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Aim of the talk

The purpose of this talk is to illustrate the proof-theoretic
relevance of the notion of Grothendieck topology.

We will show that the classical proof system of geometric logic
over a given geometric theory is equivalent to new proof systems
based on the notion of Grothendieck topology.

These equivalences result from a proof-theoretic interpretation of
a duality between the quotients (i.e. geometric theory extensions
over the same signature) of a given geometric theory and the
subtoposes of its classifying topos.

Interestingly, these alternative proof systems turn out to be
computationally better-behaved than the classical one for many
purposes, as we shall illustrate by discussing a few selected
applications.

Before describing these results, we need to review the necessary
background.
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Definition
Background ¢ A geometric formula over a signature ¥ is any formula (with a
finite number of free variables) built from atomic formulae
over ¥ by only using finitary conjunctions, infinitary
disjunctions and existential quantifications.

e A geometric theory over a signature ¥ is any theory whose
axioms are of the form (¢ 5 y), where ¢ and y are
geometric formulae over * and x is a context suitable for
both of them.

Fact

Most of the theories naturally arising in Mathematics are
geometric; and if a finitary first-order theory is not geometric, we
can always associate to it a finitary geometric theory over a larger
signature (the so-called Morleyization of the theory) with
essentially the same models in the category Set of sets.
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Background

The syntactic category of a geometric theory
Definition (Makkai and Reyes 1977)

e Let T be a geometric theory over a signature . The syntactic
category %1 of T has as objects the ‘renaming’-equivalence
classes of geometric formulae-in-context {x . ¢} over ¥ and as
arrows {X . ¢} — {y . v} (where the contexts X and y are
supposed to be disjoint without loss of generality) the
T-provable-equivalence classes [6] of geometric formulae
0(X,y) which are T-provably functional i.e. such that the
sequents
(¢+% (3y)0),
(9 F;_y oA l[l), and
((8n8[2/Y]) Fiyz (¥ =2))
are provable in T.
The composite of two arrows

0] M

{x.¢} v v} {z.2}
is defined as the T-provable-equivalence class of the formula
(Fy)eny.

e The identity arrow on an object {X . ¢} is the arrow

[9AX'=X]

{x.¢} (X' olx'/X]}
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Background

Grothendieck topologies

Definition
A Grothendieck topology on a small category % is a function J
which assigns to each object ¢ of ¢ a collection J(c) of sieves on
c in such a way that
@ (maximality axiom) the maximal sieve M; = {f | cod(f) = c}
isin J(c);
@ (stability axiom) if S € J(c¢), then *(S) € J(d) for any arrow
f:d—c;
@ (transitivity axiom) if S € J(¢) and R is any sieve on ¢ such
that f*(R) e J(d) forall f: d — cin S, then R € J(c).

The sieves S which belong to J(c) for some object ¢ of ¥ are said
to be J-covering.

A site is a pair (¢, J) consisting of a category ¢ and a
Grothendieck topology J on %

5/27



Deductive
systems and
Grothendieck

topologies

Olivia Caramello

Background

Examples of Grothendieck topologies

For any (small) category ¢, the trivial topology on % is the
Grothendieck topology in which the only sieve covering an
object c is the maximal sieve M.

The dense topology D on a category % is defined by: for a
sieve S,

SeD(c) ifandonlyif foranyf:d — cthere exists
g:e—dsuchthatfoge S.

If X is a topological space, the usual notion of covering in
Topology gives rise to the following Grothendieck topology
Jo(x) on the poset category ¢/(X): for a sieve
S={U;— Uliel}onUe Ob(0(X)),
S € Jpx(U) if and only if U/ U=U.
e

More generally, given a frame H, i.e. a Heyting algebra with
arbitrary joins \/ (and meets), we can define a Grothendieck

topology Jy on H by:
{ai<aliel}eJdy(a)if and only if \/Ia,-:a.
e
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e For any geometric theory T, its syntactic category %7 is a
S geometric category, i.e. a well-powered cartesian category in

) which images of morphisms and arbitrary unions of
subobjects exist and are stable under pullback.

e For a geometric theory T, the geometric topology on %t is
the Grothendieck topology Jr whose covering sieves are
those which contain small covering families.

Definition
The syntactic topology Jr on the syntactic category %t of a
geometric theory T is the geometric topology on it; in particular,
a small family {[6;] : {X; . ¢;} — {¥ . w}} in ¢7 is Jr-covering
if and only if
the sequent (y I, \/(3)‘(',)6,) is provable in T.

iel
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Background

Grothendieck toposes

One can define sheaves on an arbitrary site in a formally
analogous way to how one defines sheaves on a topological
space. This leads to the following

Definition
¢ A Grothendieck topos is a category (equivalent to the

category) Sh(¢,J) of sheaves on a (small-generated) site
(€,J).

® A geometric morphism of toposes f: & — .Z is a pair of
adjoint functors whose left adjoint (called the inverse image
functor) f*: % — & preserves finite limits.

For instance, the inclusion Sh(%,J) — [¢°P,Set] of a
Grothendieck topos Sh(%,J) in the corresponding presheaf
topos [€°P, Set] yields a geometric morphism between these
toposes (whose inverse image is the associated sheaf
functor).
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The notion of classifying topos

Definition

Let T be a geometric theory over a given signature. A classifying
topos of T is a Grothendieck topos Set[T] such that for any
Grothendieck topos & we have an equivalence of categories

Geom(¢&, Set[T]) ~ T-mod (&)
natural in &.

Theorem (Makkai, Reyes et al.)

Every geometric theory has a classifying topos. Conversely, every
Grothendieck topos arises as the classifying topos of some
geometric theory.

The classifying topos of a geometric theory T can always be
constructed canonically from it as the topos of sheaves Sh(%r, Jr)
on its syntactic site (¢, Jr).

Many different (not necessarily bi-interpretable) theories may have
the same classifying topos (up to equivalence). This phenomenon
is called Morita equivalence and corresponds to the existence of
different sites presenting the same topos.
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A duality theorem

Subtoposes

Definition
A subtopos of a topos & is an equivalence class of geometric
inclusions to &.

Fact
e The notion of subtopos is a topos-theoretic invariant.

e If & is the topos Sh(¥,J) of sheaves on a site (¢,J), the
subtoposes of & are in bijective correspondence with the
Grothendieck topologies J' on ¢ which contain J (i.e. such
that every J-covering sieve is J'-covering).
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Definition
A dualty theorem ® Let T be a geometric theory over a signature ¥. A quotient of

T is a geometric theory T’ over ¥ such that every axiom of T
is provable in T.

e Let T and T’ be geometric theories over a signature *. We
say that T and T’ are syntactically equivalent, and we write
T = T, if for every geometric sequent ¢ over &, o is
provable in T if and only if o is provable in T'.

Theorem

Let T be a geometric theory over a signature .. Then the
assignment sending a quotient of T to its classifying topos defines
a bijection between the =s-equivalence classes of quotients of T
and the subtoposes of the classifying topos Set[T] of T.
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A duality theorem

Some consequences

This duality theorem has several implications; in particular, it allows
one to import many notions and results from topos theory into the
realm of geometric logic. For instance, one can deduce from it that

Theorem

Let T be a geometric theory over a signature 3. Then the collection
THL of (syntactic-equivalence classes of) geometric theories over ¥
which are quotients of T, endowed with the order defined by

T’ <T” if and only if all the axioms of T' are provable inT"’, is a
Heyting algebra.

Lattices of theories
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This duality also allows one to establish ‘bridges’ of the following
form:

A duality theorem

Subtopos of
_Sh(%,J) ~Set[T] _

Grothendieck topology on N
& containing J Quotient of T

That is, if the classifying topos of a geometric theory T can be
represented as the category Sh(¢,J) of sheaves on a (small) site
(¥¢,J) then we have a natural, order-preserving bijection

quotients of T

Grothendieck topologies on &€ which contain J
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A duality theorem

Two notable cases
We shall focus on two particular cases of this result:

® (%,J) is the syntactic site (6, Jr) of T

® - Tis atheory of presheaf type (e.g. a finitary algebraic, or more
generally cartesian, theory),
- ¢ is the opposite of its category f.p.T-mod(Set) of finitely
presentable models, and
- Jis the trivial topology on it.

In the first case, we obtain an order-preserving bijective
correspondence between the quotients of T and the Grothendieck
topologies on %t which contain Jr.

In the second case, we obtain an order-preserving bijective
correspondence between the quotients of T and the Grothendieck
topologies on f.p.T-mod(Set)°".

In both cases, these correspondences can be naturally
interpreted as proof-theoretic equivalences between the classical
proof system of geometric logic over T and new proof systems for
sieves whose inference rules correspond to the axioms of

Grothendieck topologies.
14/27
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A duality theorem

Proof systems for sieves

Given a collection <7 of sieves on a given category %, the notion of
Grothendieck topology on ¢ naturally gives rise to a proof system
7, as follows: the axioms of 7 are the sieves in < plus all the
maximal sieves, while the inference rules of 9;/ are the
proof-theoretic versions of the well-known axioms for Grothendieck
topologies, i.e. the following rules:
- Stability rule:

R

F(R)
where R is any sieve on an object ¢ of ¥ and f is any arrow in €
with codomain c.
- Transitivity rule:
Z {f*(R)|feZ}
R

where R and Z are sieves in % on a given object of % .

N.B. The ‘closed theories’ of this proof system are precisely the
Grothendieck topologies on ¢ which contain the sieves in <7 as
covering sieves. The closure of a ‘theory’ in ﬁg/, i.e. of a collection
% of sieves in ¢, is exactly the Grothendieck topology on ¢
generated by o/ and % .
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Let T be a geometric theory over a signature ¥, .# the collection
of geometric sequents over ¥ and S(%t) the collection of
The (small-generated) sieves in the syntactic category %r.

proof-theoretic
interpretation

* Given a geometric sequent o = (¢ 5 y) over ¥, we set
Z (o) equal to the principal sieve in ¢ generated by the
monomorphism

[(9AYAX'=X)]

% . 9}.

e Given a small-generated sieve R = {[6] : {X; . ¢;} = {V . y}}

in ¢, we set ¥(R) equal to the sequent (y i v (3X7)6).

{x' . ony}
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interpretation

The first equivalence

Let VsV andU—T" respectively be the operations
consisting in taking the Grothendieck topology v’ generated by

Jr plus the sieves in V and in taking the collection U" of
geometric sequents provable in T U U by using geometric logic.

Let F: 2(.7) — 2(S(%r)) be the composite ﬁg o P(F) and
G: 2(S(%r)) — 2(.7) be the composite (—) )y o Z(¥). Then
Theorem

® ForanyUe 2(), Z(U') gﬂy.
® Forany Ve 2(S(¢r)), 9(V')C G (V) .
® Forany Ue (), G(F(U)=T".

® Forany Ve 2(S(%)), F(G(V)) =V .

In other words, the maps F and G define a proof-theoretic
equivalence between the classical deduction system for
geometric logic over T and the proof system ng
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Describing the second equivalence

Recall that a geometric theory is said to be of presheaf type if it is
classified by a presheaf topos (equivalently, by the topos
[f.p.T-mod(Set), Set]). Theories of presheaf type are very important

in that they constitute the basic ‘building blocks’ from which every
geometric theory can be built. Indeed, as every Grothendieck topos
is a subtopos of a presheaf topos, so every geometric theory is a
‘quotient’ of a theory of presheaf type.

Every finitary algebraic (or more generally any cartesian) theory is
of presheaf type, but this class also contain many other interesting
mathematical theories.

Definition

Let T be a geometric theory over a signature . Then a geometric
formula ¢(X) over X is said to be T-irreducible if, regarded as an
object of the syntactic category %t of T, it does not admit any
non-trivial Jy-covering sieves.

Theorem

A geometric theory T over a signature ¥ is of presheaf type if and
only if every geometric formula ¢(X) over ¥, when regarded as an
object of ¢r, is Jr-covered by T-irreducible formulae over ¥.
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Theories of
presheaf type
and their
quotients

Irreducible formulae and finitely presentable models

Theorem
Let T be a theory of presheaf type over a signature 3. Then

® Any finitely presentable T-model in Set is presented by a
T-irreducible geometric formula ¢ (X) over ¥;

@ Conversely, any T-irreducible geometric formula ¢(X) over ¥
presents a T-model.

In fact, the category f.p.T-mod(Set)° is equivalent to the full
subcategory ¢y' of €1 on the T-irreducible formulae.

Irreducible object

[f.p.T-mod(Set), Set] ~ Sh(%r, Jr)

-~ -~

~ ~ (@
- ~ ( 5)'1[‘7 JT)

f.p.T-mod(Set)°? T-irreducible

Every object formula
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Jr-covered in %7 by T-irreducible formulae, one can show
that every geometric sequent over X is provably equivalent in

T to a collection of sequents ¢ of the form (¢ -5 v (3yi)6:)

where, foreach i [, [6;] : {V; . i} — {X . ¢} is an arrow in
%t and ¢(X), y(y;) are geometric formulae over ¥ presenting
respectively T-models M; 4y and My 1.

® To such a sequent o, we can associate the cosieve S, on
M5 4y in f.p.T-mod(Set) defined as follows. For each i € /,
[[9’]]M{f-.w-} is the graph of a morphism
([ . l[/,']]M{yi_Wi} — [[x. (P]]M{Y/-w}; then the image of the
generators of My ., via this morphism is an element of
[[X . ‘P”M{y‘aw and this in turn determines, by definition of
M5 .4y, @ unique arrow s; : Mz 4, — My 5 in T-mod(Set).
We set S, equal to the sieve in f.p.T-mod(Set)°® on M,
generated by the arrows s; as i varies in /.
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sieve in f.p.T-mod(Set)°P is clearly of the form S, for such a
sequent o.

These correspondences define, similarly to above, a
proof-theoretic equivalence between the classical deduction
[ system for geometric logic over T and the proof system
' ;b T-modisetor (Where T is the trivial Grothendieck topology).

In particular, the Grothendieck topology J on f.p.T-mod(Set)°P
associated with a quotient T’ of T is generated by the sieves S,
where ¢ varies among the sequents associated with the axioms
of T as above.

Moreover, for any o of the above form, ¢ is provable in T’ if and
only if S5 belongs to J.

This generalizes Coste-Lombardi-Roy’s correspondence between
dynamical theories (viewed as coherent quotients of universal
Horn theories) and the coherent Grothendieck topologies
associated with them.
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Why are these equivalences interesting?

These equivalences are useful in that they allow us to study (the
proof theory of) geometric theories through the associated
Grothendieck topologies: the condition of provability of a sequent
in a geometric theory gets transformed in the requirement for a
sieve (or a family of sieves) to belong to a certain Grothendieck
topology, something which is often much easier to investigate.

Indeed, we have shown that Grothendieck topologies are
particularly amenable to computation by deriving

¢ An explicit formula for the Grothendieck topology generated
by a given family of sieves

e Explicit descriptions of the lattice operations on Grothendieck
topologies on a given category which refine a certain
topology (recall that these correspond to the lattice
operations on quotients via the above duality).
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Formulas for Grothendieck topologies

Meet of Grothendieck topologies

If J; and J, are Grothendieck topologies on a category ¢
respectively generated by bases K; and Ky, the meet J; A s is
generated by the collection of sieves which are unions of sieves in
K with sieves in K.

Grothendieck topology generated by a family of sieves

The Grothendieck topology Gp generated by a family D of sieves
in ¥ which is stable under pullback is given by

Gp(c) = {Ssieveon c|forany arrow d 1, cand sieve T on d,
[(for any arrow e %, d and sieve Z on e
(Ze D(e)and Z C g*(T)) implies g€ T) and (f*(S) C T)]
implies T = My}
for any object c€ %.
Heyting implication of Grothendieck topologies

(J1=d)(c) = {Ssieveon c|forany arrow d 1, ¢ and sieve Z on d,
[Z is Ji-covering and J>-closed and f*(S) C Z]
implies Z = My} .
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Some applications

Theorem (A deduction theorem for geometric logic)

Let T be a geometric theory over a signature > and ¢,y
geometric sentences over ¥. such that the sequent (T -y y) is
provable in the theory TU{(T -y ¢)}. Then the sequent (¢ - y)
is provable in the theory T.

We have proved this theorem by showing (using the
above-mentioned formula for the Grothendieck topology
generated by a given family of sieves) that if the principal sieve in

¢t generated by the arrow {[] . v} Eﬂ {[] - T} belongs to the

Grothendieck topology on %7 generated over Jr by the principal

sieve generated by the arrow {[] . ¢} i {[] - T}, then [¢] <[y]in

Sube ({[I - T3)-
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The meet of the theory of local rings and that of integral domains in
the lattice of quotients of the theory of commutative rings with unit is
obtained from the latter theory by adding the sequents

(0=1Fg 1)
and

(N Pt =0r5 V. Gna . y=1v V. H-0)

<i<k

where foreach1 <s<m,1<i<kand1<j</thePs’s, Gi’s and

H;’s are any polynomials in a finite string X = (x4,...,Xxn) of variables
with the property that {Ps,...,Ps,Gs,...,Gk} is a set of elements of
Z[xy,...,Xn] which is not contained in any proper ideal of

ZIX1,y. .., Xn) and1<ljfl<ll-l/- € (P1,...,Ps) inZ[xq,...,Xn].

We have derived this result by calculating the meet of the
Grothendieck topologies associated with the two quotients by using
suitable bases for them.
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Theorem

Let T be a geometric theory over a signature ¥ and T, T» two
quotients of T. Then the Heyting implication Ty =T, in ThL is the
theory obtained from T by adding all the geometric sequents

(y =y y') over © with the property that (y' - y) is provable in T
and for any T-provably functional geometric formula 6(X,y) from
a geometric formula-in-context {x . ¢} to {y . v} and any
geometric formula y in the context x such that (x 5 ¢) is
provable in T, the conjunction of the facts

® (¢ 5 x) is provable in T4
® ((39)(6(X.9) A W/(¥)) F5 ) is provable in T
implies that (¢ - x) is provable in T,.

Usefulness of
he

equivalences
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Oxford University Press, 2017.

ﬁ O. Caramello
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eedne Mémoire d’habilitation a diriger des recherches,
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available from my website www.oliviacaramello.com.
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