we shall see below, in coherent categories we can interpret
formulae built-up from atomic formulae by using finite
conjunctions, existential quantifications, and infinitary
disjunctions; in fact, disjunctions will be interpreted as unions of
subobjects.
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Quantifiers as adjoints

Let X and Y be two sets. For any given subset S ⊆ X ×Y , we can
consider the sets

∀pS := {y ∈ Y | for all x ∈ X ,(x ,y) ∈ S} and

∃pS := {y ∈ Y | there exists x ∈ X ,(x ,y) ∈ S} .

The projection map p : X ×Y → Y induces a map (taking inverse
images) at the level of powersets p∗ : P(Y )→P(X ×Y ). If we
regard these powersets as poset categories (where the
order-relation is given by the inclusion relation) then this map
becomes a functor; also, the assignments S→∀pS and S→∃pS
yield functors ∀p,∃p : P(X ×Y )→P(Y ).

Theorem
The functors ∃p and ∀p are respectively left and right adjoints to
the functor p∗ : P(Y )→P(X ×Y ) which sends each subset
T ⊆ Y to its inverse image p∗T under p.
The theorem generalizes to the case of an arbitrary function in
place of the projection p.
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Heyting categories

Definition
A Heyting category is a coherent category C such that for any
arrow f : a→ b in C the pullback functor f ∗ : SubC (b)→ SubC (a)
has a right adjoint ∀f : SubC (a)→ SubC (b) (as well as its left
adjoint ∃f : SubC (a)→ SubC (b)).

Theorem
Let a1� a and a2� a be subobjects in a Heyting category. Then
there exists a largest subobject (a1⇒a2)� a such that
(a1⇒a2)∩a1 ≤ a2. Moreover, the binary operation on subobjects
thus defined is stable under pullback.
In particular, all the subobject lattices in a Heyting category are
Heyting algebras.

Thus, in a Heyting category we may interpret full finitary
first-order logic.

Fact
Any geometric category, in particular any Grothendieck topos, is a
Heyting category.
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The interpretation of first-order formulae I

Let M be a Σ-structure in a category C with finite limits. A
formula-in-context {~x . φ} over Σ (where~x = x1, . . . ,xn and xi : Ai ,
say) will be interpreted as a subobject [[~x . φ ]]M �M(A1, . . . ,An)
according to the following recursive clauses:

• If φ(~x) is R(t1, . . . , tm) where R is a relation symbol (of type
B1, . . . ,Bm, say), then [[~x . φ ]]M is the pullback

[[~x . φ ]]M

��

// MR

��
M(A1, . . . ,An)

([[~x .t1]]M ,...,[[~x .tm]]M ) // M(B1, . . . ,Bm)

• If φ(~x) is (s = t), where s and t are terms of sort B, then
[[~x . φ ]]M is the equalizer of
[[~x . s]]M , [[~x . t ]]M : M(A1, . . . ,An)→MB.

• If φ(~x) is > then [[~x . φ ]]M is the top element of
SubC (M(A1, . . . ,An)).
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The interpretation of first-order formulae II

• If φ is ψ ∧χ then [[~x . φ ]]M is the intersection (= pullback)

[[~x . φ ]]M

��

// [[~x . χ]]M

��
[[~x . ψ]]M // M(A1, . . . ,An)

• If φ(~x) is ⊥ and C is a coherent category then [[~x . φ ]]M is the
bottom element of SubC (M(A1, . . . ,An)).

• If φ is ψ ∨χ and C is a coherent category then [[~x . φ ]]M is
the union of the subobjects [[~x . ψ]]M and [[~x . χ]]M .

• If φ is ψ⇒χ and C is a Heyting category, [[~x . φ ]]M is the
implication [[~x . ψ]]M⇒ [[~x . χ]]M in the Heyting algebra
SubC (M(A1, . . . ,An)) (similarly, the negation ¬ψ is interpreted
as the pseudocomplement of [[~x . ψ]]M ).
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The interpretation of first-order formulae III

• If φ is (∃y)ψ where y is of sort B, and C is a regular category,
then [[~x . φ ]]M is the image of the composite

[[~x ,y . ψ]]M // M(A1, . . . ,An,B)
π // M(A1, . . . ,An)

where π is the product projection on the first n factors.
• If φ is (∀y)ψ where y is of sort B, and C is a Heyting

category, then [[~x . φ ]]M is ∀π ([[~x ,y . ψ]]M), where π is the
same projection as above.

• If φ is∨
i∈I

φi and C is a geometric category then [[~x . φ ]]M is

the union of the subobjects [[~x . φi ]]M .

• If φ is∧
i∈I

φi and C has arbitrary intersections of subobjects

then [[~x . φ ]]M is the intersection of the subobjects [[~x . φi ]]M .
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Models of first-order theories in categories
Definition
Let M be a Σ-structure in a category C .
a) If σ = φ ~̀x ψ is a sequent over Σ interpretable in C , we say that σ is

satisfied in M if [[~x . φ ]]M ≤ [[~x . ψ]]M in SubC (M(A1, . . . ,An)).
b) If T is a theory over Σ interpretable in C , we say M is a model of T if

all the axioms of T are satisfied in M.
c) We write T-mod(C ) for the full subcategory of Σ-str(C ) whose

objects are models of T .

We say that a functor F : C →D between two cartesian (resp. regular,
coherent, geometric, Heyting) categories is cartesian (resp. regular,
coherent, geometric, Heyting) if it preserves finite limits (resp. finite limits
and images, finite limits and images and finite unions of subobjects,
finite limits and images and arbitrary unions of subobjects, finite limits
and images and Heyting implications between subobjects).

Theorem
If T is a regular (resp. coherent, ...) theory over Σ, then for any regular
(resp. coherent, ...) functor T : C →D the functor
Σ-str(T ) : Σ-str(C )→ Σ-str(D) defined above restricts to a functor
T-mod(T ) : T-mod(C )→ T-mod(D). If T is moreover conservative (that
is, reflects isomorphisms) then the functor Σ-str(T ) reflects the property
of being a T-model.
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Examples

• A topological group can be seen as a model of the theory of
groups in the category of topological spaces.

• Similarly, an algebraic (resp. Lie) group is a model of the
theory of groups in the category of algebraic varieties (resp.
the category of smooth manifolds).

• A sheaf of rings (more generally, a sheaf of models of a Horn
theory T) on a topological space X can be seen as a model
of the theory of rings (resp. of the theory T) in the topos
Sh(X ) of sheaves on X .

• A sheaf of models of a geometric theory T over a signature Σ
in a topos Sh(X ) of sheaves on a topological space X is a
Σ-structure in Sh(X ) whose stalks are models of T.

• A bunch of set-based models of a theory T indexed over a
set I can be seen as a model of T in the functor category
[I,Set]. More generally, we have that
T-mod([C ,Set])' [C ,T-mod(Set)].
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Soundness and completeness

Theorem (Soundness)
Let T be a Horn (resp. regular, coherent, first-order, geometric)
theory over a signature T, and let M be a model of T in a
cartesian (resp. regular, coherent, Heyting, geometric) category
C . If σ is a sequent (in the appropriate fragment of first-order
logic over Σ) which is provable in T, then σ is satisfied in M.

Theorem (Completeness)
Let T be a Horn (resp. regular, coherent, first-order, geometric)
theory. If a Horn (resp. regular, coherent, Heyting, geometric)
sequent σ is satisfied in all models of T in cartesian (resp. regular,
coherent, Heyting, geometric) categories, then it is provable in T.
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Soundness and completeness for toposes

We say that a first-order formula φ(~x) over a signature Σ is valid
in a topos E if for every Σ-structure M in E the sequent > ~̀x φ is
satisfied in M.

Theorem
Let Σ be a signature and φ(~x) a first-order formula over Σ. Then
φ(~x) is provable in intuitionistic (finitary) first-order logic if and
only if it is valid in every Grothendieck topos.

Sketch of proof.
The soundness result is part of a theorem mentioned above. The
completeness part follows from the existence of canonical Kripke
models and the fact that, given a poset P and a Kripke model U
on P there is a model U ∗ in the topos [P,Set] such that the
first-order sequents valid in U are exactly those valid in U ∗.
Hence a topos can be considered as a mathematical universe in
which one can do mathematics similarly to how one does it in the
classical context of sets (with the only exception that one must in
general argue constructively).
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The internal language of a topos I

Given a category C with finite products, in particular an
elementary topos, one can define a first-order signature ΣC ,
called the internal language of C , for reasoning about C in a
set-theoretic fashion, that is by using ‘elements’.

Definition
The signature ΣC has one sort pAq for each object A of C , one
function symbol pfq : pA1q, · · · ,pAnq→ pBq for each arrow
f : A1×·· ·×An→ B in C , and one relation symbol
pRq� pA1q · · ·pAnq for each subobject R� A1×·· ·×An.
Note that there is a canonical ΣC -structure in C , which assigns A
to pAq, f to pfq and R to pRq.
The usefulness of this definition lies in the fact that properties of
C or constructions in it can often be formulated in terms of
satisfaction of certain formulae over ΣC in the canonical structure;
the internal language can thus be used for proving things about C .

64 / 108



An invitation to
topos-theoretic
model theory

Olivia Caramello

Introduction

Toposes as
generalized
spaces

Toposes as
mathematical
universes

Categorical logic

Classifying
toposes

Toposes as
bridges

Topological
Galois theory

Theories of
presheaf type

Topos-theoretic
Fraïssé theorem

Quotients of
theories of
presheaf type

Future directions

The internal language of a topos II

If C is a topos, we can extend the internal language by allowing
the formation of formulae of the kind τ ∈ Γ, where τ is a term of
sort A and Γ is a term of sort ΩA. Indeed, we may interpret this
formula as the subobject whose classifying arrow is the composite

W
〈τ,Γ〉 // A×ΩA ∈A // Ω

where W denotes the product of (the objects representing the)
sorts of the variables occurring either in τ or in Γ (considered
without repetitions) and 〈τ,Γ〉 denotes the induced map to the
product.
Note that an object A of C gives rise to a constant term of type
ΩA.
Thus in a topos we can also interpret all the common formulas
that we use in Set Theory.
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Kripke-Joyal semantics I

Kripke-Joyal semantics represents the analogue for toposes of
the usual Tarskian semantics for classical first-order logic.
In the context of toposes, it makes no sense to speak of elements
of a structure in a topos, but we can replace the classical notion of
element of a set with that of generalized element of an object: a
generalized element of an object c of a topos E is simply an arrow
α : u→ c with codomain c.

Definition
Let E be a topos and M be a Σ-structure in E . Given a first-order
formula φ(x) over Σ in a variable x of sort A and a generalized
element α : U→MA of MA, we define

U |=M φ(α) iff α factors through [[x . φ ]]M �MA

Of course, the definition can be extended to formulae with an
arbitrary (finite) number of free variables.
In the following proposition, the notation + denotes binary
coproduct.
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Kripke-Joyal semantics II
Proposition
If α : U→MA is a generalized element of MA while φ(x) and ψ(x)
are formulas with a free variable x of sort A, then

• U |= (φ ∧ψ)(α) if and only if U |= φ(α) and U |= ψ(α).
• U |= (φ ∨ψ)(α) if and only if there are arrows p : V → U and

q : W → U such that p + q : V + W → U is epic, while both
V |= φ(α ◦p) and W |= ψ(α ◦q).

• U |= (φ⇒ψ)(α) if and only if for any arrow p : V → U such
that V |= φ(α ◦p), then V |= ψ(α ◦p).

• U |= (¬φ)(α) if and only if whenever p : V → U is such that
V |= φ(α ◦p), then V ∼= 0E .

If φ(x ,y) has an additional free variable y of sort B then
• U |= (∃y)φ(α,y) if and only if there exist an epi p : V →U and

a generalized element β : V → B such that V |= φ(α ◦p,β ).
• U |= (∀y)φ(α,y) if and only if for every object V , for every

arrow p : V → U and every generalized element c : V → B
one has V |= φ(α ◦p,β ).
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Geometric theories

Definition
A geometric theory T is a theory over a first-order signature Σ
whose axioms can be presented in the form (φ ~̀x ψ), where φ

and ψ are geometric formulae, that is formulae in the context~x
built up from atomic formulae over Σ by only using finitary
conjunctions, infinitary disjunctions and existential quantifications.

Remark
Inverse image functors of geometric morphisms of toposes
always preserve models of a geometric theory (but in general not
those of an arbitrary first-order theory).

Most of the first-order theories naturally arising in Mathematics
are geometric; anyway, if a finitary first-order theory is not
geometric, one can always canonically associate with it a
geometric theory, called its Morleyization, having the same
set-based models.
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Classifying toposes

It was realized in the seventies (thanks to the work of several
people, notably including W. Lawvere, A. Joyal, G. Reyes and M.
Makkai) that:

• Every geometric theory T has a classifying topos ET which is
characterized by the following representability property: for
any Grothendieck topos E we have an equivalence of
categories

Geom(E ,ET)' T-mod(E )

natural in E , where
- Geom(E ,ET) is the category of geometric morphisms E → ET

and
- T-mod(E ) is the category of T-models in E .

• The classifying topos of a geometric theory T can be
canonically built as the category Sh(CT,JT) of sheaves on
the syntactic site (CT,JT) of T.
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Classifying toposes
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The syntactic category of a geometric theory
Definition (Makkai and Reyes 1977)

• Let T be a geometric theory over a signature Σ. The syntactic
category CT of T has as objects the ‘renaming’-equivalence
classes of geometric formulae-in-context {~x . φ} over Σ and as
arrows {~x . φ}→ {~y . ψ} (where the contexts~x and ~y are
supposed to be disjoint without loss of generality) the
T-provable-equivalence classes [θ ] of geometric formulae
θ(~x ,~y) which are T-provably functional i.e. such that the
sequents

(φ ~̀x (∃y)θ),
(θ ~̀x ,~y φ ∧ψ), and

((θ ∧θ [~z/~y ]) ~̀x ,~y ,~z (~y =~z))

are provable in T.
• The composite of two arrows

{~x . φ}
[θ ] // {~y . ψ}

[γ] // {~z . χ}

is defined as the T-provable-equivalence class of the formula
(∃~y)θ ∧ γ.

• The identity arrow on an object {~x . φ} is the arrow

{~x . φ}
[φ∧~x ′=~x ] // {~x ′ . φ [~x ′/~x ]}
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The syntactic site
On the syntactic category of a geometric theory it is natural to put
the Grothendieck topology defined as follows:

Definition
The syntactic topology JT on the syntactic category CT of a
geometric theory T is the geometric topology on it; in particular,

a small family {[θi ] : {~xi . φi}→ {~y . ψ}} in CT is JT-covering

if and only if

the sequent (ψ ~̀y∨i∈I
(∃~xi )θi ) is provable in T.

This notion is instrumental for identifying the models of the theory
T in any geometric category C (and in particular in any
Grothendieck topos) as suitable functors defined on the syntactic
category CT with values in C ; indeed, these are precisely the
JT-continuous cartesian functors CT→ C . So if C is a
Grothendieck topos they correspond precisely to the geometric
morphisms from C to Sh(CT,JT). This topos therefore classifies
T.
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Morita equivalence

• Two mathematical theories are said to be Morita-equivalent if
have the same classifying topos (up to equivalence): this
means that they have equivalent categories of models in
every Grothendieck topos E , naturally in E .

• Every Grothendieck topos is the classifying topos of some
geometric theory (and in fact, of infinitely many theories).

• So a Grothendieck topos can be seen as a canonical
representative of equivalence classes of theories modulo
Morita-equivalence.
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Toposes as bridges

• The notion of Morita-equivalence is ubiquitous in
Mathematics; indeed, it formalizes in many situations the
feeling of ‘looking at the same thing in different ways’, or
‘constructing a mathematical object through different
methods’.

• In fact, many important dualities and equivalences in
Mathematics can be naturally interpreted in terms of
Morita-equivalences.

• On the other hand, Topos Theory itself is a primary source of
Morita-equivalences. Indeed, different representations of the
same topos can be interpreted as Morita-equivalences
between different mathematical theories.

• Any two theories which are bi-interpretable in each other are
Morita-equivalent but, very importantly, the converse does
not hold.

• We can expect most of the categorical equivalences between
categories of set-based models of geometric theories to lift to
Morita equivalences.
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Toposes as bridges
• In the topos-theoretic study of theories, the latter are

represented by sites (of definition of their classifying topos or
of some other topos naturally attached to them) or by other
objects presenting toposes.

• The existence of theories which are Morita-equivalent to each
other translates into the existence of different sites of definition
(or, more generally, presentations) for the same Grothendieck
topos.

• Grothendieck toposes can be effectively used as ‘bridges’ for
transferring notions, properties and results across different
Morita-equivalent theories:

ET ' ET′

��
T

11

T′

• The transfer of information takes place by expressing
topos-theoretic invariants in terms of the different sites of
definition (or, more generally, presentations) for the given
topos.

• As such, different properties (resp. constructions) arising in
the context of theories classified by the same topos are seen
to be different manifestations of a unique property (resp.
construction) lying at the topos-theoretic level.
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Toposes as bridges
• This methodology is technically effective because the

relationship between a topos and its representations is often
very natural, enabling us to easily transfer invariants across
different representations (and hence, between different
theories).

• On the other hand, the ‘bridge’ technique is highly non-trivial, in
the sense that it often yields deep and surprising results. This
is due to the fact that a given invariant can manifest itself in
significanly different ways in the context of different
presentations.

• The level of generality represented by topos-theoretic
invariants is ideal to capture several important features of
mathematical theories and constructions. Indeed, many
important invariants of mathematical structures are actually
invariants of toposes (think for instance of cohomology or
homotopy groups) and topos-theoretic invariants considered on
the classifying topos ET of a geometric theory T often translate
into interesting logical (i.e. syntactic or semantic) properties of
T.
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Toposes as bridges
• The fact that topos-theoretic invariants specialize to important

properties or constructions of natural mathematical interest is
a clear indication of the centrality of these concepts in
Mathematics. In fact, whatever happens at the level of toposes
has ‘uniform’ ramifications in Mathematics as a whole: for
instance

This picture represents the lattice structure on the collection of
the subtoposes of a topos E inducing lattice structures on the
collection of ‘quotients’ of geometric theories T, S, R classified
by it.

77 / 108



An invitation to
topos-theoretic
model theory

Olivia Caramello

Introduction

Toposes as
generalized
spaces

Toposes as
mathematical
universes

Categorical logic

Classifying
toposes

Toposes as
bridges

Topological
Galois theory

Theories of
presheaf type

Topos-theoretic
Fraïssé theorem

Quotients of
theories of
presheaf type

Future directions

The ‘bridge-building’ technique
• Decks of ‘bridges’: Morita-equivalences (or more generally

morphisms or other kinds of relations between toposes)

• Arches of ‘bridges’: Site characterizations for topos-theoretic
invariants (or more generally ‘unravelings’ of topos-theoretic
invariants in terms of concrete representations of the relevant
topos)

The ‘bridge’ yields a logical equivalence (or an implication)
between the ‘concrete’ properties P(C ,J) and Q(D ,K ), interpreted in
this context as manifestations of a unique property I lying at the
level of the topos. 78 / 108
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A few selected applications
Since the theory of topos-theoretic ‘bridges’ was introduced in
2010, several applications of it have been obtained in different
fields of Mathematics, such as:

• Model theory (topos-theoretic Fraïssé theorem)
• Proof theory (various results for first-order theories)
• Algebra (topos-theoretic generalization of topological Galois

theory)
• Topology (topos-theoretic interpretation/generation of

Stone-type and Priestley-type dualities)
• Functional analysis (various results on Gelfand spectra and

Wallman compactifications)
• Many-valued logics and lattice-ordered groups (two joint

papers with A. C. Russo)
• Cyclic homology, as reinterpreted by A. Connes (work on

“cyclic theories”, jointly with N. Wentzlaff)
• Algebraic geometry (logical analysis of (co)homological

motives, cf. the paper “Syntactic categories for Nori motives”
joint with L. Barbieri-Viale and L. Lafforgue)
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Topological Galois theory

Recall that classical topological Galois theory provides, given a
Galois extension F ⊆ L, a bijective correspondence between the
intermediate field extensions (resp. finite field extensions)
F ⊆ K ⊆ L and the closed (resp. open) subgroups of the Galois
group AutF (L).

This admits the following categorical reformulation: the functor
K →Hom(K ,L) defines an equivalence of categories

(L L
F )op ' Contt (AutF (L)),

where L L
F is the category of finite intermediate field extensions

and Contt (AutF (L)) is the category of continuous non-empty
transitive actions of AutF (L) on discrete sets.

A natural question thus arises: can we characterize the
categories C whose dual is equivalent to (or fully embeddable
into) the category of (non-empty transitive) actions of a
topological automorphism group?
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The topos-theoretic interpretation

Key observation: the above equivalence extends to an
equivalence of toposes

Sh(L L
F

op
,Jat )' Cont(AutF (L)),

where Jat is the atomic topology on L L
F

op and Cont(AutF (L)) is
the topos of continuous actions of AutF (L) on discrete sets.

It is therefore natural to investigate our problem by using the
methods of topos theory: more specifically, we shall look for
conditions on a small category C and on an object u of its
ind-completion for the existence of an equivalence of toposes of
the form

Sh(C op,Jat )' Cont(Aut(u)) .

We will then be able to obtain, starting from such an equivalence,
an answer to our question, and hence build Galois-type theories
in a great variety of different mathematical contexts.
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The key notions I
• A category C is said to satisfy the amalgamation property

(AP) if for every objects a,b,c ∈ C and morphisms f : a→ b,
g : a→ c in C there exists an object d ∈ C and morphisms
f ′ : b→ d , g′ : c→ d in C such that f ′ ◦ f = g′ ◦g:

a

g

��

f // b

f ′
��

c
g′
// d

• A category C is said to satisfy the joint embedding property
(JEP) if for every pair of objects a,b ∈ C there exists an
object c ∈ C and morphisms f : a→ c, g : b→ c in C :

a

f
��

b g
// c
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The key notions II

• An object u ∈ Ind-C is said to be C -universal if for every
a ∈ C there exists an arrow χ : a→ u in Ind-C :

a
χ // u

• An object u ∈ Ind-C is said to be C -ultrahomogeneous if for
any object a ∈ C and arrows χ1 : a→ u, χ2 : a→ u in Ind-C
there exists an automorphism j : u→ u such that j ◦χ1 = χ2:

a

χ2 ��

χ1 // u

j
��

u

83 / 108



An invitation to
topos-theoretic
model theory

Olivia Caramello

Introduction

Toposes as
generalized
spaces

Toposes as
mathematical
universes

Categorical logic

Classifying
toposes

Toposes as
bridges

Topological
Galois theory

Theories of
presheaf type

Topos-theoretic
Fraïssé theorem

Quotients of
theories of
presheaf type

Future directions

The main theorem
Theorem
Let C be a small category satisfying AP and JEP, and let u be a
C -universal et C -ultrahomogeneous object of the ind-completion Ind-C
of C . Then there is an equivalence of toposes

Sh(C op,Jat )' Cont(Aut(u)),

where Aut(u) is endowed with the topology in which a basis of open
neighbourhoods of the identity is given by the subgroups of the form
Iχ = {α ∈ Aut(u) | α ◦χ = χ} for χ : c→ u an arrow in Ind-C from an
object c of C .
This equivalence is induced by the functor

F : C op→ Cont(Aut(u))

which sends any object c of C to the set HomInd-C (c,u) (endowed with
the obvious action of Aut(u)) and any arrow f : c→ d in C to the
Aut(u)-equivariant map

−◦ f : HomInd-C (d ,u)→HomInd-C (c,u) .
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Restricting to sites

The following result arises from two ‘bridges’, respectively
obtained by considering the invariant notions of atom and of arrow
between atoms.

Sh(C op,Jat )' Cont(Aut(u))

C op Contt (Aut(u))

Theorem
Under the hypotheses of the last theorem, the functor F is full and
faithful if and only if every arrow of C is a strict monomorphism,
and it is an equivalence on the full subcategory Contt (Aut(u)) of
Cont(Aut(u)) on the non-empty transitive actions if C is moreover
atomically complete.
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Applications

• A natural source of ultrahomogenenous and universal objects
is provided by Fraïssé’s construction in Model Theory and its
categorical generalizations.
For instance, if the category C is countable and all its arrows
are monomorphisms then there always exists a C -universal
and C -ultrahomogeneous object in Ind-C .

• Our theorem generalizes Grothendieck’s theory of Galois
categories (which corresponds to the particular case when
the fundamental group is profinite).

• It can be applied for generating Galois-type theories in
different fields of Mathematics, which do not fit in the
formalism of Galois categories.
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Examples

Natural categories with monic arrows: C equal to the category of
• Finite sets and injections
• Finite graphs and embeddings
• Finite groups and injective homomorphisms

Natural categories with epic arrows: C op equal to the category of

• Finite sets and surjections
• Finite groups and surjective homomorphisms
• Finite graphs and homomorphisms which are surjective both

at the level of vertices and at the level of edges.
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Categories of ‘imaginaries’

• If a category C satisfies the first but not the second condition
of our last theorem, our topos-theoretic approach gives us a
fully explicit way to complete it, by means of the addition of
‘imaginaries’, so that also the second condition gets satisfied.

• This is the case for instance for the categories considered
above; so we get notions of ‘imaginary finite set’, ‘imaginary
finite group’ etc.

• The objects of the atomic completion admit an explicit
description in terms of equivalence relations in the topos
Sh(C op,Jat ) on objects coming from the site C op.

• In a joint work with L. Lafforgue we give an alternative
‘combinatorial’ description of the atomic completion.
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The logical interpretation

• It is interesting to study the toposes considered above from a
logical point of view, that is from the perspective of the
structures that they classify.

• This analysis will reveal a deep link between Galois theory
(reinterpreted and generalized as above) and Fraïssé theory
in Model Theory, and lead to an approach to the problem of
the independence from ` of `-adic cohomology.

• For this, we need to introduce the notion of an atomic and
complete geometric theory, and that of special model of such
a theory.

• We will also need to use the notion of theory of presheaf type
(i.e., classified by a presheaf topos).
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Atomic and complete theories

Definition
• Given a geometric theory T over a signature Σ, a geometric

formula-in-context φ(~x) over Σ is said to be T-complete if the
sequent (φ ~̀x ⊥) is not provable in T, but for any geometric
formula ψ(~x) over Σ in the same context, either (φ ~̀x ψ) is
provable in T or (φ ∧ψ ~̀x ⊥) is provable in T.

• A geometric theory T is said to be atomic if every geometric
formula-in-context is T-provably equivalent to a disjunction of
T-complete formulae in the same context.

• A geometric theory T is said to be complete if every geometric
assertion over its signature is either T-provably true or
T-provably false, but not both. [N.B. if the theory is atomic then
this notion becomes equivalent to the usual first-order one.]

• A set-based model M of an atomic and complete theory is
defined to be special if each T-complete formula φ(~x) is
realized in M and for any~a,~b ∈ [[~x . φ ]]M there exists an
automorphism f of M such that f (~a) =~b.
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Special models and their automorphism groups

The above categorical theorem admits the following logical
formulation:

Theorem
Let T be an atomic and complete theory and M be a special model
of T. Then we have an equivalence

Sh(CT,JT)' Cont(Aut(M)),

where Aut(M) is endowed with the topology of pointwise
convergence.
From this theorem, one immediately deduces that if M and N are
respectively special models of two atomic and complete theories T
and T′ then Aut(M) and Aut(N) are isomorphic as topological
groups if and only if M and N are atomically bi-interpretable,
generalizing and strenghtening the classical result by
Ahlbrandt-Ziegler.
[This notion of bi-interpretation notably implies that for any sort A of
the signature of T, MA can be represented in the form [[~y . ψ]]N/R,
where {~y . ψ} is a T-complete formula and R is a geometrically
definable equivalence relation on [[~y . ψ]]N .]
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Theories of presheaf type

Definition
A geometric theory is said to be of presheaf type if it is classified by
a presheaf topos.
Theories of presheaf type are very important in that they constitute
the basic ‘building blocks’ from which every geometric theory can be
built. Indeed, as every Grothendieck topos is a subtopos of a
presheaf topos, so every geometric theory is a ‘quotient’ of a theory
of presheaf type.
These theories are the logical counterpart of small categories, in the
sense that:

• For any theory of presheaf type T, its category T-mod(Set) of
(set-based) models is equivalent to the ind-completion of the full
subcategory f.p.T-mod(Set) on the finitely presentable models.

• Any small category C is, up to idempotent splitting completion,
equivalent to the category f.p.T-mod(Set) for some theory of
presheaf type T.

Moreover, any geometric theory T can be expanded to a theory
classified by the topos [f.p.T-mod(Set),Set].
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Theories of presheaf type
Every finitary algebraic (or, more generally, cartesian) theory is of
presheaf type, but this class contains many other interesting
mathematical theories including

• the theory of linear orders (classified by the simplicial topos)
• the theory of algebraic extensions of a given field
• the theory of flat modules over a ring
• the theory of lattice-ordered abelian groups with strong unit
• the ‘cyclic theories’ (classified by the cyclic topos, the

epicyclic topos and the arithmetic topos)
• the theory of perfect MV-algebras (or more generally of local

MV-algebras in a proper variety of MV-algebras)
• the geometric theory of finite sets

Any theory of presheaf type T gives rise to two different
representations of its classifying topos, which can be used to
build ‘bridges’ connecting its syntax and semantics:

[f.p.T-mod(Set),Set]' Sh(CT,JT)

f.p.T-mod(Set)op (CT,JT)
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Irreducible formulae and finitely presentable models

Definition
Let T be a geometric theory over a signature Σ. Then a geometric
formula φ(~x) over Σ is said to be T-irreducible if, regarded as an
object of the syntactic category CT of T, it does not admit any
non-trivial JT-covering sieves.

Theorem
Let T be a theory of presheaf type over a signature Σ. Then

(i) Any finitely presentable T-model in Set is presented by a
T-irreducible geometric formula φ(~x) over Σ;

(ii) Conversely, any T-irreducible geometric formula φ(~x) over Σ
presents a T-model.

In fact, the category f.p.T-mod(Set)op is equivalent to the full
subcategory C irr

T of CT on the T-irreducible formulae.
Irreducible object

[f.p.T-mod(Set),Set]' Sh(CT,JT)

f.p.T-mod(Set)op

Every object

(
CT,JT)

T-irreducible
formula
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A definability theorem

Theorem
Let T be a theory of preshef type and suppose that we are given,
for every finitely presentable Set-model M of T, a subset RM of
M n in such a way that every T-model homomorphism
h : M →N maps RM into RN . Then there exists a geometric
formula-in-context φ(x1, . . . ,xn) such that RM = [[~x . φ ]]M for each
finitely presentable T-model M .

Subobject of UA1×···×UAn

[f.p.T-mod(Set),Set]' Sh(CT,JT)

f.p.T-mod(Set)op

Functorial assignment
M→RM⊆MA1×···×MAn

(
CT,JT)

Geometric formula
φ(x

A1
1 ,...,xAn

n )
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Topos-theoretic Fraïssé theorem

The following result, which generalizes Fraïssé’s theorem in
classical model theory, arises from a triple ‘bridge’.

Definition
A set-based model M of a geometric theory T is said to be
homogeneous if for any arrow y : c→M in T-mod(Set) and any
arrow f in f.p.T-mod(Set) there exists an arrow u in T-mod(Set)
such that u ◦ f = y :

c

f
��

y // M

d
u

??

Theorem
Let T be a theory of presheaf type such that the category
f.p.T-mod(Set) is non-empty and has AP and JEP. Then the
theory T′ of homogeneous T-models is complete and atomic.
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Topos-theoretic Fraïssé theorem

Atomic topos
Sh(f.p.T-mod(Set)op,Jat )' Sh(CT′ ,JT′)

(f.p.T-mod(Set)op,Jat )
Atomic site i.e.

AP on f.p.T-mod(Set)

(
CT′ ,JT′)

Atomicity of T′

Two-valued topos
Sh(f.p.T-mod(Set)op,Jat )' Sh(CT′ ,JT′)

(f.p.T-mod(Set)op,Jat )
JEP on f.p.T-mod(Set)

(
CT′ ,JT′)

Completeness of T′

Point of
Sh(f.p.T-mod(Set)op,Jat )' Sh(CT′ ,JT′)

(f.p.T-mod(Set)op,Jat )
homogeneous T-model in Set

(
CT′ ,JT′)

T′-model in Set
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Characterization theorems

Theorem
A geometric theory T over a signature Σ is of presheaf type if and
only if every geometric formula φ(~x) over Σ, when regarded as an
object of CT, is JT-covered by T-irreducible formulae over Σ.

Theorem
A geometric theory T over a signature Σ is of presheaf type if and
only if the following conditions are satisfied:

(i) Every finitely presentable model is presented by a
geometric formula over Σ.

(ii) Every property of finite tuples of elements of a finitely
presentable T-model which is preserved by T-model
homomorphisms is definable (in finitely presentable
T-models) by a geometric formula over Σ.

(iii) The finitely presentable T-models are jointly
conservative for T.

I have also established a characterization theorem providing
necessary and sufficient semantic conditions for a theory to be of
presheaf type.
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‘Bridges’ between quotients and topologies

Theorem
Let T be a geometric theory over a signature Σ. Then the assignment
sending a quotient of T to its classifying topos defines a bijection
between the syntactic-equivalence classes of quotients (i.e. geometric
theory extensions over the same signature) of T and the subtoposes
of the classifying topos Set[T] of T.
This duality allows one in particular to establish ‘bridges’ of the
following form:

Subtopos of

Sh(C ,J)' Set[T]

Grothendieck topology on
C containing J Quotient of T

That is, if the classifying topos of a geometric theory T can be
represented as the category Sh(C ,J) of sheaves on a (small) site
(C ,J) then we have a natural, order-preserving bijection

quotients of T
9

Grothendieck topologies on C which contain J
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Two notable cases

This result can be applied in particular in the following two cases:

(1) (C ,J) is the syntactic site (CT,JT) of T

(2) - T is a theory of presheaf type,
- C is the opposite of its category f.p.T-mod(Set) of finitely

presentable models, and
- J is the trivial topology on it.

In the first case, we obtain an order-preserving bijective
correspondence between the quotients of T and the Grothendieck
topologies on CT which contain JT.

In the second case, we obtain an order-preserving bijective
correspondence between the quotients of T and the Grothendieck
topologies on f.p.T-mod(Set)op.

In both cases, these correspondences can be naturally
interpreted as proof-theoretic equivalences between the classical
proof system of geometric logic over T and new proof systems for
sieves whose inference rules correspond to the axioms of
Grothendieck topologies.
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Quotients of a theory of presheaf type I
The Grothendieck topology J on f.p.T-mod(Set)op associated with a
quotient T′ of a theory of presheaf type T can be explicitly described
as follows.

• By using the fact that every geometric formula over Σ can be
JT-covered in CT by T-irreducible formulae, one can show that
every geometric sequent over Σ is provably equivalent in T to a
collection of sequents σ of the form (φ ~̀x∨i∈I

(∃~yi )θi ) where, for

each i ∈ I, [θi ] : {~yi . ψi}→ {~x . φ} is an arrow in CT and φ(~x),
ψ(~yi ) are geometric formulae over Σ presenting respectively
T-models M{~x .φ} and M{~yi .ψi}.

• To such a sequent σ , we can associate the cosieve Sσ on M{~x .φ}
in f.p.T-mod(Set) generated by the arrows si defined as follows.
For each i ∈ I, [[θi ]]M{~yi .ψi }

is the graph of a morphism
[[~yi . ψi ]]M{~yi .ψi }

→ [[~x . φ ]]M{~yi .ψi }
; then the image of the generators

of M{~yi .ψi} via this morphism is an element of [[~x . φ ]]M{~yi .ψi }
and

this in turn determines, by definition of M{~x .φ}, a unique arrow
si : M{~x .φ}→M{~yi .ψi} in T-mod(Set).

• Conversely, by the equivalence f.p.T-mod(Set)op ' C irr
T , every

sieve in f.p.T-mod(Set)op is of the form Sσ for such a sequent σ .
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Quotients of a theory of presheaf type II

The Grothendieck topology J on f.p.T-mod(Set)op associated with a
quotient T′ of T is generated by the sieves Sσ , where σ varies among
the sequents of the required form which are equivalent to the axioms
of T′.
The equivalence

[f.p.T-mod(Set),Set]' Sh(CT,JT)

of classifying toposes for T restricts to an equivalence

Sh(f.p.T-mod(Set)op,J)' Sh(CT′ ,JT′)

of classifying toposes for T′.
In particular, for any σ of the above form, σ is provable in T′ if and
only if Sσ belongs to J.
These equivalences are useful in that they allow us to study (the proof
theory of) geometric theories through the associated Grothendieck
topologies: the condition of provability of a sequent in a geometric
theory gets transformed in the requirement for a sieve (or a family of
sieves) to belong to a certain Grothendieck topology, something which
is often much easier to investigate.
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The Zariski topos
Let Σ be the one-sorted signature for the theory T of commutative rings
with unit i.e. the signature consisting of two binary function symbols +
and ·, one unary function symbol − and two constants 0 and 1.
The coherent theory of local rings is obtained from T by adding the
sequents

((0 = 1) `[] ⊥)

and

((∃z)((x + y) ·z = 1) `x ,y ((∃z)(x ·z = 1)∨ (∃z)(y ·z = 1))),

Definition
The Zariski topos is the topos Sh(Rngop

f .g.,J) of sheaves on the opposite
of the category Rngf .g. of finitely generated rings with respect to the
topology J on Rngop

f .g. defined by: given a cosieve S in Rngf .g. on an
object A, S ∈ J(A) if and only if S contains a finite family
{ξi : A→ A[si

−1] | 1≤ i ≤ n} of canonical inclusions ξi : A→ A[si
−1] in

Rngf .g. where {s1, . . . ,sn} is any set of elements of A which is not
contained in any proper ideal of A.

Fact
The (coherent) theory of local rings is classified by the Zariski topos.
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The classifying topos for integral domains

The theory of integral domains is the theory obtained from the
theory of commutative rings with unit by adding the axioms

((0 = 1) `[] ⊥)

((x ·y = 0) `x ,y ((x = 0)∨ (y = 0))) .

Fact
The theory of integral domains is classified by the topos
Sh(Rngop

f .g.,J) of sheaves on the opposite of the category Rngf .g.
of finitely generated rings with respect to the topology J on
Rngop

f .g. defined by: given a cosieve S in Rngf .g. on an object A,
S ∈ J2(A) if and only if

• either A is the zero ring and S is the empty sieve on it or
• S contains a non-empty finite family
{πai : A→ A/(ai ) | 1≤ i ≤ n} of canonical projections
πai : A→ A/(ai ) in Rngf .g. where {a1, . . . ,an} is any set of
elements of A such that a1 · . . . ·an = 0.
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Future directions

The evidence provided by the results obtained so far shows that
toposes can effectively act as unifying spaces for transferring
information between distinct mathematical theories and for
generating new equivalences, dualities and symmetries across
different fields of Mathematics.

In fact, toposes have an authentic creative power in Mathematics,
in the sense that their study naturally leads to the discovery of a
great number of notions and ‘concrete’ results in different
mathematical fields, which are pertinent but often unsuspected.

In the next years, we intend to continue pursuing the development
of these general unifying methodologies both at the theoretical
level and at the applied level, in order to continue developing the
potential of toposes as fundamental tools in the study of
mathematical theories and their relations, and as key concepts
defining a new way of doing Mathematics liable to bring distinctly
new insights in a great number of different subjects.
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Future directions

Central themes in this programme will be:
• investigation of important dualities or correspondences in

Mathematics from a topos-theoretic perspective (in particular,
the theory of motives, class field theory and the Langlands
programme)

• systematic study of invariants of toposes in terms of their
presentations, and introduction of new invariants which
capture important aspects of concrete mathematical
problems

• interpretation and generalization of important parts of
classical and modern model theory in terms of toposes and
development of a functorial (topos-theoretic) model theory

• introduction of new methodologies for generating
Morita-equivalences

• development of general techniques for building spectra by
using classifying toposes

• generalization of the ‘bridge’ technique to the setting of
higher categories and toposes through the introduction of
higher geometric logic

• development of a relative theory of classifying toposes
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An approach to stability theory
In the context of our investigation of classical and modern parts of model
theory from a topos-theoretic perspective, we plan in particular to
address stability theory. Our approach to this subject will be based on
the following ingredients:

• Classification of the topological and localic groupoids representing
the classifying topos of a geometric theory (extending and
generalizing the works of Joyal-Tierney and Butz-Moerdijk).

• Investigation of the relationship between the classifying topos and
Makkai’s topos of types from multiple points of view (based in
particular on D. Coumans’ result expressing the latter in terms of the
former as the localic part of the hyperconnected-localic factorization
of the surjection to the classifying topos corresponding to a class of
special models of the theory).

• Application of the ‘bridge’ technique in the context of these toposes,
in order to obtain relationships between the geometry of types of the
theory and the isomorphism classes of its set-based models (by
considering, for instance, how the connected components of the
groupoids representing the toposes can be captured through
suitable topos-theoretic invariants and how the latter can in turn be
expressed in syntactic terms).
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For further reading

O. Caramello
Grothendieck toposes as unifying ‘bridges’ in Mathematics,
Mémoire d’habilitation à diriger des recherches,
Université de Paris 7 (2016),
available from my website www.oliviacaramello.com.

O. Caramello
Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic ‘bridges’,
Oxford University Press (2017).

S. Mac Lane and I. Moerdijk.
Sheaves in geometry and logic: a first introduction to topos
theory
Springer-Verlag (1992).
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