
Topos Theory

Olivia Caramello

Introduction
Interpreting logic in
categories

First-order logic
First-order
languages

First-order theories

Categorical
semantics
Classes of ‘logical’
categories

The interpretation of
formulae

Examples

Soundness and
completeness

Toposes as
mathematical
universes
The internal
language

Kripke-Joyal
semantics

For further
reading

Topos Theory
The interpretation of logic in categories

Olivia Caramello



Topos Theory

Olivia Caramello

Introduction
Interpreting logic in
categories

First-order logic
First-order
languages

First-order theories

Categorical
semantics
Classes of ‘logical’
categories

The interpretation of
formulae

Examples

Soundness and
completeness

Toposes as
mathematical
universes
The internal
language

Kripke-Joyal
semantics

For further
reading

Interpreting first-order logic in categories
• In Logic, first-order languages are a wide class of formal

languages used for talking about mathematical structures of
any kind (where the restriction ‘first-order’ means that
quantification is allowed only over individuals rather than over
collections of individuals or higher-order constructions on
them).

• A first-order language contains sorts, which are meant to
represent different kinds of individuals, terms, which denote
individuals, and formulae, which make assertions about the
individuals. Compound terms and formulae are formed by
using various logical operators.

• It is well-known that first-order languages can always be
interpreted in the context of (a given model of) set theory. In
this lecture, we will show that these languages can also be
meaningfully interpreted in a category, provided that the latter
possesses enough categorical structure to allow the
interpretation of the given fragment of logic. In fact, sorts will
be interpreted as objects, terms as arrows and formulae as
subobjects, in a way that respects the logical structure of
compound expressions.
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Signatures

Definition
A first-order signature Σ consists of the following data.
a) A set Σ-Sort of sorts.
b) A set Σ-Fun of function symbols, together with a map

assigning to each f ∈ Σ-Fun its type, which consists of a finite
non-empty list of sorts: we write

f : A1 · · ·An→ B

to indicate that f has type A1, . . . ,An,B (if n = 0, f is called a
constant of sort B).

c) A set Σ-Rel of relation symbols, together with a map assigning
to each Σ-Rel its type, which consists of a finite list of sorts:
we write

R� A1 · · ·An

to indicate that R has type A1, . . .An.
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Terms

For each sort A of a signature Σ we assume given a supply of
variables of sort A, used to denote individuals of kind A.
Starting from variables, terms are built-up by repeated
‘applications’ of function symbols to them, as follows.

Definition
Let Σ be a signature. The collection of terms over Σ is defined
recursively by the clauses below; simultaneously, we define the
sort of each term and write t : A to denote that t is a term of sort
A.
a) x : A, if x is a variable of sort A.
b) f (t1, . . . , tn) : B if f : A1 · · ·An→ B is a function symbol and

t1 : A1, . . . , tn : An.
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Formation rules for formulae I
Consider the following formation rules for recursively building
classes of formulae F over Σ, together with, for each formula φ ,
the (finite) set FV (φ) of free variables of φ .

(i) Relations: R(t1, . . . , tn) is in F , if R� A1 · · ·An is a relation
symbol and t1 : A1, . . . , tn : An are terms; the free variables of
this formula are all the variables occurring in some ti .

(ii) Equality: (s = t) is in F if s and t are terms of the same sort;
FV (s = t) is the set of variables occurring in s or t (or both).

(iii) Truth: > is in F ; FV (>) = /0.
(iv) Binary conjunction: (φ ∧ψ) is in F , if φ and ψ are in F ;

FV (φ ∧ψ) = FV (φ)∪FV (ψ).
(v) Falsity: ⊥ is in F; FV (⊥) = /0.
(vi) Binary disjunction: (φ ∨ψ) is in F , if φ and ψ are in F ;

FV (φ ∨ψ) = FV (φ)∪FV (ψ).
(vii) Implication: (φ⇒ψ) is in F , if φ and ψ are in F ;

FV (φ⇒ψ) = FV (φ)∪FV (ψ).
(viii) Negation: ¬φ is in F , if φ is in F ; FV (¬φ) = FV (φ).
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Formation rules for formulae II

(ix) Existential quantification: (∃x)φ is in F , if φ is in F and x is a
variable; FV ((∃x)φ) = FV (φ)\{x}.

(x) Universal quantification: (∀x)φ is in F , if φ is in F and x is a
variable; FV ((∀x)φ) = FV (φ)\{x}.

(xi) Infinitary disjunction:∨
i∈I

φi is in F, if I is a set, φi is in F for

each i ∈ I and FV (∨
i∈I

φi ) :=∪
i∈I

FV (φi ) is finite.

(xii) Infinitary conjunction:∧
i∈I

φi is in F, if I is a set, φi is in F for

each i ∈ I and FV (∧
i∈I

φi ) :=∪
i∈I

FV (φi ) is finite.

A context is a finite list~x = x1, . . . ,xn of distinct variables (the
empty context, for n = 0 is allowed and indicated by []).

Notation: We will often consider formulae-in-context, that is
formulae φ equipped with a context~x such that all the free
variables of φ occur among~x ; we will write either φ(~x) or {~x . φ}.
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Classes of formulae
Definition
In relation to the above-mentioned forming rules:

• The set of atomic formulae over Σ is the smallest set closed
under Relations and Equality).

• The set of Horn formulae over Σ is the smallest set containing
the class of atomic formulae and closed under Truth and Binary
conjunction.

• The set of regular formulae over Σ is the smallest set containing
the class of atomic formulae and closed under Truth, Binary
conjunction and Existential quantification.

• The set of coherent formulae over Σ is the smallest set
containing the set of regular formulae and closed under False
and Binary disjunction.

• The set of first-order formulae over Σ is the smallest set closed
under all the forming rules except for the infinitary ones.

• The class of geometric formulae over Σ is the smallest class
containing the class of coherent formulae and closed under
Infinitary disjunction.

• The class of infinitary first-order formulae over Σ is the smallest
class closed under all the above-mentioned forming rules.
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Sequents

Definition
• By a sequent over a signature Σ we mean a formal

expression of the form (φ ~̀x ψ), where φ and ψ are formulae
over Σ and~x is a context suitable for both of them. The
intended interpretation of this expression is that ψ is a logical
consequence of φ in the context~x , i.e. that any assignment
of individual values to the variables in~x which makes φ true
will also make ψ true.

• We say a sequent (φ ~̀x ψ) is Horn (resp. regular, coherent,
...) if both φ and ψ are Horn (resp. regular, coherent, ...)
formulae.

Notice that, in full first-order logic, the general notion of sequent is
not really needed, since the sequent (φ ~̀x ψ) expresses the same
idea as (> `[] (∀~x)(φ⇒ψ)).
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First-order theories

Definition
• By a theory over a signature Σ, we mean a set T of sequents

over Σ, whose elements are called the (non-logical) axioms
of T.

• We say that T is an algebraic theory if its signature Σ has a
single sort and no relation symbols (apart from equality) and
its axioms are all of the form > ~̀x φ where φ is an atomic
formula (s = t) and~x its canonical context.

• We say T is a Horn (resp. regular, coherent, ...) theory if all
the sequents in T are Horn (resp. regular, coherent, ...).
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Deduction systems for first-order logic I

• To each of the fragments of first-order logic introduced above,
we can naturally associate a deduction system, in the same
spirit as in classical first-order logic. Such systems will be
formulated as sequent-calculi, that is they will consist of
inference rules enabling us to derive a sequent from a
collection of others; we will write

Γ
σ

to mean that the sequent σ can be inferred by a collection of
sequents Γ. A double line instead of the single line will mean
that each of the sequents can be inferred from the other.

• Given the axioms and inference rules below, the notion of
proof is the usual one, and allowing the axioms of theory T to
be taken as premises yields the notion of proof relative to a
theory T.

Consider the following rules.
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Deduction systems for first-order logic II

• The rules for finite conjunction are the axioms

(φ ~̀x >) ((φ ∧ψ) ~̀x φ) ((φ ∧ψ) ~̀x ψ)

and the rule
(φ ~̀x ψ)(φ ~̀x χ)

(φ ~̀x (ψ ∧χ))

• The rules for finite disjunction are the axioms

(⊥ ~̀x φ) (φ ~̀x (φ ∨ψ)) (ψ ~̀x φ ∨ψ)

and the rule
(φ ~̀x χ)(ψ ~̀x χ)

((φ ∨ψ) ~̀x χ)

• The rules for infinitary conjunction (resp. disjunction) are the
infinitary analogues of the rules for finite conjunction (resp.
disjunction).
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Deduction systems for first-order logic III

• The rules for implication consist of the double rule

(φ ∧ψ ~̀x χ)

(ψ ~̀x (φ⇒χ))

• The rules for existential quantification consist of the double
rule

(φ ~̀x ,y ψ)

((∃y)φ ~̀x ψ)

provided that y is not free in ψ.
• The rules for universal quantification consist of the double

rule
(φ ~̀x ,y ψ)

(φ ~̀x (∀y)ψ)

• The distributive axiom is

((φ ∧ (ψ ∨χ)) ~̀x ((φ ∧ψ)∨ (φ ∧χ)))
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Deduction systems for first-order logic IV

• The Frobenius axiom is

((φ ∧ (∃y)ψ) ~̀x (∃y)(φ ∧ψ))

where y is a variable not in the context~x .

• The Law of excluded middle is

(> ~̀x φ ∨¬φ)
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Fragments of first-order logic

Definition
In addition to the usual structural rules of sequent-calculi (Identity
axiom, Equality rules, Substitution rule, and Cut rule), our
deduction systems consist of the following rules:

Horn logic finite conjunction
Regular logic finite conjunction, existential

quantification and Frobenius axiom
Coherent logic finite conjunction, finite disjunction,

existential quantification, distributive
axiom and Frobenius axiom

Geometric logic finite conjunction, infinitary
disjunction, existential quantification,
‘infinitary’ distributive axiom,
Frobenius axiom

Intuitionistic first-order logic all the finitary rules except for the law
of excluded middle

Classical first-order logic all the finitary rules
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Provability in fragments of first-order logic

Definition
We say a sequent σ is provable in an algebraic (regular, coherent,
...) theory T if there exists a derivation of σ relative to T, in the
appropriate fragment of first-order logic.
In geometric logic, intuitionistic and classical provability of
geometric sequents coincide.

Theorem
If a geometric sequent σ is derivable from the axioms of a
geometric theory T using ‘classical geometric logic’ (i.e. the rules
of geometric logic plus the Law of Excluded Middle), then there is
also a constructive derivation of σ , not using the Law of Excluded
Middle.
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Categorical semantics

• Generalizing the classical Tarskian definition of satisfaction of
first-order formulae in ordinary set-valued structures, one can
obtain, given a signature Σ, a notion of Σ-structure in a
category with finite products, and define, according to the
categorical structure present on the category, a notion of
interpretation of an appropriate fragment of first-order logic in
it.

• Specifically, we will introduce various classes of ‘logical’
categories, each of them providing a semantics for a
corresponding fragment of first-order logic:

Cartesian categories Horn logic
Regular categories Regular logic

Coherent categories Coherent logic
Geometric categories Geometric logic

Heyting categories First-order logic
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Structures in categories

Definition
Let C be a category with finite products and Σ be a signature. A
Σ-structure M in C is specified by the following data:

(i) A function assigning to each sort A in Σ-Sort, an object MA
of C . For finite strings of sorts, we define
M(A1, . . . ,An) = MA1×·· ·×MAn and set M([]) equal to the
terminal object 1 of C .

(ii) A function assigning to each function symbol f : A1 · · ·An→ B
in Σ-Fun an arrow Mf : M(A1, . . . ,An)→MB in C .

(iii) A function assigning to each relation symbol R� A1 · · ·An in
Σ-Rel a subobject MR�M(A1, . . . ,An) in C .
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Homomorphisms of structures
Definition
A Σ-structure homomorphism h : M → N between two Σ-structures M
and N in C is a collection of arrows hA : MA→ NA in C indexed by the
sorts of Σ and satisfying the following two conditions:

(i) For each function symbol f : A1 · · ·An→ B in Σ-Fun, the diagram

M(A1, . . . ,An)

hA1
×···×hAn

��

Mf // MB

hB
��

N(A1, . . . ,An)
Nf

// NB

commutes.
(ii) For each relation symbol R� A1 · · ·An in Σ-Rel, there is a

commutative diagram in C of the form

MR

��

// M(A1, . . . ,An)

hA1
×···×hAn

��
NR // M(A1, . . . ,An)
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The category of Σ-structures

Definition
Given a category C with finite products, Σ-structures in C and
Σ-homomorphisms between them form a category, denoted by
Σ-str(C ). Identities and composition in Σ-str(C ) are defined
componentwise from those in C .

Remark
If C and D are two categories with finite products, then any
functor T : C →D which preserves finite products and
monomorphisms induces a functor Σ-str(T ) : Σ-str(C )→ Σ-str(D)
in the obvious way.
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The interpretation of terms

Definition
Let M be a Σ-structure in a category C with finite products. If
{~x . t} is a term-in-context over Σ (with~x = x1, . . . ,xn,
xi : Ai (i = 1, ...,n) and t : B, say), then an arrow

[[~x . t ]]M : M(A1, . . . ,An)→MB

in C is defined recursively by the following clauses:
a) If t is a variable, it is necessarily xi for some unique i ≤ n, and

then [[~x . t ]]M = πi , the i th product projection.
b) If t is f (t1, . . . , tm) (where ti : Ci , say), then [[~x . t ]]M is the

composite

M(A1, . . . ,An)
([[~x .t1]]M ,...,[[~x .tm]]M ) // M(C1, . . . ,Cm)

Mf // MB
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Interpreting formulae in categories

• In order to interpret formulae in categories, we need to have
a certain amount of categorical structure present on the
category in order to give a meaning to the logical connectives
which appear in the formulae.

• In fact, the larger is the fragment of logic, the larger is the
amount of categorical structure required to interpret it. For
example, to interpret finitary conjunctions, we need to form
pullbacks, to interpret disjunctions we need to form unions of
subobjects, etc.

• Formulae will be interpreted as subobjects in our category;
specifically, given a category C and a Σ-structure M in it, a
formula φ(~x) over Σ where~x = (xA1

1 , . . . ,xAn
n ), will be

interpreted as a subobject

[[~x . φ ]]M �M(A1, . . . ,An)

defined recursively on the structure of φ .
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Cartesian categories

Recall that by a finite limit in a category C we mean a limit of a
functor F : J → C where J is a finite category (i.e. a category
with only a finite number of objects and arrows).
In any category C with pullbacks, pullbacks of monomorphisms
are again monomorphisms; thus, for any arrow f : a→ b in C , we
have a pullback functor

f ∗ : SubC (b)→ SubC (a) .

Definition
A cartesian category is any category with finite limits.
As we shall see below, in cartesian categories we can interpret
atomic formulae as well as finite conjunctions of them; in fact,
conjunctions will be interpreted as pullbacks (i.e. intersections) of
subobjects.
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Regular categories
Definition

• Given two subobjects m1 : a1� c and m2 : a2� c of an object c in a
category C , we say that m1 factors through m2 if there is a
(necessarily unique) arrow r : a1→ a2 in C such that m2 ◦ r = m1.
(Note that this defines a preorder relation ≤ on the collection
SubC (c) of subobjects of a given object c.)

• We say that a cartesian category C has images if we are given an
operation assigning to each morphism of C a subobject Im(f ) of its
codomain, which is the least (in the sense of the preorder ≤)
subobject of cod(f ) through which f factors.

• A regular category is a cartesian category C such that C has
images and they are stable under pullback.

Fact
Given an arrow f : a→ b in a regular category C , the pullback functor
f ∗ : SubC (b)→ SubC (a) has a left adjoint ∃f : SubC (a)→ SubC (b), which
assigns to a subobject m : c� a the image of the composite f ◦m.
As we shall see below, in regular categories we can interpret formulae
built-up from atomic formulae by using finite conjunctions and existential
quantifications; in fact, the existential quantifiers will be interpreted as
images of certain arrows.
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Coherent categories

Definition
A coherent category is a regular category C in which each
SubC (c) has finite unions and each f ∗ : SubC (b)→ SubC (a)
preserves them.
As we shall see below, in coherent categories we can interpret
formulae built-up from atomic formulae by using finite
conjunctions, existential quantifications, and finite disjunctions; in
fact, finite disjunctions will be interpreted as finite unions of
subobjects.

Note in passing that, if coproducts exist, a union of subobjects of
an object c may be constructed as the image of the induced arrow
from the coproduct to c.
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Geometric categories

Definition
• A (large) category C is said to be well-powered if each of the

preorders SubC (a), a ∈Ob(C ), is equivalent to a small
category.

• A geometric category is a well-powered regular category
whose subobject lattices have arbitrary unions which are
stable under pullback.

As we shall see below, in coherent categories we can interpret
formulae built-up from atomic formulae by using finite
conjunctions, existential quantifications, and infinitary
disjunctions; in fact, disjunctions will be interpreted as unions of
subobjects.
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Quantifiers as adjoints

Let X and Y be two sets. For any given subset S ⊆ X ×Y , we can
consider the sets

∀pS := {y ∈ Y | for all x ∈ X ,(x ,y) ∈ S} and

∃pS := {y ∈ Y | there exists x ∈ X ,(x ,y) ∈ S} .

The projection map p : X ×Y → Y induces a map (taking inverse
images) at the level of powersets p∗ : P(Y )→P(X ×Y ). If we
regard these powersets as poset categories (where the
order-relation is given by the inclusion relation) then this map
becomes a functor; also, the assignments S→∀pS and S→∃pS
yield functors ∀p,∃p : P(X ×Y )→P(Y ).

Theorem
The functors ∃p and ∀p are respectively left and right adjoints to
the functor p∗ : P(Y )→P(X ×Y ) which sends each subset
T ⊆ Y to its inverse image p∗T under p.
The theorem generalizes to the case of an arbitrary function in
place of the projection p.
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Heyting categories I

Definition
A Heyting category is a coherent category C such that for any
arrow f : a→ b in C the pullback functor f ∗ : SubC (b)→ SubC (a)
has a right adjoint ∀f : SubC (a)→ SubC (b) (as well as its left
adjoint ∃f : SubC (a)→ SubC (b)).

Theorem
Let a1� a and a2� a be subobjects in a Heyting category. Then
there exists a largest subobject (a1⇒a2)� a such that
(a1⇒a2)∩a1 ≤ a2. Moreover, the binary operation on subobjects
thus defined is stable under pullback.
In particular, all the subobject lattices in a Heyting category are
Heyting algebras.

Thus, in a Heyting category we may interpret full finitary
first-order logic.

Fact
Any geometric category is a Heyting category.
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Heyting categories II

Theorem
Any elementary topos is a Heyting category.

Sketch of proof.
Let E be an elementary topos. The existence of a left adjoint to
the pullback functor follows from the existence of images, while
the existence of the right adjoint follows from the cartesian closed
structure.

The object Ω has the structure of an internal Heyting algebra in E ;
in fact, the Heyting algebra structure of the subobject lattices in E
is induced by this internal structure via the Yoneda Lemma.
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The interpretation of first-order formulae I

Let M be a Σ-structure in a category C with finite limits. A
formula-in-context {~x . φ} over Σ (where~x = x1, . . . ,xn and xi : Ai ,
say) will be interpreted as a subobject [[~x . φ ]]M �M(A1, . . . ,An)
according to the following recursive clauses:

• If φ(~x) is R(t1, . . . , tm) where R is a relation symbol (of type
B1, . . . ,Bm, say), then [[~x . φ ]]M is the pullback

[[~x . φ ]]M

��

// MR

��
M(A1, . . . ,An)

([[~x .t1]]M ,...,[[~x .tm]]M ) // M(B1, . . . ,Bm)

• If φ(~x) is (s = t), where s and t are terms of sort B, then
[[~x . φ ]]M is the equalizer of
[[~x . s]]M , [[~x . t ]]M : M(A1, . . . ,An)→MB.

• If φ(~x) is > then [[~x . φ ]]M is the top element of
SubC (M(A1, . . . ,An)).
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The interpretation of first-order formulae II

• If φ is ψ ∧χ then [[~x . φ ]]M is the intersection (= pullback)

[[~x . φ ]]M

��

// [[~x . χ]]M

��
[[~x . ψ]]M // M(A1, . . . ,An)

• If φ(~x) is ⊥ and C is a coherent category then [[~x . φ ]]M is the
bottom element of SubC (M(A1, . . . ,An)).

• If φ is ψ ∨χ and C is a coherent category then [[~x . φ ]]M is
the union of the subobjects [[~x . ψ]]M and [[~x . χ]]M .

• If φ is ψ⇒χ and C is a Heyting category, [[~x . φ ]]M is the
implication [[~x . ψ]]M⇒ [[~x . χ]]M in the Heyting algebra
SubC (M(A1, . . . ,An)) (similarly, the negation ¬ψ is interpreted
as the pseudocomplement of [[~x . ψ]]M ).
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The interpretation of first-order formulae III

• If φ is (∃y)ψ where y is of sort B, and C is a regular category,
then [[~x . φ ]]M is the image of the composite

[[~x ,y . ψ]]M // M(A1, . . . ,An,B)
π // M(A1, . . . ,An)

where π is the product projection on the first n factors.
• If φ is (∀y)ψ where y is of sort B, and C is a Heyting

category, then [[~x . φ ]]M is ∀π ([[~x ,y . ψ]]M), where π is the
same projection as above.

• If φ is∨
i∈I

φi and C is a geometric category then [[~x . φ ]]M is

the union of the subobjects [[~x . φi ]]M .

• If φ is∧
i∈I

φi and C has arbitrary intersections of subobjects

then [[~x . φ ]]M is the intersection of the subobjects [[~x . φi ]]M .
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Models of first-order theories in categories
Definition
Let M be a Σ-structure in a category C .
a) If σ = φ ~̀x ψ is a sequent over Σ interpretable in C , we say that σ is

satisfied in M if [[~x . φ ]]M ≤ [[~x . ψ]]M in SubC (M(A1, . . . ,An)).
b) If T is a theory over Σ interpretable in C , we say M is a model of T if

all the axioms of T are satisfied in M.
c) We write T-mod(C ) for the full subcategory of Σ-str(C ) whose

objects are models of T .

We say that a functor F : C →D between two cartesian (resp. regular,
coherent, geometric, Heyting) categories is cartesian (resp. regular,
coherent, geometric, Heyting) if it preserves finite limits (resp. finite limits
and images, finite limits and images and finite unions of subobjects,
finite limits and images and arbitrary unions of subobjects, finite limits
and images and Heyting implications between subobjects).

Theorem
If T is a regular (resp. coherent, ...) theory over Σ, then for any regular
(resp. coherent, ...) functor T : C →D the functor
Σ-str(T ) : Σ-str(C )→ Σ-str(D) defined above restricts to a functor
T-mod(T ) : T-mod(C )→ T-mod(D). If T is moreover conservative (that
is, reflects isomorphisms) then the functor Σ-str(T ) reflects the property
of being a T-model.
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Examples

• A topological group can be seen as a model of the theory of
groups in the category of topological spaces.

• Similarly, an algebraic (resp. Lie) group is a model of the
theory of groups in the category of algebraic varieties (resp.
the category of smooth manifolds).

• A sheaf of rings (more generally, a sheaf of models of a Horn
theory T) on a topological space X can be seen as a model
of the theory of rings (resp. of the theory T) in the topos
Sh(X ) of sheaves on X .

• A sheaf of models of a geometric theory T over a signature Σ
in a topos Sh(X ) of sheaves on a topological space X is a
Σ-structure in Sh(X ) whose stalks are models of T.

• A bunch of set-based models of a theory T indexed over a
set I can be seen as a model of T in the functor category
[I,Set]. More generally, we have that
T-mod([C ,Set])' [C ,T-mod(Set)].
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Soundness and completeness

Theorem (Soundness)
Let T be a Horn (resp. regular, coherent, first-order, geometric)
theory over a signature T, and let M be a model of T in a
cartesian (resp. regular, coherent, Heyting, geometric) category
C . If σ is a sequent (in the appropriate fragment of first-order
logic over Σ) which is provable in T, then σ is satisfied in M.

Theorem (Completeness)
Let T be a Horn (resp. regular, coherent, first-order, geometric)
theory. If a Horn (resp. regular, coherent, Heyting, geometric)
sequent σ is satisfied in all models of T in cartesian (resp. regular,
coherent, Heyting, geometric) categories, then it is provable in T.
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Toposes as mathematical universes

We say that a first-order formula φ(~x) over a signature Σ is valid
in an elementary topos E if for every Σ-structure M in E the
sequent > ~̀x φ is satisfied in M.

Theorem
Let Σ be a signature and φ(~x) a first-order formula over Σ. Then
φ(~x) is provable in intuitionistic (finitary) first-order logic if and
only if it is valid in every elementary topos.

Sketch of proof.
The soundness result is part of a theorem mentioned above. The
completeness part follows from the existence of canonical Kripke
models and the fact that, given a poset P and a Kripke model U
on P there is a model U ∗ in the topos [P,Set] such that the
first-order sequents valid in U are exactly those valid in U ∗.
Hence an elementary topos can be considered as a mathematical
universe in which one can do mathematics similarly to how one
does it in the classical context of sets (with the only exception that
one must in general argue constructively).
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The internal language of a topos I

Given a category C with finite products, in particular an
elementary topos, one can define a first-order signature ΣC ,
called the internal language of C , for reasoning about C in a
set-theoretic fashion, that is by using ‘elements’.

Definition
The signature ΣC has one sort pAq for each object A of C , one
function symbol pfq : pA1q, · · · ,pAnq→ pBq for each arrow
f : A1×·· ·×An→ B in C , and one relation symbol
pRq� pA1q · · ·pAnq for each subobject R� A1×·· ·×An.
Note that there is a canonical ΣC -structure in C , which assigns A
to pAq, f to pfq and R to pRq.
The usefulness of this definition lies in the fact that properties of
C or constructions in it can often be formulated in terms of
satisfaction of certain formulae over ΣC in the canonical structure;
the internal language can thus be used for proving things about C .
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The internal language of a topos II

If C is an elementary topos, we can extend the internal language
by allowing the formation of formulae of the kind τ ∈ Γ, where τ is
a term of sort A and Γ is a term of sort ΩA. Indeed, we may
interpret this formula as the subobject whose classifying arrow is
the composite

W
〈τ,Γ〉 // A×ΩA ∈A // Ω

where W denotes the product of (the objects representing the)
sorts of the variables occurring either in τ or in Γ (considered
without repetitions) and 〈τ,Γ〉 denotes the induced map to the
product.
Note that an object A of C gives rise to a constant term of type
ΩA.
Thus in a topos we can also interpret all the common formulas
that we use in Set Theory.
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Kripke-Joyal semantics I

Kripke-Joyal semantics represents the analogue for toposes of
the usual Tarskian semantics for classical first-order logic.
In the context of toposes, it makes no sense to speak of elements
of a structure in a topos, but we can replace the classical notion of
element of a set with that of generalized element of an object: a
generalized element of an object c of a topos E is simply an arrow
α : u→ c with codomain c.

Definition
Let E be a topos and M be a Σ-structure in E . Given a first-order
formula φ(x) over Σ in a variable x of sort A and a generalized
element α : U→MA of MA, we define

U |=M φ(α) iff α factors through [[x . φ ]]M �MA

Of course, the definition can be extended to formulae with an
arbitrary (finite) number of free variables.
In the following proposition, the notation + denotes binary
coproduct.
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Kripke-Joyal semantics II
Proposition
If α : U→MA is a generalized element of MA while φ(x) and ψ(x)
are formulas with a free variable x of sort A, then

• U |= (φ ∧ψ)(α) if and only if U |= φ(α) and U |= ψ(α).
• U |= (φ ∨ψ)(α) if and only if there are arrows p : V → U and

q : W → U such that p + q : V + W → U is epic, while both
V |= φ(α ◦p) and W |= ψ(α ◦q).

• U |= (φ⇒ψ)(α) if and only if for any arrow p : V → U such
that V |= φ(α ◦p), then V |= ψ(α ◦p).

• U |= (¬φ)(α) if and only if whenever p : V → U is such that
V |= φ(α ◦p), then V ∼= 0E .

If φ(x ,y) has an additional free variable y of sort B then
• U |= (∃y)φ(α,y) if and only if there exist an epi p : V →U and

a generalized element β : V → B such that V |= φ(α ◦p,β ).
• U |= (∀y)φ(α,y) if and only if for every object V , for every

arrow p : V → U and every generalized element c : V → B
one has V |= φ(α ◦p,β ).

39 / 40



Topos Theory

Olivia Caramello

Introduction
Interpreting logic in
categories

First-order logic
First-order
languages

First-order theories

Categorical
semantics
Classes of ‘logical’
categories

The interpretation of
formulae

Examples

Soundness and
completeness

Toposes as
mathematical
universes
The internal
language

Kripke-Joyal
semantics

For further
reading

For further reading

R. I. Goldblatt.
Topoi. The categorial analysis of logic, vol. 98 of Studies in
Logic and the Foundations of Math.
North-Holland, 1979 (revised second edition, 1984).

P. T. Johnstone.
Sketches of an Elephant: a topos theory compendium. Vols.
1-2, vols. 43-44 of Oxford Logic Guides
Oxford University Press, 2002.

S. Mac Lane and I. Moerdijk.
Sheaves in geometry and logic: a first introduction to topos
theory
Springer-Verlag, 1992.
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