In the paper *Topological Galois Theory* (Advances in Mathematics 291, 646-695 (2016)) Proposition 2.4 is wrongly stated and should be corrected as follows.

Proposition. Let G be a topological group with an algebraic base \mathcal{B} . Then

- (i) The endomorphisms of the point p_G can be identified with the element of the projective limit $\lim_{U \in \mathcal{B}} (G/U)$ of the G/U for $U \in \mathcal{B}$; in particular, this projective limit has the structure of a monoid.
- (ii) The automorphism group of the point p_G is isomorphic to the group of invertible elements of the monoid $\lim_{U \in \mathcal{B}} (G/U)$.
- (iii) The group G is complete if and only if the canonical map from G to the set of invertible elements of $\varprojlim_{U \in \mathcal{B}}(G/U)$ is an isomorphism.
- (iv) More concretely, G is complete if and only if for any assignment $U \to a_U$ of an element $a_U \in G/U$ to any subset $U \in \mathcal{B}$ such that for any $U, V \in \mathcal{B}$ with $U \subseteq V$, $a_U \equiv a_V$ modulo V and there exist elements $b_U \in G/U$ for $U \in \mathcal{B}$ such that $b_U \equiv b_V$ modulo V whenever $U, V \in \mathcal{B}$ with $U \subseteq V$ and $b_{a_U U a_U^{-1} a_U} \equiv e$, $a_{b_U U b_U^{-1} b_U} \equiv e$ modulo U for each U, there exists a unique $g \in G$ such that $a_U = gU$ for all $U \in \mathcal{B}$.

Proof Since the full subcategory $\operatorname{Cont}_{\mathcal{B}}(G)$ of the topos $\operatorname{Cont}(G)$ on the objects of the form G/U for $U \in \mathcal{B}$ is dense in $\operatorname{Cont}(G)$, the endomorphisms of p_G correspond exactly to the endomorphisms of the flat functor $F : \operatorname{Cont}_{\mathcal{B}}(G) \to \operatorname{Set}$ corresponding to p_G , that is of the forgetful functor. An endomorphism $\alpha : F \to F$ is uniquely determined by the elements $a_U := \alpha(G/U)(eG) \in G/U$ since the naturality condition for α with respect to the *G*-equivariant arrows $G/gUg^{-1} \to G/U, g' \to g'g$, sending $e(gUg^{-1})$ to gU forces $\alpha(G/U)(gU)$ to be equal to $a_{gUg^{-1}}gU$ for any $g \in G$:

$$\begin{array}{c} G/(gUg^{-1}) \xrightarrow{\alpha(G/gUg^{-1})} G/(gUg^{-1}) \\ \downarrow \\ \downarrow \\ G/U \xrightarrow{\alpha(G/U)} G/U \end{array}$$

On the other hand, since any arrow in $\operatorname{Cont}_{\mathcal{B}}(G)$ can be factored as the composition of a canonical projection arrow of the form $G/U \to G/V$ for $U \subseteq V$ with a canonical isomorphism of the form $G/gWg^{-1} \to G/W$, any assignment $U \to a_U$ of an element $a_U \in G/U$ to any subset $U \in \mathcal{B}$ such that for any $U, V \in \mathcal{B}$ with $U \subseteq V$, $a_U \equiv a_V$ modulo V defines an endomorphism α of F by means of the formula $\alpha(G/U)(gU) = a_{gUg^{-1}}gU$. This proves the proposition. \Box

Many thanks to Emmanuel Lepage for pointing out the mistake (which has no effects on the rest of the paper) and apologies for any inconvenience caused.