Olivia Caramello

Sheaves on a topological space

Sheaves as étal bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

Topos Theory Lectures 5-6: Sheaves on a topological space

Olivia Caramello

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

Presheaves on a topological space

Definition

Let X be a topological space. A presheaf \mathcal{F} on X consists of the data:

(i) for every open subset U of X, a set $\mathcal{F}(U)$ and

(ii) for every inclusion $V \subseteq U$ of open subsets of X, a function $\rho_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V)$ subject to the conditions

- $\rho_{U,U}$ is the identity map $\mathcal{F}(U) \to \mathcal{F}(U)$ and
- if $W \subseteq V \subseteq U$ are three open subsets, then $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$.

The maps $\rho_{U,V}$ are called restriction maps, and we sometimes write $s|_V$ instead of $\rho_{U,V}(s)$, if $s \in \mathcal{F}(U)$.

A morphism of presheaves $\mathcal{F} \to \mathcal{G}$ on a topological space X is a collection of maps $\mathcal{F}(U) \to \mathcal{G}(U)$ which is compatible with respect to restriction maps.

Remark

Categorically, a presheaf \mathcal{F} on X is a functor $\mathcal{F} : \mathcal{O}(X)^{\text{op}} \to \mathbf{Set}$, where $\mathcal{O}(X)$ is the poset category corresponding to the lattice of open sets of the topological space X (with respect to the inclusion relation). A morphism of presheaves is then just a natural transformation between the corresponding functors. So we have a category $[\mathcal{O}(X)^{\text{op}}, \mathbf{Set}]$ of presheaves on X.

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

Sheaves on a topological space

Definition

A sheaf \mathcal{F} on a topological space X is a presheaf on X satisfying the additional conditions

(i) if *U* is an open set, if $\{V_i \mid i \in I\}$ is an open covering of *U*, and if $s, t \in \mathcal{F}(U)$ are elements such that $s|_{V_i} = t|_{V_i}$ for all i, then s = t;

(ii) if *U* is an open set, if $\{V_i | i \in I\}$ is an open covering of *U*, and if we have elements $s_i \in \mathcal{F}(V_i)$ for each *i*, with the property that for each $i, j \in I, s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$, then there is an element $s \in \mathcal{F}(U)$ (necessarily unique by (i)) such that $s|_{V_i} = s_i$ for each *i*.

A morphism of sheaves is defined as a morphism of the underlying presheaves.

Remark

Categorically, a sheaf is a functor $\mathcal{O}(X)^{\text{op}} \to \mathbf{Set}$ which satisfies certain conditions expressible in categorical language entirely in terms of the poset category $\mathcal{O}(X)$ and of the usual notion of covering on it. The category $\mathbf{Sh}(X)$ of sheaves on a topological space X is a full subcategory of the category $[\mathcal{O}(X)^{\text{op}}, \mathbf{Set}]$ of presheaves on X.

This paves the way for a significant categorical generalization of the notion of sheaf, leading to the notion of Grothendieck topos.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Olivia Caramello

Sheaves on a topological space

Sheaves as étal bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

Categorical reformulations

• The sheaf condition for a presheaf \mathcal{F} on a topological space X can be categorically reformulated as the requirement that the canonical arrow

$$\mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i)$$

given by $s \rightarrow (s|_{U_i} \mid i \in I)$ should be the equalizer of the two arrows

$$\prod_{i\in I} \mathcal{F}(U_i) \to \prod_{i,j\in I} \mathcal{F}(U_i \cap U_j)$$

given by $(s_i \rightarrow (s_i|_{U_i \cap U_j}))$ and $(s_i \rightarrow (s_j|_{U_i \cap U_j}))$.

• For any covering family $F = \{U_i \subseteq U \mid i \in I\}$, giving a family of elements $s_i \in \mathcal{F}(U_i)$ such that for any $i, j \in I$ $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ is equivalent to giving a family of elements $\{s_W \in \mathcal{F}(W) \mid W \in S_F\}$ such that for any open set $W' \subseteq W$, $s_W|_{W'} = s_{W'}$, where S_F is the sieve generated by F.

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

Examples of sheaves

Examples

- the sheaf of continuous real-valued functions on any topological space
- · the sheaf of regular functions on a variety
- the sheaf of differentiable functions on a differentiable manifold
- · the sheaf of holomorphic functions on a complex manifold

In each of the above examples, the restriction maps of the sheaf are the usual set-theoretic restrictions of functions to a subset.

Remark

Sheaves arising in Mathematics are often equipped with more structure than the mere set-theoretic one; for example, one may wish to consider sheaves of modules (resp. rings, abelian groups, ...) on a topological space X.

The natural categorical way of looking at these notions is to consider them as models of certain (geometric) theories in a category $\mathbf{Sh}(X)$ of sheaves of sets.

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

The sheaf of cross-sections of a bundle

Definition

- For any topological space X, a continuous map p : Y → X is called a bundle over X. In fact, the category of bundles is the slice category Top/X.
- Given an open subset U of X, a cross-section over U of a bundle p : Y → X is a continuous map s : U → Y such that the composite p ∘ s is the inclusion i : U → X. Let

 $\Gamma_p U = \{ s \mid s : U \rightarrow Y \text{ and } p \circ s = i : U \rightarrow X \}$

denote the set of all such cross-sections over U.

If V ⊆ U, one has a restriction operation Γ_pU → Γ_pV. The functor Γ_p : O(X)^{op} → Set obtained in this way is a sheaf and is called the sheaf of cross-sections of the bundle p.

(日)

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

The bundle of germs of a presheaf

Definition

• Given any presheaf $\mathcal{F} : \mathcal{O}(X)^{\text{op}} \to \mathbf{Set}$ on a space X, a point $x \in X$, two open neighbourhoods U and V of x, and two elements $s \in \mathcal{F}(U), t \in \mathcal{F}(V)$. We say that s and t have the same germ at x when there is some open set $W \subseteq U \cap V$ with $x \in W$ and $s|_W = t|_W$. This relation 'to have the same germ at x' is an equivalence relation, and the equivalence class of any one such s is called the germ of s at x, in symbols $germ_x(s)$ or s_x .

Let

 $\mathcal{F}_x = \{germ_x(s) \mid s \in \mathcal{F}(U), \ x \in U \text{ open in } X\}$

be the stalk of \mathcal{F} at x, that is the set of all germs of \mathcal{F} at x.

• Let $\Gamma_{\mathcal{F}}$ be the disjoint union of the \mathcal{F}_x

$$\Lambda_{\mathcal{F}} = \{ \langle x, r \rangle \mid x \in X, r \in \mathcal{F}_x \}$$

topologized by taking as a base of open sets all the image sets $\tilde{s}(U)$, where $\tilde{s}: U \to \Lambda_{\mathcal{F}}$ is the map induced by an element $s \in \mathcal{F}(U)$ by taking its germs at points in U.

With respect to this topology, the natural projection map A_F → X becomes a continuous map, called the bundle of germs of the presheaf *F*.

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

Sheaves as étale bundles I

Definition

- A bundle $p: E \to X$ is said to be étale (over X) when p is a local homeomorphism in the following sense: for each $e \in E$ there is an open set V, with $e \in V$, such that p(V) is open in X and $p|_V$ is a homeomorphism $V \to p(V)$.
- The full subcategory of **Top**/X on the étale bundles is denoted by **Etale**(X).

Theorem

• For any topological space X, there is a pair of adjoint functors

 $\label{eq:constraint} \mathsf{\Gamma}: \textit{Top}/X \to [\mathcal{O}(X)^{\mathsf{op}}, \textit{Set}], \quad \mathsf{\Lambda}: [\mathcal{O}(X)^{\mathsf{op}}, \textit{Set}] \to \textit{Top}/X,$

where Γ assigns to each bundle $p: Y \to X$ the sheaf of cross-sections of p, while its left adjoint Λ assigns to each presheaf \mathcal{F} the bundle of germs of \mathcal{F} .

This adjunction restricts to an equivalence of categories

 $Sh(X) \simeq Etale(X), \quad \text{ for a set of a$

Olivia Caramello

Sheaves on a topological spac

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

Sheaves as étale bundles II

This adjunction is naturally presented by speciying its unit and counit:

- The unit η : 1_[O(X)^{op},Set] → Γ ∘ Λ acts on a presheaf F by sending a section s ∈ F(U) to the section s ∈ Γ_{Λ_F}(U);
- The counit ε : Λ ∘ Γ → 1_{Top/X} acts on a bundle p : Y → X by sending any element (x, germ_x(s)) of Λ_{Γ_p} to the value s(x).
 One then verifies that these natural transformations satisfy the triangular identities:

One further proves that if *p* is étale then ϵ_p is an isomorphism (and conversely), while if \mathcal{F} is a sheaf then $\eta_{\mathcal{F}}$ is an isomorphism (and conversely). It thus follows from general abstract nonsense that the adjunction restricts to a duality between the full subcategories on sheaves and on étale bundles.

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For further reading

The associated sheaf functor

Theorem

Given a presheaf \mathcal{F} , there is a sheaf $a(\mathcal{F})$ and a morphism $\theta : \mathcal{F} \to a(\mathcal{F})$, with the property that for any sheaf \mathcal{G} , and any morphism $\phi : \mathcal{F} \to \mathcal{G}$, there is a unique morphism $\psi : a(\mathcal{F}) \to \mathcal{G}$ such that $\psi \circ \theta = \phi$.

The sheaf $a(\mathcal{F})$ is called the sheaf associated to the presheaf \mathcal{F} .

Remark

Categorically, this means that the inclusion functor

 $i: \mathbf{Sh}(X) \to [\mathcal{O}(X)^{\mathsf{op}}, \mathbf{Set}]$ has a left adjoint

 $a : [\mathcal{O}(X)^{op}, \mathbf{Set}] \to \mathbf{Sh}(X).$

The left adjoint $a : [\mathcal{O}(X)^{op}, \mathbf{Set}] \to \mathbf{Sh}(X)$ is called the associated sheaf functor.

Theorem

The associated sheaf functor a is given by the composite $\Gamma \circ \Lambda$.

Concretely, $a(\mathcal{F})(U)$ is the collection of functions $s: U \to \Lambda_{\mathcal{F}}$ which satisfy the following properties:

- $s(x) \in \mathcal{F}_x$ for each $x \in U$;
- for each x ∈ U there exist an open set Z_x ⊆ U containing x and a section ξ^{Z_x} ∈ F(Z_x) such that s(y) = (ξ^{Z_x})_y for each y ∈ Z_x.

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For furthe reading

Limits and colimits in $\mathbf{Sh}(X)$

Theorem

- (i) The category Sh(X) is closed in [O(X)^{op}, Set] under arbitrary (small) limits.
- (ii) The associated sheaf functor $a : [\mathcal{O}(X)^{op}, \mathbf{Set}] \to \mathbf{Sh}(X)$ (having a right adjoint) preserves all (small) colimits.
 - Part (i) follows from the fact that limits commute with limits, in light of the characterization of sheaves in terms of limits.
 - From part (ii) it follows that Sh(X) has all small colimits, which are computed by applying the associated sheaf functor to the colimit of the diagram considered with values in $[\mathcal{O}(X)^{\text{op}}, \text{Set}].$

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For furthe reading

Adjunctions induced by points

Let x be a point of a topological space X.

Definition

Let A be a set. Then the skyscraper sheaf $Sky_x(A)$ of A at x is the sheaf on X defined as

- $\operatorname{Sky}_{X}(A)(U) = A$ if $x \in U$
- $\operatorname{Sky}_{x}(A)(U) = 1 = \{*\} \text{ if } x \notin U$

and in the obvious way on arrows.

The assignment $A \rightarrow \text{Sky}_{\chi}(A)$ is clearly functorial.

Theorem

The stalk functor $\operatorname{Stalk}_x : \operatorname{Sh}(X) \to \operatorname{Set} at x$ is left adjoint to the skyscraper functor $\operatorname{Sky}_x : \operatorname{Set} \to \operatorname{Sh}(X)$.

In fact, as we shall see later in the course, points in topos theory are defined as suitable kinds of functors (more precisely, colimit and finite-limit preserving ones).

Olivia Caramello

Sheaves on a topological space

Sheaves as étale bundles

The associated sheaf functor

Limits and colimits in Sh(X)

For furthe reading

Open sets as subterminal objects

Since limits in a category $\mathbf{Sh}(X)$ are computed as in the category of presheaves $[\mathcal{O}(X)^{\text{op}}, \mathbf{Set}]$, a subobject of a sheaf F in $\mathbf{Sh}(X)$ is just a subsheaf, that is a subfunctor which is a sheaf. Notice that a subfunctor $S \subseteq F$ is a sheaf if and only if for every open covering $\{U_i \subseteq U \mid i \in I\}$ and every element $x \in F(U)$, $x \in S(U)$ if and only if $x|_{U_i} \in S(U_i)$.

Definition

In a category with a terminal object, a subterminal object is an object whose unique arrow to the terminal object is a monomorphism.

Theorem

Let X be a topological space. Then we have a frame isomorphism

 $\operatorname{Sub}_{\operatorname{Sh}(X)}(1) \cong \mathcal{O}(X)$.

between the subterminal objects of Sh(X) and the open sets of X.

<ロト</th>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Olivia Caramello

Sh(X)

For further

🛸 S. Mac Lane and I. Moerdijk.

Sheaves in geometry and logic: a first introduction to topos theory Springer-Verlag, 1992.

<ロト<通ト<注ト<注入 = ????

For further reading