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The Bicategory of Topoi, and Spectra.

The ¥spectra® referred to in the title are right adjoints to forgetful functors
between categories of topoi-with-structure. Examples are the local-ring spectrum
of a ringed topos, the etale spectrum of a local-ringed topos, and many others
besides. The general idea is to solve a universal problem which has no solution in
the ambient set theory, but does have a solution when we allow a change of topos.
The remarkable fact is that the general théo-l'en;s may be proved abstractly from no
more than the fact that gggg}: is finitely complete, in a sense appropriate to bi-

categories.

0. Bicategories.

0.1 A 2-category is a Cat-enriched category: it has hom-categories (rather

than hom-sets), and composition is functorial, so that the composite of a diagram

At ]B@ c—L5 p
denoted f*a*g is unambiguously defined.
In a 2-category , (! , as well as the (ordinary) finite limits obtained from

a terminal object and pullbacks, we should consider limits of diagrams having 2-cells.

0.2 For each A, the cotensor with 2 of A is a diagram

]
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for which 80, 81, o induce an isomorphism of hom-categories, (Q(X, 24A)=Q(X, A)",
natural in X, where the right-hand category is the (usual ) category of morphisms.

Thus @ : f==>g: X——>/A induces a unique '$': X——> 24 A such that Toha=¢ ,

and with 2-cells FCP-’ —l \1/.' being induced by commuting squares of 2-cells over

A.



0.3 A comma-object, [f,g:l for a pair of 1-cells with common codomain is a

square
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with the universal property, (UX, [f,g] ) ¥ (QUX.f), AX,g)), naturally in X,
where the right-hand category is the usual comma-category of the composition functors.

In the presence of pullbacks, comma-objects may be constructed from cotensors

with 2, simply by pulling back .9 _, 8, along f,g respectively:
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0.5 An identifier is a diagram

E

f
g
with the universal property that h: X—>A factors (uniquely) through IE—>A iff
h*¢ is an identity 2-cell, and with the obvious condition for 2-cells.
Notice that the identity 2-cell B——>B induces a "diagonal® map, I:B——>2/4B.
o’ al make 2 7B into a category-object; furthermore, we
have adjointness al—l I —-—l 80 . The identifier of ¢ may be constructed simply by

It is not hard to see that I, o

pulling back ¢! : A—>2~B along I:B—>27B.

0.6 We say that a 2-category OLis finitely complete if it has a terminal object, pullbacks,

and cotensors with 2.



0.7 A bicategory (Benabou (2] ) has a composition of 1-cells which is associative
and unitary only up to a coherent isomorphism (example: a monoidal category is a
bicategory with only one object): composition is pseudo-functorial, To translate
2-category notions into the corresponding bicategory Notions, it is hence necessary

to replace equality of 1-cells by’isomorphisms. In particular, limits defined by an
isomorphism of hom-categories must be replaced by Limits, defined by the corr-
esponding equivalence of hom-categories. Unique existence of a 1-cell is replaced

by existence, unique up to a unique isomorphism, and so on. We distinguish bicategory

Limits from 2-category limits by the use of a capital letter (following Grothendieck

[1b]). Thus, 0,8 a Pullback is a square
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such that for each h, k, A : h.f =>k. g, thereis f : X—>IP, unique up to unique
isomorphism, together with «:h => f.9, u:f.p ==>%k such that
A= (k*f). .( {x9). (,u.*g).; further, 2-cells, h=—>h!, k==>k' commuting with
A, A!' induce l ot > ﬁ'; in short, there is a natural equivalence

G,(X,IP) ~ UX,B) x Q(X,C)
QUX, A)

where the right-hand category has as objects, triples (h,\,k) with A:h.f sk g.
Here, "™natural equivalence® in X means (be(;ause of the associativity isomorphisms
for composition) that the naturality squares commute up to an isomorphism satisfying
the obvious "pasting" condition for composites, X——>¥—>Z.

0.9 Other Limits are similarly defined, and we say that a bicategory is fini_tely
Complete if it has a Terminal object, Pullbacks, and coTensors with 2, and hence

also, Comma-objects, and Inverters (corresponding to identifiers).



A morphism of bicategories can only be a pseudo-functor, and, as we would
expect, Limits are pseudo-functorial once they have been chosen (they are, of course,
unique up to equivalence).
0.10 A pair of pseudofunctors U: (I—> R, F: § —>(Q is Adjoint, F—| U
if there is an equivalence @(F(]B), A) ~ QA(B, U(A)), natural in A and B
in the same sense as for 0.8. Equivalently, for each B, there is n: B——>U(F(B))
such that for every h: B——>U(A), there is h: F(IB)—>/A , unique-up-to isomorphism,
with 5 h=L> ’l U(R); a 2-cell h==>h! induces h==>ht commuting with € , ',

0.11 We define the comma-bicategory, (1//A for Ae(L as follows.

- an object be(i// A isal-cell b:B—>A in (L ;
-al-cell (f,(): b—>c in Q// A is f: B—>C and ¢ :f.c==>b in A,
-a2-cell 7: (f,9) ==>(g,¥) in (R// A is a 2-cell %} : f==>g such that

(x*e)¥=¢ in (L. 7 e

B B >C B £ f.c===——=>g.c
: b ,b © b c—-a\c/ \./V
A 7A SA” ¢
object 1-cell 2-cell

0.12 Example. If u:B—>A induces the obvious U: /s —> Q// A, then
['-, u] is right Adjoint to U, and this defines the Comma operation.
0.13 We recall also that a pair of 1-cells u:B—>A, f: A—>B is adjoint, f—-l u

B satisfying the usual equations,

(Gt*f)-(f*ﬁ) = 1f, (u*z). (E*u) = 1u . Equivalently, for each X, R(X,f)— Q(X,u),

if there are 2-cells iL : l/‘\=> f.u, g£:u.f==>1

or, again, for each ¥, GZ_(u,Y)—-I OUf, Y ), the (ordinary) adjunction transformations
being natural -up-to-isomorphism in X or ¥.
A l1-cell is fully-faithful, f: A—>B if (UX,f) is a fully faithful functor for

each X; f—| u is a reflection, and f the reflector, if u is fully-faithful. Equivalently,

the end adjunction, £ , is an isomorphism.



0.14 Lemma. The Pullback of a reflector (coreflector) is a reflector (coreflector).
Proof. Since £ :u.f=> 1]B is an isomorphism, so is its Pullback along g:C—>A,
ciu. f—>1— .1, ——> Mel—==>Ff u isfvi
cru. f lIB . But '-'L‘lA f.u Pulls back to 'L lA f.u, satisfying the
relevant equations. |

We consider E -M factorisatiop systems on an ordinary category, A. If "m

is a class of maps of A containing isomorphisms and closed under composition, we

say that /M gives best factorisations if every map A—>B in A has a factorisation

A—>C—>B with C—>B €M, such that for any other such factorisation,
A—>C'—>B with C'—>Be™, thereis a unique C—>C'e M , making both triangles

commute. We say that a factorisation is functorial if a commuting square factors into

commuting squares:

factors with | commuting
|
4 v >V >V

(for an £-mM factorisation, this is equivalent to the usual diagonal property).
0.15 Proposition. For a category, A, the following data are equivalent:

(a) a class ™ of maps giving functorial best factorisations;

(b) aclass £ of maps giving functorial co-best faﬁtorisations;

(¢)  afunctorial § -/ factorisation;

(d) for each category X, a factorisation of type (a), (b) or (c) on Cat(X,A)
such that for each f: ¥—>X, if - @.B is afactored map in Cat (X, A), then
(fxa). (fxB) is the factorisation in Cat(¥, A) <;f fx(a.B);

(e) the diagram in{}at_: L .
"
/ I /
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L




in which I l.i1 =1= Io.io, each functor is left adjoint to the one immediately

below it, (A, IO’ Il) is the Pullback of (io, il)’ and (2/4A, m, e) is the Pullback

1 .0
of (DO’ D 1 ).

‘ e

Proof-sketch. Given (m , define C to be the class of maps whose ®best M-factor®
is an isomorphism, and conversely. This establishes the equivalence of the first three.
For (d), take those natural transformations whose components lie in ’M or & s and,
conversely, take X=1. Finally, for (e ), letIM and IE be the full subcategories of

/A2 consisting of those maps which are in /m or Z . The functors m, e are f%best

MM -factor® (resp. & —factor). E

We take (d) to be.the definition in an arbitrary bicategory of & -M factorisation

on A, and say that it is representable if the diagram (e) exists.

0.16 Proposition. If Q is finitely Complete, then any 6 - m[ factorisation on an

object is representable.

Proof. Factorise the universal 2-cell a: 80- >al: 2hA—> A into Vl :80=>d,
/IA. sd==> 81. Define IM to be the Inverter of 7.’ and IE the Inverter of /M . Since a
map is in M (resp. £ ) iff its best § ~(resp. M-) factor is an isomorphism, it is

-
clear that (? f=>g: X—>A isin /MX (resp. SX) iff @ : X—>24 A

——— factors through IM (resp. IE). The rest of the diagram follows immediately. ’

Given a class (M of 2-cells over A, containing isomorphisms, closed
under composition, and satisfying «e m implies f*o e/m , it is clear how we
may modify the definition of the comma-bicategory by allowing only 2-cells of m
to appear, giving a bicategory M - &//A.

0.17 Proposition If ({ is finitely Complete, the obvious M- Q/b—> /A
has a right Adjoint iff -’W}f_orms an i_—m factorisation on A.
Proof. Givenan { -~ m’} factorisation, it is representable, by 0.16 . We define

the required right Adjoint by taking R(b:IB—> A) to be the Pullback of D8:IE——>A



0
along b, with structure-map R(B )-—>]E—21——>A . The end adjunction is the map

(in /7 A

R(B) > B

y

E
N
’

¢
A

where the 2-cell is the universal Z -map, whence we see that the end adjunction is
the universal £ -map with domain b. The universal property emerges immediately
from the definition (d) of a factorisation.
: : . 3 0
Conversely, given the right Adjoint, R, ‘define IE || A by taking D l:1E—>/A
to be R(/A—>A), and the end adjunction to be the universal 8-map:

R(L,)—> A

AT E——>A
/e N\
is
A
The universal property of the end adjunction leads directly to the best factorisation
property of the class of maps represented by IE, whose orthogonal M-—class is
that originally given. ﬂ

Notice in particular that since A is a coreflelctive subobject of IE, the con-
struction of R shows that R(IB) contains IB as a coreflective subobject, by 0. 14.
The inclusion ®classifies® the identity-map of b as an z—map.

Finally, and not very elegantly, we combine 0.12, 0.17 and a restricted class
of 2-cells. Suppose m’[ is a class of 2-cells, closed under compositions, etc., so
that IM—- CL// A is defined, similarly, f& -~ (L//B, and suppose we are given
u:B——> A, such thatif ae /TZ then axu efm,. Then we obtain a pseudo-functor,

/]1-—02//1B—> fm— a///\. In this situation, we say that ’ﬂ forms a u-/m-

factorisation if every 2-cell «a:f==>g.u has a best factorisation, f==>h,u,h=>g,

with h==>ge’ﬂ‘ such that for any other such factorisation, f=—>hf. u==>g.u, there is a

unique h=>h! ,



making both triangles commute, and that such best factorisations are stable under
compositions with 1l-cells, as for 0.15(d).
0.18 Proposition. If a. is finitely Complete and m is representable, then

M- Qi —> M- b
has a righ;c Adjoint iff {n forms a u-’m -factorisation.
Proof. If ’ﬂ forms a factorisation, defiile E— [/A,u] to represent the fn-
extremal ’Wl—maps (those whose best ﬂ ~factor is an isomorphism), by Inverting
the best /Y| -factor of the universal 2-cell obtained by Pulling back ™M —> Z/hA—a—l>A
along u: B—>A. Pull the *domain® map IE*—>A along c: C—>/A to define
R(c:C—>A), right Adjoint tq the given forgetful functor. Conversely, given the
right Adjoint, R, define the universal M -extremal M| -map to be the end adjunction

for R(A—>A), and proceed as in 0. 17:

R(IA)—-—-—————>A IE > A
B B E

1. Limits in Topoi.

We consider two 2-categories and a bicategory. ex is the 2-category of finitely

complete (small) categories, left-exact functors, and natural transformations.

LexSite is the 2-category of finitely complete (small) categories equipped with a

Grothendieck topology, left-exact cover-preserving functors, and natural transformations.

! ggo=i is the bicategory of cocomplete topqi (i.e. Sets-topoi), geometric morphisms,
and natural transformations between the inverse-image functors (With composition
defined whichever way you prefer). While it is true that Topoi may be made into

a 2-category, we choose not to. Each way of defining compositions associative up to

equality has its disadvantages, and none seems canonical. The real point is that

Topoi has Limits, rather than limits. "Straightening out® all the canonical isomorphisms

seems an insuperable task, and is probably not worth it: it seems that the cheapest



way of handling the difficulties is to put them in at the start.

Since Lex is "monadic® over Cat (in a sense we leave to the experts to make

precise), it is clear that (strict) limits may be constructed at the underlying category
level. What is a little mysterious is the fact that many of these limits in Lex turn

out to be coLimits (in the "underlying® bicategory).

1.1 Lemma. 1 is coTerminal in Lex.

Proof. The canonical unique A—>1 has a right adjoint, 1—>A (the terminal

object of A) which is unique among left—ezgact functors. B

1.2 Lemma. AX B is the coProduct in Lex.

Proof.: The projections have right adjoints, A |—> (A,1), B I—-—>(1,B) which give
injections. Given h: A—>X, k: B—>X, define L. AXB—>X by {(A,B)=

h(A)x k(B), the product in X. H

1.3 Lemma. The cotensor 24 A (the category /Az) is also the Tensor 2® A

in 2’; .

Proof. Again, the projections have right adjoints, SO: Al—>(A—>A), 81: Al—>(A—>1),
for injections, with the obvious 2-cell. Given a:f ==>g: A-—>X, define "ot A24—>X

by taking Mo (a:A1—>A2) to be the pullback in X of g(a) along @, - ]
2

1.4 Lemma. The comma-category (IB,f) for f: A—>IB in l..g:; is also the coComma
object- <A, f> .
Proof. Just as in 1.3, but with more letters, ]

Thus= ex is almost finitely coComplete - we lack coEqualisers, which may

perhaps be provided by "monadicity® over Cat

Since an intersection of topologies is
a topology, we may always find the ®"least topology such that ...¥. In an appropriate

sense, the forgetful LexSite —> Lex is an initial structure functor, which we use to

lift coLimits from Lex to LexSite.

1.5 Lemma. LexSite——>Lex creates coLimits.

Proof. Given a diagram @ in LexSite having a coLimit in Lex , we simply provide



the coLimit with the least topology for which the injections preserve coverings: the
smallest containing the images under injection of coverings in the diagram. Then a
map out of the coLimit preserves coverings iff its composites with the injections all
do, so we are finished, "
1.6 Reﬁlark. Suppose that f: A—>1B is a topos-map. Then the comma-category
(B, fx) L (f*, A) since f*—| fx, and i’; satisfies the coComma property for left-exact
functors. In fact, it is the coComma object in the bicategory ng=01= , the inverse-image
functors being given by the comma-property, the direct-images being provided by the
coComma broperty. Thus Topoi has coComma objects of the form < f,A > . With
an arbitrary left-exact functor jn place of fi, this construction is the well-known
Artin glueing, [ 1a] , [ 9] .

We turn now to =ngo; , and recall that we have pseudo-functors,

s

[ ]
( ): LexP—> Topoi ( ): LexSite °——> Topoi

called "presheaves (resp. sheaves) on (—)"; the ®op" indicates ;chat 1-cells are
reversed, but 2-cells retain their direction. On l-cells, the direct-image functors
are induced by composition, and the inverse-image functor is the left Kan extension,
left-exact because the original 1-cell is.

We state without proof the classification theorem ( [1a], [3] ).
1.7 Theorem. (a) Topoi (E,ZK) % Lex(A,E), (b) Topoi (E,%) v LexSite(A, E),
naturally in E and A . §

Note the abuse of language whereby we have treated the (large) underlying

category of a topos as an object of Lex, or, with its canonical topology, of LexSite.

=s|=s===

AN N
1.8 Corollary. ( ), ( ) take coLimits to Limits.

Proof. The usual argument for adjoint functors also works for this partial Adjointness
. o . . s N op
of pseudo-functors: if (D is a diagram in Lex, having a coLimit, IL, and )

is the corresponding diagram of topoi, then

10.



11.

AOp

Topoi (E, § ") ~« Lex (§,E) (1.7(a))

Lex (IL, E) Dby definition of coLimit,

IS

e
v Topoi (E,IL)  (1.7(a)),

}

”\
whence IL is the Limit in Topoi . A similar argument works for sites. b
Recall that a topos is a Grothendieck topos if (it is cocomplete and) it has

a (small) set of generators. We denote by GrTopoi the full subcategory of

~

Grothendieck topoi. By relativising these notions to an arbitrary elementary topos
playing the role of Sets, Diaconescu arrives at the notion of a bounded topos-map
E —>F, one for which E has an F-object of generators, and by relativising
the classification theorem, obtains [ 3]:
1.9 The Pullbaék of a topos-map along a bounded topos-map exists. H |
It is easy to show that any map %—>E is bounded, and the Giraud theorem
characterises Grothendieck topoi as those of the form /X for éome (not unique)
site A.

Combining 1. 9 with the results above, we obtain:
1.10 Proposition. GrTopoi is finitely Complete. Topoi has a Terminal object,

the Pullback A X C]_3_ exists if one of A, B is bounded over C, the Comma-topos

[f , g] exists if o;e of f,g has Grothendieck domain and codomain , and the Inverter
of oa:f==>g: A—>B exists if B is Grothendieck.
Proof. Sets is Terminal, Pullbacks along maps between Grothendieck topoi exist,
and coTensors with 2 are obtained from Tensor-sites. The rest are constructed
from these. N

We are thus in a situation where the results of §0 apply.

Needless to say, Inverters may also be constructed as the largest sheaf
subtopos for which the components of o are bidense. Conversely, it is not hard to
show that every sheaf embedding is an Inverter, by using the relativised version

f.op

of 1.7(a). Shj(E_) —> E is the Inverter of "1¥==>1®J": E—>E = , where

1%, "J% are induced by the flat discrete fibrations 1—:> NP, JOP—> n %P .



(This is essentially due to Johnstone [6] ).
Adjoint 1-cells in "Topoi are just what one would expect.
1.11 1 f:E—>F, g:F—>E are 1-cells in Topoi , then

g* iff g* — £* iff g.— £,

ne

f—| g iff £*
Proof. The equivalence of the last three is immediate from the uniqueness of
adjoints. The equivalence with the first is shown simply by unwinding the equational
definition of adjointness for the 1- and 2-cells of ’ggpzoi= . B
1.12 A l-cgll in ’£2p=oi= is fully-faithful iff it is equivalent to a sheaf embedding. /]
2. Examples,

We take the view that ®every Grothendieck topes classifies something®
(namely, the left-exact, ‘cover—preserving functors — this may be given a first-order
syntactic form, albeit with possibly infinitary disjunctions}.

If T is the classifying topos for the theory T , i.e. ggp=o=i (E,T) ™~ C’K—models ),
naturally in E, then the inverse-image, f*(M) of a model by a map of topoi is again

a model. Similarly, a map u: Iz—> T, induces a "orgetful® functor,

1
Tz—models (E)—>°:f1—mode1s (E) by composition, A 2-cell o:f=>g:E—>T is interpretec
as a T—model homomorphism, whence we see immediately that 24T is the 7J-

morphism-classifier. Thus the model theory of topoi is coextensive with the study of

opoi. We shall usually identify a G}-model M in E

the bicategory-structure of T
with its classifying map M:E—>T, hoping that this simplifies life for the reader,
rather than confusing him.

In this light, we examine an example of adjoint topos-maps. A left-exact

functor f: A—>IB induces three functors,




. . A
z £ 1rf being the left and right Kan extensions. We have already identified Zf—l f

AA A N A
as the topos-map f:IB—>A . But since f is left-exact, f —-I 7w, is also a topos-map

f
f#: 2\8—;];, and from 1.11, we know that f*—-{ /f\ .

Now, we may cpnsider /A, B to be the duals of categories of finitely presented
algebras, thus thinking of A, B themselves as algebraic theories, with f an inter-
pretation. Then 71;, ﬁ are the A- and IB-algebra classifiers, /f\ represents the
*forgetful® B-alg(E)—>A-alg(E) and f# represents its left adjoint, the relative‘ly
free functor. For example, if f0p: AOP——»IBOP' is the abelianisation functor from
finitely pres;anted groups to f.p. abelian groups, we obtain the abelian-group classifier
as a reflective sub-topos of the group classifier. We mention a further point of interest
for this example. If the interpretation is finitary - involves the imposition of finitely
many new axioms - as for the example of groups and abelian groups, in the sense that
if B .is a finitely presented IB-algebra then U(B) is finitely-presented as an A-
algebra, then the forgetful functor restricts to IBOp——>A0p, providing a left adjoint
g to f. We obtain from this a fourth functor, Zg—~l Zf between the classifying topoi,
so that the *orgetful® map /f\ is actually an essential topos-map.

A more geometric example of adjoint topos-maps is furnished by the relation-
ship (given in fla]) between the ®*gros?® topos of a space and its '6rdinary" topos.

In faet, since the map of sites, Open (X) L> Spaces /X is cover-reflecting,

it induces not only the "restriction® map i: TOP(X)—> Sh(X) but also the left
adjoint inclusion, Sh(X) —> TOP(X), so that Sh(X) is a coreflective sub-topos

of TOP(X). The remark that these topoi are therefore cohomologically equivalent
applies equally to other coreflective situations. For example, the Zariski topos,

Zar, sheaves on affine schemes of finite type, may (by the Lemme de Comparaison

of [la] ) equally be constructed as sheaves on the category of schemes. The Zariski
topology is less fine than the canonical, and so, using the Yoneda functor, we may

consider a scheme X both as a ringed space and as an object of Zar. Essentially

the same argument as for the gros topos shows that Sh(X) is a coreflective subtopos



14.

of Zar/X.

Suppose © is a finite diagram-type, and T a classifying topos - the
object-classifier, pour fixer les idees. We may form ®/{\ T, the @ -diagram
classifier (of '7)_ -models) by taking Pullbacks and Comma-objects according to the
recipe by which '63 is made up from nodes, arrows, and commutativity relations.
Thus for example,‘the classifier for diagrams .—> . <— . is obtained by Pulling
back 9. : 2 T—>T along itself; the commuting-square-classifier is got by

1

Pulling 81 along 9, to obtain 8A T, and then Pulling the ®compositicn®™ map

0
84 T —> 247 T back along itself.

Just as 2A T is the c’j—morphism classifier, so, for u:Iz—> El’ the
Comma-topos, [il,u] classifies G]-l—morphisms A—=~>u(B), where A is
a c'Il—model and B is a ch—model. Recall that 1.4, 1.5 .construct a site of
definition of [ Il,u] from a site-map defining u. The sites defining the spectra
of Hakim {:S J are of closely related form, with a finer topology. Given a

particular model, A: E —>T_, the Comma-topos EA,IIJ classifies * 71-

1

maps with domain A". given f: F—>E, maps F —> [A,El] over E correspond
or * . . N

to J | ~maps f"(A)—>(~) where (—) is any C:rl—model in F. Similarly [u, A]

classifies aI -maps u(-)—>A, and [A,u] classifies maps A—>u (-).

1
Clearly various ®"epi-mono® factorisations of q-—maps give rise to applications

of 0.17. 1t is easy to see that gggo;/ /E is the category of cj—modelled topoi,

defined in the same way as the usual category of ringed topoi. For the category of

local-ringed topoi, however, we must insist that all the ring-homomorphisms be

local, i.e. reflect the units (invertible elements), whence, in our previous notation,

L.oc-=ngo=i//Zar is the category of local-ringed topoi. We see from §0 that the

existence of a right Adjoint (the spectrum Hakim [5] ) to the ‘forgetful .

Loc—'ggpg}://Zar——> ng=oi=//5 (R tile ring classifier) is equivalent to the fact that

a ring-homomorphism A—>L with L a local ring has a best factorisation

A—>T —>L with F——>L a



local map; the associated extremal maps A—>F are the localisations, obtained
by pulling back the units of L to A, and forming the ring-of-fractions to invert
this "prime co-ideal", giving the local ring F(Tierney [8]).

It is worth unravelling the proof of the relevant version of 0.18 for this
case. There is an underlying factorisation of ring-homomorphisms (not just those
with local codomain), namely, with m = { unit-reflecting maps_}Z and & =
{-ring—of—fractions maps} (of the form A—>A [ S-IJ for some multiplicatively
closed subpbject S of A). We factorise the universal ring-homomorphism,

24 ljdl,’—:‘li, and invert its M| -part, to obtain the fractions-map-classifier, E.
Now Pull back the "codomain® map along u: Zar—>R to obtain the localisation-
classifier (the spectrl;.m of the universal ring), and finally, Pull the tdomain®

map back along a given ring A:X —> R to obtain Spec (X, A). Notice that these

steps all commute with each other: we may factorise and Pull back in any convenient

order.
Spec (X ,A)
~N
X [A —> A] Spec (R)
h A E
% \!
X 9 0 e 81 Z ar
u
A
R

In particular, X- [A —> ’X] ig the classifier for *fractions-maps with domain
A", Tt has a map to the topos X, so we may imagine X EA — ,.3:] as being a topos of
sheaves with values in X, the direct-image functor, h,, being thought of as

* .
nglobalsections", the inverse-image, h , being nconstant sheaf".
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The universal fractions-map, X [A —>A ] —> E /JL\R then looks like a
2 = Ya=
s

fractions-map h*(A)—>A of rings in X [A—>’XJ » corresponding by adjointness
to A—>h*(2'). Thus A is represented in the "global sections of a sheaf®, (When

X = Sets, this is literally true). But recall that since R is a coreflectivec subtopos

of E, by 0.14, ﬁ is a coreflective subtopos of X [A —>X] , whence by 1.11,

we see that the functor hy is actually the inverse-image functor of the inclusion

~

X >X [A —>?\’] . The front adjunction isomorphism then gives immediately

that A—>h*(X) is an isomorphism, since the inclusion classifies A—>A as
fractions-map. This argument shows that for "spectra® of the kind given by 0,17,
the ®representation of A in a sheaf® is always an isomorphism, AZ>h, (A ).
However, for most‘purposes, this is not enough: we ™orce® the codomain, ’K,
to be a model of a richer theory (local rings in this case ), by Pulling back 81,
(along Zar —->R ), which obstructs the argument. This author' suspects that further
progress will involve considering the Beck condition for Pullbacks of. coherent topoi.
Another example is furnished by the étale spectrum of a local -ringed topos
(Hakim [:5]). Joyal and Wraith have determined that Hakim's strictly local rings
are those local rings, A, which are "separ ably closed® in the following sense. If
f(t) eA[t] is monic (i.e. has leading coefficient 1 ),' consider D(f)(t) = t"- i71__%'1(1:—f‘ (ai)),

where o« -»@  are the roots of f (in some hypothetical extension

XX
of A), and ' is the formal derivative of f. Since D(f) is symmetric in the a,'s,

i
it has coefficients lying in A (Newton's theorem on symmetric polynomials), whence
we have a purely combinatorial procedure for defining D(f)(t) without reference to
any roots. Classically, D(f)=0 ‘iff all the roots of f are repeated roots. The
axiom for a local ring to be strictly local says: D(f)(t)' has an invertible coefficient
implies ElaeA:f(a) =0 and f'(a) is invertible. Hakim considers local homomophisms

between strictly local rings, and constructs a "spectrum® to "strictify® a local ring,

universally, of which the étale topos of a scheme is an exrmple., Wraith has (tentatively)
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identified the extremal maps for the best factorisation of a local map A—>S into
A—>T—>8, with S, T strictly local, as being those maps 0? :A—>T for which
ever teT satisfies a polynomial equation (cf(f)) (t)y=0 with (q? (£))'(t) invertible ,
f a monic polynomial over A (T is "separably integral® over A) and T is strictly

local. Such a factorisation, stable under inverse-image functors, is equivalent to

Hakim's construction of a right Adjoint to the forgetful

Loc-Topoi //StrZar > Loc-Topoi //Zar, by 0.18.
In'similar vein, it is conjectured that the crystalline topos of a scheme will
be associated‘ with a universal extremal "exter-lsion of A by a nil-ideal with divided
power structure® I C_>B —>A (plus further structure whose details are here irrelevant ).
An unfamiliar application is to ordered sets. An order-preserving map P—>L
from an ordered set to a linearly ordered set has a best factorisation whose second

factor is order-reflecting (f(x)<f(y) implies x <y) between linear orderings:

pull back the ordering of L to P, and quotient by the antisymmetry law. Hence there

is a right Adjoint to the forgetful OrdReﬂ—ggp:o:i // L > Topoi //P, where L,
P classify linear, resp. partial orderings.

As a final example, we construct a spectrum for ordered rings, for which the
%7z ariski topology™ would better be called the Euclidean topology. An ordered ring
in this case means a ring with a predicate P(x) (read "xis positive®) satisfying
—P(0), P(1l), P(x)a P(¥) implies P(x+y)AP(xy). Say that the ring A is
linear if in addition, P(x+y) implies P(x) v P(y), and P(xy) implies P(x)VP(-Xx).
Call A full if P(x) implies 3 y(xy=1 ).. Since the positive elements are multi-
plicatively closed, any ring may be made full by taking fractions. A linear full. ordered .
ring is called local (and is local in the usual sense). A map of local ordered rings
(2 homomorphism preserving positivity) is local iff it reflects positivity, i.e. it

reflects the ordering. To factorise a map A—>1, from an ordered ring to a local

ordered ring, proceed as above to linearise, and then add in fullness: pull back the



ordering from 1, to A, and make A full with respect to this finer ordering. Extremal
maps are localisations in. the ordir_lary sense, but thought of primarily as linearisations
of the ordering. This leads to a spectrum, right Adjoint to Loc-Topoi //0OrdZar—>
Topoi//OrdR. Closer.analysis (private communication with M. P.Fourman) reveals
that a base of "open sets® of this spectrum is of the form { {x:f(x)>0)1 ! fe A}
whereas the Zariski base is of the form { {'x:f(x) # 0} feA}., X ranging over the
"points® of the spectrum (it i3 indeed "spétial"‘over its domain, in the sense that it

is generated by its subobjects of 1; and when Zcrn's Lemma holds in the domain topos,

it has enough points, so that it is spatial in the strong sense. )
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