TOPOS THEORY (a.y. 2018/2019) - Exercises Olivia Caramello

1. Let X be a topological space. Show that there is a geometric morphism $\operatorname{Set}/X \to \operatorname{Sh}(X)$ whose inverse image sends a sheaf F to the disjoint union of its stalks $F_x, x \in X$, with the obvious projection to X, and whose direct image sends $p: E \to X$ to the sheaf F such that F(U) is the set of all sections of p over U (that is, continuous functions $s: U \to E$ such that $p \circ s$ is the inclusion $U \to X$).

2. Let $f : A \to B$ be an arrow in a Grothendieck topos \mathcal{E} . Show that the pullback functor $f^* : \mathcal{E}/B \to \mathcal{E}/A$ is faithful if and only if f is an epimorphism.

- **3**. Show that
- (a) For any preorder C and Grothendieck topology J on C, the points of the topos Sh(C, J) correspond precisely to the J-prime filters on C (by a J-prime filter on C we mean a subset F ⊆ C such that F is non-empty, a ∈ F implies b ∈ F whenever a ≤ b, for any a, b ∈ F there exists c ∈ F such that c ≤ a and c ≤ b, and for any J-covering sieve {a_i → a | i ∈ I} in C if a ∈ F there exists i ∈ I such that a_i ∈ F).
- (b) For any frame L, the points of the topos Sh(L) correspond precisely to the frame homomorphisms L → {0,1}, equivalently to the completely prime filters on L (i.e., the subsets S ⊆ L such that 1 ∈ S, a ∧ b ∈ S if and only if a ∈ S and b ∈ S, and for any family of elements {a_i | i ∈ I} whose join is a, a ∈ S implies a_i ∈ S for some i).
- (c) For any small category \mathcal{C} and any object c of \mathcal{C} , there is a point ev_c : $\mathbf{Set} \to [\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ of the topos $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$ whose inverse image is the evaluation functor at the object c.

4. Show that if $f : \mathcal{C} \to \mathcal{D}$ is a functor between small categories, the inverse image $f^* : [\mathcal{D}^{\text{op}}, \mathbf{Set}] \to [\mathcal{C}^{\text{op}}, \mathbf{Set}]$ of the essential geometric morphism $[\mathcal{C}^{\text{op}}, \mathbf{Set}] \to [\mathcal{D}^{\text{op}}, \mathbf{Set}]$ induced by f is faithful if every object of \mathcal{D} is a retract of an object in the image of f. [If you want, try also to prove the converse.] **5**. The class of *cartesian formulae* relative to a theory \mathbb{T} is defined as follows: atomic formulae and \top are cartesian, $(\phi \land \psi)$ is cartesian provided both ϕ and ψ are, and $(\exists x)\phi$ is cartesian provided ϕ is cartesian and the sequent $((\phi \land \phi[x'/x]) \vdash_{x,x',\vec{y}} (x = x'))$ is derivable in \mathbb{T} . (Here x, \vec{y} is a suitable context for ϕ , and x' is a variable not in it.) A theory \mathbb{T} is said to be *cartesian* if its axioms can be ordered in such a way that each involves formulae which are cartesian relative to the theory formed by the earlier axioms. Write down a presentation of the theory of categories (as a two-sorted theory, with function symbols for domain, codomain and identities, and a ternary relation T(x, y, z) to express "z is the composite of x and y"), and verify that it is cartesian. Show also that if \mathbb{T} is a cartesian theory then \mathbb{T} -mod(**Set**) is closed under (finite) limits in Σ -str(**Set**).

6. Let \mathcal{E} be a Grothendieck topos with internal language $\Sigma_{\mathcal{E}}$. We write $\mathcal{E} \models \sigma$, where σ is a sequent over $\Sigma_{\mathcal{E}}$, to mean that σ is satisfied in the canonical $\Sigma_{\mathcal{E}}$ -structure in \mathcal{E} . Show that

- (a) $1_A : A \to A$ is the identity arrow on A if and only if $\mathcal{E} \models (\top \vdash_x (\ulcorner 1_A \urcorner (x) = x));$
- (b) $f: A \to C$ is the composite of $g: A \to B$ and $h: B \to C$ if and only if $\mathcal{E} \models (\top \vdash_x (\ulcorner f \urcorner (x) = \ulcorner h \urcorner (\ulcorner g \urcorner (x))));$
- (c) $f: A \to B$ is monic if and only if $\mathcal{E} \models ((\ulcorner f \urcorner (x) = \ulcorner f \urcorner (x')) \vdash_{x,x'} (x = x'));$
- (d) $f: A \to B$ is an epimorphism if and only if $\mathcal{E} \models (\top \vdash_y (\exists x) \ulcorner f \urcorner (x) = y);$
- (e) A is a terminal object of \mathcal{E} if and only if $\mathcal{E} \models (\top \vdash_{\square} (\exists x) \top)$ and $\mathcal{E} \models (\top \vdash_{x,x'} x = x')$ (here x and x' are of sort $\ulcorner A \urcorner$).

Optional exercise: n. 8 from Chapter 8 of the book *Sheaves in Geometry* and *Logic* by S. Mac Lane and I. Moerdijk.