Cohomology of toposes

Olivia CARAMELLO* and Laurent LAFFORGUE**

*Università degli studi dell'Insubria **Institut des Hautes Études Scientifiques

Chapter VII:

Operations on linear sheaves on sites and Grothendieck's six operations for étale cohomology

Reminder on sheaves on Grothendieck sites

Definition: Let C = (essentially) small category.

(i) A sieve S on an object X of C is a subobject

$$S \hookrightarrow \operatorname{Hom}(\bullet, X)$$
 in $\widehat{\mathcal{C}} = [\mathcal{C}^{\operatorname{op}}, \operatorname{Set}]$.

In other words it is a collection of arrows

$$X' \longrightarrow X$$

such that, for any $X'' \xrightarrow{g} X' \xrightarrow{f} X$,

$$f\in S\Rightarrow f\circ g\in S$$
.

(ii) For any morphism $X \xrightarrow{f} Y$ of Cand any sieve S on Y, $f^{-1}S$ is the sieve on X

 $S \times_{\operatorname{Hom}(\bullet, Y)} \operatorname{Hom}(\bullet, X) \hookrightarrow \operatorname{Hom}(\bullet, X)$.

In other words, an arrow $X' \xrightarrow{a} X$ is in $f^{-1}S$ if and only if $f \circ a : X' \to Y$ is in S.

Remarks:

- Any intersection of sieves on X is a sieve on X.
- Any family of arrows $X_i \xrightarrow{f_i} X$ generates a sieve on X. It consists in the morphisms $X' \to X$ which factorise through at least one of the f_i 's.

Como, Autumn 2019 3 / 151

Definition: Let C = (essentially) small category. A topology J on C is a map which verifies the following axioms: (Maximality) Fo any X, the maximal sieve Hom(\bullet, X) consisting of all arrows $X' \to X$ is an element of J(X). (Stability) For any morphism $f: X \to Y$, the map $S \longmapsto f^{-1}S$ sends J(Y) into J(X). (Transitivity) If X is an object and $S \in J(X)$, a sieve S' on X such that $f^{-1}S' \in J(X'), \forall (X' \xrightarrow{f} X) \in S$, necessarily belongs to J(X). **Remark:** A family of morphisms $X_i \xrightarrow{f} X$

is called "J-covering" if the sieve it generates belongs to J(X).

Definition:

(i) A site is a pair (\mathcal{C}, J) consisting in

 $\mathcal{C} = (\text{essentially}) \text{ small category},$

J = topology on C.

(ii) A sheaf on a site (\mathcal{C}, J) is a presheaf

 $F:\mathcal{C}^{op}\longrightarrow Set$

such that, for any X and $S \in J(X)$, the canonical map

$$F(X) \longrightarrow \varprojlim_{(X' \xrightarrow{a} X) \in S} F(X')$$

is one-to-one.

(iii) The category of sheaves on (\mathcal{C}, J) , denoted

$$\widehat{\mathcal{C}}_J = \operatorname{Sh}(\mathcal{C}, J) \,,$$

is the full subcategory of

 $\widehat{\mathcal{C}} = [\mathcal{C}^{op}, Set]$ (= category of presheaves on \mathcal{C})

on presheaves F which are sheaves. In other words, a morphism of sheaves is a morphism of presheaves.

The sheafification functor

Proposition: Let (\mathcal{C}, J) = site.

Then the canonical embedding functor

has a left adjoint

$$J_*: \mathcal{C}_J \hookrightarrow \mathcal{C}$$

$$* \quad : \quad \widehat{\mathcal{C}} \longrightarrow \quad \widehat{\mathcal{C}}_J$$

$$P \longmapsto \quad j^* P$$

characterized by the property that any morphism

 $P \longrightarrow F$

from a presheaf P to a sheaf F uniquely factorises as

 $P \longrightarrow j^* P \longrightarrow F$.

Remarks:

(i) The sheafification j^*P of P can be constructed by the formula

$$j^* \boldsymbol{P} = (\boldsymbol{P}^+)^+$$

where $(P^+)(X) = \lim_{S \in J(X)} \lim_{(X' \xrightarrow{a} X) \in S} P(X').$

(ii) There is a canonical composed functor

$$\ell: \mathcal{C} \xrightarrow{y} \widehat{\mathcal{C}} \xrightarrow{j^*} \widehat{\mathcal{C}}_J$$

O. Caramello & L. Lafforgue

Exactness properties

Proposition:

(i) The category $\widehat{\mathcal{C}}$ has arbitrary limits and colimits and they are computed component-wise, i.e.

$$\left(\underbrace{\lim_{D} P_d}_{D} P_d \right)(X) = \underbrace{\lim_{D} P_d(X)}_{D},$$
$$\left(\underbrace{\lim_{D} P_d}_{D} \right)(X) = \underbrace{\lim_{D} P_d(X)}_{D}.$$

(ii) The category $\widehat{\mathcal{C}}_J$ has arbitrary limits and colimits with

$$\left(\varprojlim_{D} F_{d}\right)(X) = \varprojlim_{D} F_{d}(X),$$
$$\liminf_{D} F_{d} = j^{*}\left(\liminf_{D} j_{*}F_{d}\right).$$

(iii) The functor

 $j_*:\widehat{\mathcal{C}}_J \hookrightarrow \widehat{\mathcal{C}}$

respects arbitrary limits, while its left adjoint

 $j^*:\widehat{\mathcal{C}}\to\widehat{\mathcal{C}}_J$

respects arbitrary colimits and finite limits.

O. Caramello & L. Lafforgue

Corollary:

(i) A group object [resp. ring object, resp. module object over a ring object] of \hat{C}_J is a sheaf of sets

 $X \longmapsto \mathcal{G}(X)$ [resp. $\mathcal{O}(X)$, resp. $\mathcal{M}(X)$]

endowed with a structure of group [resp. ring, resp. module over the ring $\mathcal{O}(X)$] on each

 $\mathcal{G}(X)$ [resp. $\mathcal{O}(X)$, resp. $\mathcal{M}(X)$]

such that all restriction maps induced by morphisms $X \xrightarrow{f} Y$ of C

 $\mathcal{G}(\textbf{\textit{Y}}) \rightarrow \mathcal{G}(\textbf{\textit{X}}) \qquad \text{[resp. } \mathcal{O}(\textbf{\textit{Y}}) \rightarrow \mathcal{O}(\textbf{\textit{X}}), \text{ resp. } \mathcal{M}(\textbf{\textit{Y}}) \rightarrow \mathcal{M}(\textbf{\textit{X}}) \text{]}$

are group [resp. ring, resp. module] morphisms.

(ii) A morphism of group objects [resp. ring objects, resp. module objects over some ring object \mathcal{O}] is a morphism of sheaves

$$\mathcal{G}_1 \to \mathcal{G}_2$$
 [resp. $\mathcal{O}_1 \to \mathcal{O}_2$, resp. $\mathcal{M}_1 \to \mathcal{M}_2$]

such that all maps

 $\mathcal{G}_1(X) \to \mathcal{G}_2(X) \qquad \text{[resp. } \mathcal{O}_1(X) \to \mathcal{O}_2(X), \text{ resp. } \mathcal{M}_1(X) \to \mathcal{M}_2(X) \text{]}$

are group [resp. ring, resp. module] morphisms.

O. Caramello & L. Lafforgue

Cohomology of toposes

Definition:

 $\begin{array}{l} \text{Let} \ (\mathcal{C},J,\mathcal{O}) = \text{ringed site} \\ = \text{site} \ (\mathcal{C},J) \\ + \text{ring object} \ \mathcal{O} \ \text{of} \ \widehat{\mathcal{C}}_J. \end{array}$ Then module objects over \mathcal{O} in $\widehat{\mathcal{C}}_J$ are called \mathcal{O} -Modules and their category is denoted

 $\mathcal{M}od_{\mathcal{O}}$.

Proposition:

For any ringed site $(\mathcal{C}, J, \mathcal{O})$,

 $\mathcal{M}od_{\mathcal{O}}$

is an abelian category with arbitrary limits and colimits.

Change of structure ring-sheaf

Proposition:

Let $(\mathcal{C}, J) = \text{site}$, $(\mathcal{O}_1 \to \mathcal{O}_2) = \text{morphism of ring objects in } \widehat{\mathcal{C}}_J.$ Then the forgetful functor $\mathcal{M}od_{\mathcal{O}_2} \longrightarrow \mathcal{M}od_{\mathcal{O}_1},$ has a left adjoint denoted $\mathcal{M}od_{\mathcal{O}_1} \longrightarrow \mathcal{M}od_{\mathcal{O}_2},$

$$egin{array}{rcl} \mathcal{M} Od_{\mathcal{O}_1} & \longrightarrow & \mathcal{M} Od_{\mathcal{O}_2} \ , \ \mathcal{M} & \longmapsto & \mathcal{O}_2 \otimes_{\mathcal{O}_1} \mathcal{M} \, . \end{array}$$

Remarks:

(i) For any object \mathcal{M} of $\mathcal{M}od_{\mathcal{O}_1}$,

$$\mathcal{O}_2 \otimes_{\mathcal{O}_1} \mathcal{M}$$

is constructed as the sheafification of the presheaf

$$X \longmapsto \mathcal{O}_2(X) \otimes_{\mathcal{O}_1(X)} \mathcal{M}(X)$$
.

(ii) The forgetful functor respects arbitrary limits and colimits while its left adjoint

$$\mathcal{M}\longmapsto \mathcal{O}_2\otimes_{\mathcal{O}_1}\mathcal{M}$$

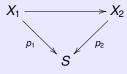
respects arbitrary colimits.

O. Caramello & L. Lafforgue

Exponentials (or "inner Hom") and tensor products

Definition:

 (i) For any object S of any category C, the relative category C/S is the category whose objects are morphisms X ^p→ S of C and whose morphisms (X₁ ^{p₁}→ S) → (X₂ ^{p₂}→ S) are commutative triangles of C:



(ii) For any topology J on a (ess.) small category C and any object X of C, the induced topology J_X on C/X is defined by the property that a sieve on an object of C/X belongs to J_X if its image by the forgetful functor

$$egin{array}{ccc} \mathcal{C}/X & \longrightarrow & \mathcal{C}\,, \ (X' o X) & \longmapsto & X' \end{array}$$

belongs to J.

(iii) In this situation, composition with $\mathcal{C}/X \to \mathcal{C}$ defines a functor $\widehat{\mathcal{C}} \to \widehat{\mathcal{C}/X}$

which restricts to a functor called the restriction functor

$$\begin{array}{rccc} r_X & : & \widehat{\mathcal{C}}_J & \longrightarrow & \widehat{(\mathcal{C}/X)}_{J_X}, \\ & F & \longmapsto & F_{|X} = F_X. \end{array}$$

Remarks:

 (i) Restriction functors respect arbitrary limits and colimits. In particular, they transform any ring object O of C
_J into ring objects O_X of each C/X and induce additive exact functors

 $\mathcal{M}od_{\mathcal{O}} \longrightarrow \mathcal{M}od_{\mathcal{O}_X}$.

(ii) For any sheaves F_1 and F_2 on (\mathcal{C}, J) , the presheaf

 $X \longmapsto \operatorname{Hom}(F_{1|X}, F_{2|X})$

is a sheaf denoted $F_2^{F_1}$ or $\mathcal{H}om(F_1, F_2)$. It is characterized by the property that, for any sheaf *G*,

 $\operatorname{Hom}(G, \operatorname{Hom}(F_1, F_2)) = \operatorname{Hom}(G \times F_1, F_2).$

(iii) In the same way, for any ring object \mathcal{O} of $\widehat{\mathcal{C}}_J$ and any \mathcal{O} -Modules $\mathcal{M}_1, \mathcal{M}_2$, the presheaf

$$X \longmapsto \operatorname{Hom}_{\mathcal{O}_X}(F_{1|X}, F_{2|X})$$

is a sheaf denoted $\mathcal{H}om_{\mathcal{O}}(\mathcal{M}_1, \mathcal{M}_2)$.

$\begin{array}{l} \textbf{Proposition:}\\ \text{Let }(\mathcal{C},J,\mathcal{O}) = \text{commutative ringed site}\\ = \text{site }(\mathcal{C},J) + \text{commutative ring object }\mathcal{O} \text{ of }\widehat{\mathcal{C}}_J,\\ \mathcal{N} = \mathcal{O}\text{-}\text{Module in }\widehat{\mathcal{C}}_J.\\ \text{Then the functor}\\ \mathcal{M}od_{\mathcal{O}} & \longrightarrow & \mathcal{M}od_{\mathcal{O}},\\ \mathcal{L} & \longmapsto & \mathcal{H}om_{\mathcal{O}}(\mathcal{N},\mathcal{L})\\ \text{has a left adjoint denoted} \end{array}$

 $\begin{array}{cccc} \mathcal{M}\!\textit{od}_{\mathcal{O}} & \longrightarrow & \mathcal{M}\!\textit{od}_{\mathcal{O}} \,, \\ \mathcal{M} & \longmapsto & \mathcal{M} \otimes_{\mathcal{O}} \mathcal{N} \,. \end{array}$

Furthermore, \otimes extends as a double functor

$$egin{array}{cccc} \mathcal{M}\!\textit{od}_\mathcal{O} & \longrightarrow & \mathcal{M}\!\textit{od}_\mathcal{O} \ , \ & (\mathcal{M},\mathcal{N}) & \longmapsto & \mathcal{M} \otimes_\mathcal{O} \mathcal{N} \end{array}$$

such that the two triple functors

$$\begin{array}{cccc} \mathcal{M}\!\textit{od}_{\mathcal{O}}^{\mathrm{op}} \times \mathcal{M}\!\textit{od}_{\mathcal{O}}^{\mathrm{op}} \times \mathcal{M}\!\textit{od}_{\mathcal{O}} & \longrightarrow & \mathcal{O}(X)\text{-modules} \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

are isomorphic.

Remarks:

(i) The tensor product $\mathcal{M}\otimes_{\mathcal{O}}\mathcal{N}$ is constructed as the sheafification of the functor

 $X \longmapsto \mathcal{M}(X) \otimes_{\mathcal{O}(X)} \mathcal{N}(X)$.

(ii) The two functors $\mathcal{M}od_{\mathcal{O}} \times \mathcal{M}od_{\mathcal{O}} \to \mathcal{M}od_{\mathcal{O}}$

$$\begin{array}{cccc} (\mathcal{M},\mathcal{N}) & \longmapsto & \mathcal{M} \otimes_{\mathcal{O}} \mathcal{N} \\ \text{and} & (\mathcal{M},\mathcal{N}) & \longmapsto & \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M} \end{array}$$

are canonically isomorphic.

(iii) The double functor

$$(\mathcal{M},\mathcal{N})\longmapsto\mathcal{M}\otimes_{\mathcal{O}}\mathcal{N}$$

respects arbitrary colimits in ${\cal M}$ or ${\cal N},$ while the double functor

$$(\mathcal{N},\mathcal{L})\longmapsto \mathcal{H}om_{\mathcal{O}}(\mathcal{N},\mathcal{L})$$

respects arbitrary limits in ${\cal L}$ and transforms arbitrary colimits in ${\cal N}$ into limits.

O. Caramello & L. Lafforgue

Push-forward and pull-back functors

Definition:

- (i) A category *E* is called a topos
 if it is equivalent to the category *C*_J of sheaves on some site (*C*, *J*).
- (ii) A (geometric) morphism of toposes $\mathcal{E}_1 \to \mathcal{E}_2$

is a pair of adjoint functors $(\mathcal{E}_2 \xrightarrow{f^{-1}} \mathcal{E}_1, \mathcal{E}_1 \xrightarrow{f_*} \mathcal{E}_2)$

whose left component f^{-1} respects finite limits (as well as arbitrary colimits).

(iii) A morphism between two morphisms of toposes $\mathcal{E}_1 \rightrightarrows \mathcal{E}_2$

$$(f^{-1}, f_*) \longrightarrow (g^{-1}, g_*)$$

is a natural transformation of functors

$$\alpha: f^{-1} \longrightarrow g^{-1}$$
.

Remarks:

- (i) If (f^{-1}, f_*) is a topos morphism, f^{-1} is called the pull-back component and f_* the push-forward component.
- (ii) The composite of two morphisms of toposes

$$\mathcal{E}_1 \xrightarrow{(f^{-1}, f_*)} \mathcal{E}_2 \xrightarrow{(g^{-1}, g_*)} \mathcal{E}_3$$

is defined as the pair $(f^{-1} \circ g^{-1}, g_* \circ f_*)$.

(iii) Morphisms from a topos \mathcal{E}_1 to a topos \mathcal{E}_2 make up a category denoted $Geom(\mathcal{E}_1, \mathcal{E}_2)$. (iv) Any morphism of toposes $\mathcal{E}'_1 \longrightarrow \mathcal{E}_1$ [resp. $\mathcal{E}_2 \longrightarrow \mathcal{E}'_2$] induces a functor defined by composition $Geom(\mathcal{E}_1, \mathcal{E}_2) \longrightarrow Geom(\mathcal{E}'_1, \mathcal{E}_2)$ [resp. $\mathcal{G}eom(\mathcal{E}_1, \mathcal{E}_2) \longrightarrow \mathcal{G}eom(\mathcal{E}_1, \mathcal{E}_2')$]. (v) If \mathcal{E} is a topos and 1 denotes its terminal object, there is a unique morphism of toposes $\mathcal{E} \xrightarrow{(p^{-1}, p_*)}$ Set defined by $p^{-1}I = \prod_{i \in I} 1$ ("constant" objects of \mathcal{E}) and $p_*F = Hom(1, F)$ ("global sections" functor). (vi) A morphism of toposes Set $\xrightarrow{(x^{-1}, x_*)} \mathcal{E}$ is called a "point" of \mathcal{E} and its left component x^{-1} : $\mathcal{E} \to \text{Set}$ the "fiber functor" at the point. (vii) Points of a topos \mathcal{E} make up a category $\mathcal{P}t(\mathcal{E}) = \mathcal{G}eom(\text{Set}, \mathcal{E})$.

(viii) Any morphisms of toposes $\mathcal{E}_1 \to \mathcal{E}_2$ induces a functor

 $\mathcal{P}t(\mathcal{E}_1) \longrightarrow \mathcal{P}t(\mathcal{E}_2)$.

O. Caramello & L. Lafforgue

Lemma: For any morphism of toposes

 $(f^{-1}, f_*): \mathcal{E}_1 \to \mathcal{E}_2,$

both functors f^{-1} and f_* transform group objects into group objects, ring objects into ring objects and module objects over a ring object into module objects over the transform of this ring object.

Sketch of proof:

This is because both functors f^{-1} and f_* respect finite limits, in particular finite products.

Definition:

- (i) A ringed topos is a topos \mathcal{E} endowed with a ring object \mathcal{O} .
- (ii) A morphism of ringed toposes

$$(\mathcal{E}_1, \mathcal{O}_1) \longrightarrow (\mathcal{E}_2, \mathcal{O}_2)$$

is a morphism of toposes

$$(f^{-1}, f_*): \mathcal{E}_1 \longrightarrow \mathcal{E}_2$$

completed with a morphism of ring objects

$$f^{-1}\mathcal{O}_2 \longrightarrow \mathcal{O}_1$$
 or, equivalently,

O. Caramello & L. Lafforgue

 $\mathcal{O}_2 \longrightarrow f_*\mathcal{O}_1$.

Corollary: Let $(\mathcal{E}_1, \mathcal{O}_1) \to (\mathcal{E}_2, \mathcal{O}_2)$ = morphism of ringed toposes consisting in $\mathcal{E}_1 \xrightarrow{(f^{-1}, f_*)} \mathcal{E}_2$

Then:

(i) The composition of the functor

$$f_*: \mathcal{M}\!od_{\mathcal{O}_1} \longrightarrow \mathcal{M}\!od_{f_*\mathcal{O}_1}$$

and of the forgetful functor defined by $\mathcal{O}_2 \rightarrow f_*\mathcal{O}_1$

and $f^{-1}\mathcal{O}_2 \longrightarrow \mathcal{O}_1$.

defines a functor

$$\mathcal{M}Od_{f_*\mathcal{O}_1} \longrightarrow \mathcal{M}Od_{\mathcal{O}_2}$$
$$f_*: \mathcal{M}Od_{\mathcal{O}_1} \longrightarrow \mathcal{M}Od_{\mathcal{O}_2}.$$

(ii) This functor $f_* : Mod_{\mathcal{O}_1} \longrightarrow Mod_{\mathcal{O}_2}$ has a left adjoint functor

$$f^*: \mathcal{M}od_{\mathcal{O}_2} \longrightarrow \mathcal{M}od_{\mathcal{O}_1}$$

constructed as the composite of the functors

$$f^{-1}: \mathcal{M}od_{\mathcal{O}_2} \longrightarrow \mathcal{M}od_{f^{-1}\mathcal{O}_2}$$

and

$$\begin{array}{cccc} \mathcal{M}\!\textit{od}_{f^{-1}\mathcal{O}_2} & \longrightarrow & \mathcal{M}\!\textit{od}_{\mathcal{O}_1}\,, \\ \mathcal{M} & \longmapsto & \mathcal{O}_1 \otimes_{f^{-1}\mathcal{O}_2} \mathcal{M}\,. \end{array}$$

O. Caramello & L. Lafforgue

Remark:

 $\textit{f}_*: \mathcal{M}\!\textit{od}_{\mathcal{O}_1} \longrightarrow \mathcal{M}\!\textit{od}_{\mathcal{O}_2} \text{ respects limits,}$

 $\textit{f}^*: \mathcal{M}\!\textit{od}_{\mathcal{O}_2} \longrightarrow \mathcal{M}\!\textit{od}_{\mathcal{O}_1} \text{ respects colimits.}$

A concrete process to generate some morphisms of toposes

Proposition:

Let $\mathcal{E}_1, \mathcal{E}_2$ = two toposes defined by two sites $(\mathcal{C}_1, J_1), (\mathcal{C}_2, J_2)$ such that \mathcal{C}_2 has arbitrary finite limits, and $\rho : \mathcal{C}_2 \to \mathcal{C}_1$ = functor such that $\left\{ \begin{array}{l} \bullet & \rho \text{ respects finite limits,} \\ \bullet & \rho \text{ transforms } J_2\text{-covering families} \\ & \text{ into } J_1\text{-covering families.} \end{array} \right.$

Then ρ defines a toposes morphism

in the following way:

$$(f^*, f_*): \mathcal{E}_1 \longrightarrow \mathcal{E}_2$$

• For any sheaf F_1 on (C_1, J_1) , f_*F_1 is the sheaf on (C_2, J_2)

$$X_2 \longmapsto F_1(\rho(X_2))$$
.

• For any sheaf F_2 on (C_2, J_2) , f^*F_2 is the sheafification of the presheaf

$$X_1\longmapsto \varinjlim_{X_2\in (\overline{X_1\setminus_{\rho}}\mathcal{C}_2)}F_2(X_2)$$

where $X_1 \setminus_{\rho} C_2$ is the category of objects X_2 of C_2 endowed with a morphism $X_1 \to \rho(X_2)$ in C_1 .

Remarks:

(i) This generalises the construction of the topos morphism

 $(f^*, f_*) : \operatorname{Sh}(X_1) \longrightarrow \operatorname{Sh}(X_2)$

associated to a continuous maps $f : X_1 \to X_2$ between topological spaces X_1, X_2 . Indeed, f defines $\rho = f^{-1} : O(X_2) \to O(X_1)$.

(ii) Even if $\mathcal{E}_1, \mathcal{E}_2$ are two toposes defined by sites $(\mathcal{C}_1, J_1), (\mathcal{C}_2, J_2)$ such that \mathcal{C}_2 has finite limits, not all morphisms of toposes $\mathcal{E}_1 \to \mathcal{E}_2$ are constructed in this way.

(iii) Nevertheless, it will be enough for the étale toposes of schemes.

Sketch of proof of the proposition:

• If F_1 is a sheaf on (\mathcal{C}_1, J_1) ,

 $X_2\longmapsto F_1(\rho(X_2))$

is a sheaf on (C_2, J_2) because ρ transforms J_2 -covering families into J_1 -covering families.

It is clear that f* is left adjoint to f_{*}.
 We only need to prove that it respects finite limits.
 For this it is enough to prove that for any X₁ the functor

$$F_2 \longmapsto \varinjlim_{X_2 \in (\overrightarrow{X_1} \setminus_{\rho} \mathcal{C}_2)} F_2(X_2)$$

respects finite limits.

This is because the category $X_1 \setminus_{\rho} C_2$ is filtering, as C_2 has finite limits and they are respected by ρ .

Corollary:

For $\mathcal{E}_1 = \widehat{(\mathcal{C}_1)}_{J_1}$, $\mathcal{E}_2 = \widehat{(\mathcal{C}_2)}_{J_2}$ and $(f^{-1}, f_*) : \mathcal{E}_1 \to \mathcal{E}_2$ defined by $\rho : \mathcal{C}_2 \to \mathcal{C}_1$ as in the previous proposition, let $\mathcal{O}_1, \mathcal{O}_2 = \text{ring objects of } \mathcal{E}_1, \mathcal{E}_2$ related by a morphism $f^{-1}\mathcal{O}_2 \to \mathcal{O}_1$ or, equivalently, $\mathcal{O}_2 \to f_*\mathcal{O}_1$ consisting in a compatible family of ring morphisms

 $\mathcal{O}_2(X_2) \longrightarrow \mathcal{O}_1(\rho(X_2))\,, \qquad X_2 \in \operatorname{Ob}(\mathcal{C}_2)\,.$

Then $(f^{-1}, f_*) : \mathcal{E}_1 \to \mathcal{E}_2$ defines adjoint additive functors

$$f_*: \mathcal{M}od_{\mathcal{O}_1} \longrightarrow \mathcal{M}od_{\mathcal{O}_2}$$

and

$$\begin{array}{rcccc} f^* & : & \mathcal{M}\!\textit{od}_{\mathcal{O}_2} & \longrightarrow & \mathcal{M}\!\textit{od}_{\mathcal{O}_1}\,, \\ & & \mathcal{M} & \longmapsto & \mathcal{O}_1 \otimes_{f^{-1}\mathcal{O}_2} \mathcal{M}\,. \end{array}$$

Localisation of toposes

Proposition:

Let $\mathcal{E} =$ topos.

(i) For any object F of \mathcal{E} , the relative category

 \mathcal{E}/F

is a topos, called the localisation of \mathcal{E} at F. More precisely, if $\mathcal{E} = \widehat{\mathcal{C}}_J$, then $\mathcal{E}/F = \widehat{(\mathcal{C}/F)}_{J_F}$ where:

• C/F is the category whose objects are pairs

(X, a) with $X \in Ob(\mathcal{C}), a \in F(X)$,

and whose morphisms $(X_1, a_1) \rightarrow (X_2, a_2)$ are morphisms of C

 $f: X_1 \longrightarrow X_2$ such that $F(f)(a_2) = a_1$,

• J_F is the "induced" topology on C/F such that a family of morphisms $(X_i, a_i) \xrightarrow{f_i} (X, a)$ is J_F -covering if and only if the family $X_i \xrightarrow{f_i} X$ is *J*-covering. (ii) For any morphism $f: F_1 \to F_2$ of \mathcal{E} , the functor

$$\begin{array}{rcccc} f^{-1} & : & \mathcal{E}/F_2 & \longrightarrow & \mathcal{E}/F_1 , \\ & & (F \to F_2) & \longmapsto & (F \times_{F_2} F_1 \to F_1) \end{array}$$

has a left adjoint

$$\begin{array}{rcl} f_! & : & \mathcal{E}/F_1 & \longrightarrow & \mathcal{E}/F_2 \\ & & (F \xrightarrow{g} F_1) & \longmapsto & (F \xrightarrow{f \circ g} F_2) \end{array}$$

and a right adjoint

$$f_*: \mathcal{E}/F_1 \longrightarrow \mathcal{E}/F_2$$

so it defines a morphism of toposes

$$(f^{-1}, f_*): \mathcal{E}/F_1 \longrightarrow \mathcal{E}/F_2$$
.

Remarks:

- (i) If 1 is the terminal object of $\mathcal{E}, \mathcal{E}/1$ identifies with \mathcal{E} .
- (ii) If $\mathcal{E} = \widehat{\mathcal{C}}_J$ and $\ell : \mathcal{C} \xrightarrow{\gamma} \widehat{\mathcal{C}} \xrightarrow{j^*} \widehat{\mathcal{C}}_J$ is the canonical functor, then for any object *X* of \mathcal{C} , the restriction functor

$$\mathcal{E}/\ell(\mathbf{X}) = (\widehat{\mathcal{C}/\ell(\mathbf{X})})_{J(\ell(\mathbf{X}))} \longrightarrow (\widehat{\mathcal{C}/\mathbf{X}})_{J_{\mathbf{X}}}$$

is an equivalence, so that $\mathcal{E}/\ell(X)$ and $\widehat{(\mathcal{C}/X)}_{J_X}$ identify.

Sketch of proof of the proposition:

(i) It is enough to prove that for any presheaf P on C,

$$\widehat{\mathcal{C}}/P$$
 and $\widehat{\mathcal{C}}/P$ are equivalent.

A natural equivalence is defined by the two functors

$$\begin{array}{ccc} \widehat{C}/P & \longrightarrow & \widehat{C/P} \\ (p:P' \to P) & \longmapsto & P_p = \begin{bmatrix} (X,a) & \longmapsto & \text{fiber of } P'(X) \xrightarrow{P_X} P(X) \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

and

$$\begin{array}{cccc} \widehat{\mathcal{C}/\mathcal{P}} & \longrightarrow & \widehat{\mathcal{C}}/\mathcal{P} \\ Q & \longmapsto & (\mathcal{P}_Q \to \mathcal{P}) = \begin{bmatrix} X & \longmapsto & \coprod_{a \in \mathcal{P}(X)} Q((X,a)) \\ & & \\ & & \\ Ob(\mathcal{C}) & & \\ \end{bmatrix}$$

(ii) The functor $f_1: (F \to F_1) \mapsto (F \to F_2)$ is left adjoint to $f^{-1}: (F \to F_2) \mapsto (F \times_{F_2} F_1 \to F_1)$ by definition of fiber products. In a topos, functors $F \mapsto F \times_{F_2} F_1$ respect arbitrary colimits. Indeed, this is true in Set, therefore in \widehat{C} and lastly in \widehat{C}_J as $j^*: \widehat{C} \to \widehat{C}_J$ respects arbitrary colimits and finite limits. So f^{-1} has a right adjoint functor f_* (and defines a topos morphism $(f^{-1}, f_*): \mathcal{E}/F_1 \to \mathcal{E}/F_2$) according to the following theorem:

O. Caramello & L. Lafforgue

Theorem:

Let $\rho: \mathcal{E} \to \mathcal{D}$

= functor from a topos \mathcal{E} to a category \mathcal{D} .

Then ρ has a right adjoint if and only if it respects colimits. Furthermore, if $\mathcal{E} = \widehat{\mathcal{C}}_J$ endowed with $\ell : \mathcal{C} \xrightarrow{y} \widehat{\mathcal{C}} \xrightarrow{j^*} \widehat{\mathcal{C}}_J$, the right adjoint of ρ is

$$\begin{array}{cccc} \mathcal{D} & \longrightarrow & \widehat{\mathcal{C}}_J \\ Y & \longmapsto & \mathcal{F}_Y = \begin{bmatrix} X & \longmapsto & \operatorname{Hom}(\rho \circ \ell(X), Y) \\ & & \\ \operatorname{Ob}(\mathcal{C}) \end{bmatrix}$$

Remark:

It can also be proved that if \mathcal{E} is a topos, a functor $\rho: \mathcal{E} \to \mathcal{D}$ has a left adjoint if and only if it respects limits.

Proof of the theorem:

The condition is necessary for any functor between categories. Conversely, suppose \mathcal{E} is a topos $\widehat{\mathcal{C}}_J$ and ρ respects colimits. For any covering sieve *S* of an object *X* of \mathcal{C} , we have

$$\ell(X) = \varinjlim_{(X' \to X) \in S} \ell(X')$$
 in $\widehat{\mathcal{C}}_J$

so
$$\rho \circ \ell(X) = \varinjlim_{\substack{(X' \to X) \in S \\ (X' \to X) \in S}} \rho \circ \ell(X')$$
 in \mathcal{D}
and $F_Y(X) = \varprojlim_{\substack{(X' \to X) \in S \\ (X' \to X) \in S}} F_Y(X')$, which means F_Y is a sheaf.
Furthermore, for any sheaf F on \mathcal{C} , we have $F = \varinjlim_{\substack{(X,a) \in \mathcal{C}/F}} \ell(X)$ and so

 $\operatorname{Hom}({\boldsymbol{\mathsf{F}}},{\boldsymbol{\mathsf{F}}}_{Y}) = \varprojlim_{(X,a)\in \mathcal{C}/{\boldsymbol{\mathsf{F}}}} \operatorname{Hom}(\ell({\boldsymbol{X}}),{\boldsymbol{\mathsf{F}}}_{Y}) = \varprojlim_{(X,a)\in \mathcal{C}/{\boldsymbol{\mathsf{F}}}} \operatorname{Hom}(\rho\circ\ell({\boldsymbol{X}}),{\boldsymbol{Y}}) = \operatorname{Hom}(\rho({\boldsymbol{\mathsf{F}}}),{\boldsymbol{Y}})\,.$

Corollary:

Let \mathcal{E} = topos endowed with a ring object \mathcal{O} . For any object F of \mathcal{E} , let

 $\mathcal{O}_F = \text{ring object } \mathcal{O} \times F \text{ of } \mathcal{E}/F.$

Then any morphism $f: F_1 \rightarrow F_2$ of \mathcal{E} induces an additive functor

$$f^* = f^{-1} : \mathcal{M}od_{\mathcal{O}_{F_2}} \longrightarrow \mathcal{M}od_{\mathcal{O}_{F_1}}$$

which has a right adjoint

$$f_*: \mathcal{M}od_{\mathcal{O}_{F_1}} \longrightarrow \mathcal{M}od_{\mathcal{O}_{F_2}}$$

and a left adjoint

$$f_{!}: \mathcal{M}od_{\mathcal{O}_{F_{1}}} \longrightarrow \mathcal{M}od_{\mathcal{O}_{F_{2}}}.$$

Remark: Suppose \mathcal{E} is $\widehat{\mathcal{C}}_J$ endowed with $\ell : \mathcal{C} \xrightarrow{\gamma} \widehat{\mathcal{C}} \xrightarrow{j^*} \widehat{\mathcal{C}}_J$. Then:

• For any object X of C, the ring object $\mathcal{O}_X = \mathcal{O}_{\ell(X)}$ of $\mathcal{E}/\ell(X) \cong (\mathcal{C}/X)_{J_X}$ is the sheaf $(X' \to X) \mapsto \mathcal{O}(X')$

$$(X' \longrightarrow X) \longmapsto \mathcal{O}(X')$$
.

 For any morphism f : X₁ → X₂ of C, the functor f^{*} = f⁻¹ : Mod_{O_{X2}} → Mod_{O_{X1}} associates to any O_{X2}-Module M on C/X₂ the sheaf

$$(X \xrightarrow{g} X_1) \longmapsto \mathcal{M}(X \xrightarrow{f \circ g} X_2).$$

• Its right adjoint $f_* : Mod_{\mathcal{O}_{X_1}} \to Mod_{\mathcal{O}_{X_2}}$ associates to any \mathcal{O}_{X_1} -Module \mathcal{M} on \mathcal{C}/X_1 the sheaf

$$(X \longrightarrow X_2) \longmapsto \varprojlim_{\begin{pmatrix} X' \to X \\ \downarrow & \downarrow \\ X_1 \to X_2 \end{pmatrix} = \operatorname{commutative}_{\substack{\text{square}}} \mathcal{M}(X' \longrightarrow X_1) \,.$$

Its left adjoint *f*₁ : *Mod*_{O_{X1}} → *Mod*_{O_{X2}} associates to any O_{X1}-Module *M* on *C*/*X*₁ the sheafification of the presheaf

$$(X \longrightarrow X_2) \longmapsto \bigoplus_{\substack{(X \xrightarrow{g} \to X_1 \xrightarrow{f} \to X_2) \\ = \text{factorisation of } X \to X_2}} \mathcal{M}(X \xrightarrow{g} X_1).$$

So the functor f is exact O. Caramello & L. Lafforgue

Subtoposes and open subtoposes

Definition:

(i) A morphism of toposes $(f^{-1}, f_*) : \mathcal{E}_1 \to \mathcal{E}_2$ is called an embedding, and \mathcal{E}_1 is called a subtopos of \mathcal{E}_2 , if its push-forward component

$$f_*: \mathcal{E}_1 \longrightarrow \mathcal{E}_2$$

is fully faithful.

 (ii) A subtopos (f⁻¹, f_{*}) : E₁ → E₂ is called open if it identifies with a localisation (p⁻¹, p_{*}) : E₂/F → E₂ for some object F of E₂ endowed with p : F → 1.

Remarks:

- (i) For any site $(\mathcal{C}, J), (j^*, j_*) : \widehat{\mathcal{C}}_J \to \widehat{\mathcal{C}}$ is a subtopos.
- (ii) Conversely, one can prove that any subtopos of \widehat{C} has the form \widehat{C}_J for a unique topology J on C.
- (iii) This implies that subtoposes of a topos \widehat{C}_J correspond to topologies J' on \mathcal{C} which contain J.

Lemma: Let $\mathcal{E} = \text{topos}$,

 $(F_1 \xrightarrow{f} F_2) = \text{morphism of } \mathcal{E}.$

Then the morphism of toposes

$$(f^{-1}, f_*): \mathcal{E}/F_1 \longrightarrow \mathcal{E}/F_2$$

is an embedding if and only if the morphism

is a monomorphism.

$$f: F_1 \longrightarrow F_2$$

Remark: If
$$\mathcal{E} = \widehat{\mathcal{C}}_J$$
 endowed with $\ell : \mathcal{C} \xrightarrow{y} \widehat{\mathcal{C}} \xrightarrow{j^*} \widehat{\mathcal{C}}_J$,
any monomorphism $i : X_1 \hookrightarrow X_2$ of \mathcal{C}
yields a monomorphism $\ell(X_1) \hookrightarrow \ell(X_2)$ of $\widehat{\mathcal{C}}_J$
and so an open embedding of toposes

$$\widehat{(\mathcal{C}/X_1)}_{J_{X_1}} = \mathcal{E}/\ell(X_1) \longrightarrow \mathcal{E}/\ell(X_2) = \widehat{(\mathcal{C}/X_2)}_{J_{X_2}}$$

Proof of the lemma: The following conditions are equivalent:

- (1) f_* is fully faithful.
- (2) The morphism $f^* \circ f_* \to id$ is an isomorphism.
- (3) The morphism $id \rightarrow f^* \circ f_!$ is an isomorphism.
- (4) $f_!: (F \xrightarrow{g} F_1) \mapsto (F \xrightarrow{f \circ g} F_2)$ is fully faithful.
- (5) f is a monomorphism of \mathcal{E} .

Remark:

Suppose
$$\mathcal{E} = \widehat{\mathcal{C}}_J$$
 endowed with $\ell : \mathcal{C} \xrightarrow{y} \widehat{\mathcal{C}} \xrightarrow{j^*} \widehat{\mathcal{C}}_J$
and $\mathcal{O} = \text{ring object of } \mathcal{E}$
inducing a ring object $\mathcal{O}_X = \mathcal{O}_{\ell(X)}$
of $\mathcal{E}/\ell(X) \cong \widehat{(\mathcal{C}/X)}_{J_X}$ for any object X of \mathcal{C} .

Then, for any monomorphism $i: X_1 \hookrightarrow X_2$ of \mathcal{C} , the functor

$$i_!: \mathcal{M}od_{\mathcal{O}_{X_1}} \longrightarrow \mathcal{M}od_{\mathcal{O}_{X_2}}$$

associates to any \mathcal{O}_{X_1} -Module \mathcal{M} on \mathcal{C}/X_1 the sheafification of the presheaf on \mathcal{C}/X_2

$$(X \longrightarrow X_2) \longmapsto \begin{cases} \mathcal{M}(X \to X_1) & \text{if} \quad X \to X_2 \text{ factorises as } X \to X_1 \hookrightarrow X_2 \,, \\ 0 \text{ otherwise.} \end{cases}$$

So the functor $i_{!}$ can be called "extension by 0" as in the case of topological spaces.

Derived categories of modules in toposes

Definition:

Let $(\mathcal{E}, \mathcal{O})$ = ringed topos = topos \mathcal{E} endowed with a ring object \mathcal{O} .

Then one denotes

 $\begin{array}{l} D(\mathcal{M}\!od_{\mathcal{O}}),\\ D^+(\mathcal{M}\!od_{\mathcal{O}}),\\ D^-(\mathcal{M}\!od_{\mathcal{O}}),\\ D^b(\mathcal{M}\!od_{\mathcal{O}}) \end{array}$

the derived categories of the abelian category $\mathcal{M}od_{\mathcal{O}}$ of modules over \mathcal{O} in \mathcal{E} .

Remark: If \mathcal{E} is written $\widehat{\mathcal{C}}_J$, the objects of these derived categories can be seen as complexes of linear sheaves on (\mathcal{C}, J) .

The additive functors we have introduced induce functors between derived categories when they are exact:

Corollary:

 (i) For any morphism of toposes (f⁻¹, f_{*}) : E₁ → E₂ and any ring object O₂ of E₂, the exact functor f⁻¹ : Mod_{O2} → Mod_{f⁻¹O2} defines an additive functor

$$f^{-1}: D(\mathcal{M}od_{\mathcal{O}_2}) \longrightarrow D(\mathcal{M}od_{f^{-1}\mathcal{O}_2})$$

which respects distinguished triangles and commutes with each [m].

(ii) For any morphism $f : F_1 \to F_2$ in a topos \mathcal{E} endowed with a ring object \mathcal{O} , the exact functor $f_1 : \mathcal{M}od_{\mathcal{O}_{F_1}} \to \mathcal{M}od_{\mathcal{O}_{F_2}}$ between the abelian categories of modules over \mathcal{O}_{F_1} and \mathcal{O}_{F_2} in the localised toposes \mathcal{E}/F_1 and \mathcal{E}/F_2 defines an additive functor

$$f_{!}: D(\mathcal{M}od_{\mathcal{O}_{F_{1}}}) \longrightarrow D(\mathcal{M}od_{\mathcal{O}_{F_{2}}})$$

which respects distinguished triangles and commutes with each [m].

Flat and injective modules in toposes

We recall:

Definition:

- Let $\mathcal{E} = \text{topos}$,
 - $\mathcal{O} = \text{ring object of } \mathcal{E}.$
 - (i) An object M of Mod_O is called "flat" if the functor • ⊗_O M is exact.
- (ii) An object I of Mod_O is called "injective" if the functor Hom_O(●, I) is exact.

Remark:

These definitions make sense even if \mathcal{O} is not necessarily a commutative ring object of \mathcal{E} .

In that case, $\bullet \otimes_{\mathcal{O}} \mathcal{M}$ is an additive functor from the abelian category $\mathcal{M}od_{\mathcal{O}^{op}}$ of right \mathcal{O} -Modules in \mathcal{E} to the category $\mathcal{M}od_{\mathbb{Z}_{\mathcal{E}}}$ of abelian objects of \mathcal{E} .

Theorem:

 $\begin{array}{l} \text{Let } \mathcal{E} = \text{topos,} \\ \mathcal{O} = \text{ring object of } \mathcal{E}. \end{array}$

Then:

(i) For any \mathcal{O} -Module \mathcal{M} in \mathcal{E} , there is an epimorphism

 $\mathcal{M}_0\twoheadrightarrow \mathcal{M}$

from a flat \mathcal{O} -Module \mathcal{M}_0 .

(ii) For any \mathcal{O} -Module \mathcal{M} in \mathcal{E} , there is a monomorphism

 $\mathcal{M} \hookrightarrow \mathcal{I}$

to an injective \mathcal{O} -Module \mathcal{I} .

Proof of (i):

Let $\mathcal{E} = \widehat{\mathcal{C}}_J$ for some small site (\mathcal{C}, J) endowed with $\ell : \mathcal{C} \to \widehat{\mathcal{C}}_J$. For any object *X* of \mathcal{C} , consider the localisation morphism

$$(i_X^*, i_{X,*}) : \mathcal{E}/\ell(X) = \widehat{(\mathcal{C}/X)}_{J_X} \longrightarrow \mathcal{E} = \widehat{\mathcal{C}}_J,$$

the restricted ring object $\mathcal{O}_X = i_X^* \mathcal{O}$ in $\mathcal{E}/\ell(X)$ and the left adjoint

$$\begin{array}{cccc} i_{X,!} \cdot \mathcal{M}\!\textit{od}_{\mathcal{O}_X} & \longrightarrow & \mathcal{M}\!\textit{od}_{\mathcal{O}}\\ \text{of} & i_X^* : \mathcal{M}\!\textit{od}_{\mathcal{O}} & \longrightarrow & \mathcal{M}\!\textit{od}_{\mathcal{O}_X} \end{array}$$

Any section $m \in \mathcal{M}(X)$ of an \mathcal{O} -Module \mathcal{M} can be seen as a morphism

$$i_{X,!}\mathcal{O}_X\longrightarrow \mathcal{M}$$

and so there is a canonical epimorphism

$$\mathcal{M}_0 = \bigoplus_X \bigoplus_{m \in \mathcal{M}(X)} i_{X,!} \mathcal{O}_X \twoheadrightarrow \mathcal{M}.$$

Lastly, the \mathcal{O} -Module \mathcal{M}_0 is flat because for any X the functor

$$\mathcal{N} \longmapsto \mathcal{N} \otimes_{\mathcal{O}} i_{X,!} \mathcal{O}_X$$

identifies with the composite exact functor

$$\mathcal{N} \longmapsto i_{X,!}i_X^*\mathcal{N}$$
.

Proof of (ii):

Choose in $\mathcal{M}od_{\mathcal{O}}$ a "generator" \mathcal{A} in the sense that, for any monomorphism $\mathcal{M}' \hookrightarrow \mathcal{M}$ of $\mathcal{M}od_{\mathcal{O}}$ with $\mathcal{M}/\mathcal{M}' \neq 0$, there is a morphism $\mathcal{A} \to \mathcal{M}$ which does not factorise through \mathcal{M}' . For instance, if $\mathcal{E} = \widehat{\mathcal{C}}_{\mathcal{A}}$ for some small site $(\mathcal{C}, \mathcal{J})$, one can take

$$\mathcal{A} = \bigoplus_{X \in \mathrm{Ob}(\mathcal{C})} i_{X,!} i_X^* \mathcal{O} \,.$$

We first prove:

Lemma:

An \mathcal{O} -Module \mathcal{I} in \mathcal{E} is injective if and only if, for any subobject $\mathcal{B} \to \mathcal{A}$ of the generator \mathcal{A} , any morphism $\mathcal{B} \to \mathcal{I}$ extends to a morphism $\mathcal{A} \to \mathcal{I}$.

Proof of the lemma:

The condition is obviously necessary. In the reverse direction, consider a monomorphism of $\mathcal{M}od_{\mathcal{O}}$

$$\mathcal{M}' \hookrightarrow \mathcal{M}$$

and a morphism $f : \mathcal{M}' \to \mathcal{I}$.

We have to prove that *f* extends to a morphism $\mathcal{M} \to \mathcal{I}$.

Consider the set *I* of pairs (\mathcal{M}_1, f_1) consisting in a subobject $\mathcal{M}_1 \hookrightarrow \mathcal{M}$ containing \mathcal{M}' and a morphism $f_1 : \mathcal{M}_1 \to \mathcal{I}$ which extends *f*. For two elements $(\mathcal{M}_1, f_1), (\mathcal{M}_2, f_2)$ we say that

$$(\mathcal{M}_1, f_1) \leq (\mathcal{M}_2, f_2)$$

if \mathcal{M}_2 contains \mathcal{M}_1 and f_2 extends f_1 . For any totally ordered subset I' of I,

$$\mathcal{M}_2 = \varinjlim_{(\mathcal{M}_1, f_1) \in I'} \mathcal{M}_1$$

is a subobject of $\ensuremath{\mathcal{M}}$ and it is endowed with a morphism

$$\textit{f}_2:\mathcal{M}_2\to\mathcal{I}$$

such that $(\mathcal{M}_1, f_1) \leq (\mathcal{M}_2, f_2), \forall (\mathcal{M}_1, f_1) \in I'$. According to Zorn's lemma, *I* has a maximal element (\mathcal{M}_1, f_1) . For any morphism $\mathcal{A} \to \mathcal{M}$, consider $\mathcal{B} = \mathcal{M}_1 \times_{\mathcal{M}} \mathcal{A}$.

By hypothesis, the composed morphism $\mathcal{B} \to \mathcal{M}_1 \xrightarrow{f_1} \mathcal{I}$ extends to a morphism $\mathcal{A} \to \mathcal{I}$. This defines a morphism

$$\mathcal{B} \setminus (\mathcal{M}_1 \oplus \mathcal{A}) = \mathcal{M}_2 \xrightarrow{f_2} \mathcal{I}$$

which extends $f_1 : \mathcal{M}_1 \to \mathcal{I}$ to \mathcal{M}_2 . On the other hand, \mathcal{M}_2 is a subobject of \mathcal{M} . As (\mathcal{M}_1, f_1) is maximal, this implies that $\mathcal{M}_2 = \mathcal{M}_1$ or, equivalently, that $\mathcal{A} \to \mathcal{M}$ factorises through \mathcal{M}_1 .

As \mathcal{A} is a generator, this means that $\mathcal{M}_1 = \mathcal{M}$.

We also prove:

Lemma:

For any \mathcal{O} -Module \mathcal{M} , there is a monomorphism

 $\mathcal{M} \hookrightarrow \mathcal{M}_1$

such that, for any subobject $\mathcal B$ of the generator $\mathcal A$, any morphism

$$\mathcal{B} \longrightarrow \mathcal{M}$$

extends to a morphism

$$\mathcal{A} \longrightarrow \mathcal{M}_1$$
 .

Proof of the lemma:

The subobjects of any object of $\mathcal{M}od_{\mathcal{O}}$ make up a set. In particular, the subobjects of \mathcal{A} make up a set S. One can take for \mathcal{M}_1 the quotient of

$$\mathcal{M} \oplus \Bigl(igoplus_{\mathcal{B} \in \mathcal{S}} igoplus_{f \in \operatorname{Hom}(\mathcal{B}, \mathcal{M})} \mathcal{A} \Bigr)$$

by

Conclusion of the proof of (ii): Starting from $\mathcal{M}_0 = \mathcal{M}$, let's define an inductive system of \mathcal{O} -Modules

 \mathcal{M}_i indexed by the ordinals *i*

and related by monomorphisms $\mathcal{M}_i \hookrightarrow \mathcal{M}_j$ for $i \leq j$. The construction is by transfinite induction:

- (• if j = i + 1, M_j is deduced from M_i by the construction of the previous lemma.
- if *j* is the limit of the i < j, we take

$$\mathcal{M}_j = \varinjlim_{i < j} \mathcal{M}_i$$
.

Let *k* be an ordinal whose cardinality is strictly bigger than the cardinality of the set of subobjects of A and which is the limit of the *i* < *k*.

For any morphism $f : \mathcal{B} \to \mathcal{M}_k$ defined on a subobject \mathcal{B} of \mathcal{A} , the formula

$$\mathcal{M}_k = \lim_{i < k} \mathcal{M}_i$$
 implies $\mathcal{B} = \lim_{i < k} f^{-1}(\mathcal{M}_i)$.

As the cardinality of *k* is strictly bigger than the cardinality of the set of subobjects of \mathcal{B} , this implies that $f : \mathcal{B} \to \mathcal{M}_k$ factorises as

$$\mathcal{B} \longrightarrow \mathcal{M}_i$$

for some i < k and so it extends to some morphism

$$\mathcal{A} \longrightarrow \mathcal{M}_k$$
.

The \mathcal{O} -Module \mathcal{M}_k is injective according to the first lemma.

Remark:

Suppose a topos \mathcal{E} has a set P of points $x = (x^*, x_*)$: Set $\to \mathcal{E}$ which is conservative in the sense that a morphism of \mathcal{E}

$$F_1 \longrightarrow F_2$$

is an isomorphism if and only if $x^*F_1 \to x^*F_2$ is one-to-one for any $x \in F$. Then, for any ring object \mathcal{O} of \mathcal{E} , any \mathcal{O} -Module \mathcal{M} has the canonical embedding

$$\mathcal{M} \hookrightarrow \prod_{x \in \mathcal{P}} x_* \circ x^* \mathcal{M}.$$

Each x^*M is a module over the ring $\mathcal{O}_x = x^*\mathcal{O}$ and can be embedded into an injective \mathcal{O}_x -module, for instance

$$I_x = \operatorname{Hom}(M_x, \mathbb{Q}/\mathbb{Z})$$

for any free \mathcal{O}_x -module M_x endowed with an epimorphism

$$M_x \twoheadrightarrow \operatorname{Hom}(x^*\mathcal{M}, \mathbb{Q}/\mathbb{Z})).$$

Then there is an induced embedding

$$\mathcal{M} \hookrightarrow \prod_{x \in P} x_* I_x$$
.

The \mathcal{O} -Module $\prod_{x \in P} x_* I_x$ is injective as, for any $x \in P$, I_x is an injective \mathcal{O}_x -module and the functor x^* is exact.

In order to derive the functors f^* and \otimes , we need to complete the previous theorem with:

Proposition:

Let $\mathcal{E} =$ topos,

 $\mathcal{O} = \operatorname{ring} \operatorname{object} \operatorname{of} \mathcal{E}.$

Then, for any short exact sequence of $\mathcal{M}od_{\mathcal{O}}$

$$0 \longrightarrow \mathcal{M}_1 \longrightarrow \mathcal{M}_2 \longrightarrow \mathcal{M}_3 \longrightarrow 0\,,$$

we have:

(i) For any Module \mathcal{N} , the induced sequence

$$0 \longrightarrow \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M}_1 \longrightarrow \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M}_2 \longrightarrow \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M}_3 \longrightarrow 0$$

is exact if \mathcal{M}_3 is flat.

(ii) If \mathcal{M}_2 and \mathcal{M}_3 are flat, \mathcal{M}_1 is flat as well.

Proof:

(i) For any Module \mathcal{N} , we can choose an epimorphism

$$\mathcal{N}' \twoheadrightarrow \mathcal{N}$$

from a flat Module \mathcal{N}' and denote $\mathcal{N}'' = \text{Ker}(\mathcal{N}' \to \mathcal{N}).$

As \mathcal{N}' is flat, $\mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_1 \to \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_2$ is a monomorphism and we deduce from the commutative square

$$\begin{array}{c} \mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_{1} \longrightarrow \mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_{2} \\ & \downarrow \\ \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_{1} \longrightarrow \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_{2} \end{array}$$

that $\mathcal{N}''\otimes_\mathcal{O}\mathcal{M}_1\to \mathcal{N}'\otimes_\mathcal{O}\mathcal{M}_1$ factorises through

$$\mathcal{L} = \operatorname{Im}(\mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_1 \longrightarrow \mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_2) \,.$$

So we have a short exact sequence of complexes

$$0 \longrightarrow \begin{pmatrix} \mathcal{L} \\ \downarrow \\ \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_1 \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_2 \\ \downarrow \\ \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_2 \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_3 \\ \downarrow \\ \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_3 \end{pmatrix} \longrightarrow 0 \,.$$

As \mathcal{M}_3 is flat, $\mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_3 \to \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_3$ is a monomorphism and the associated long exact sequence of cohomology yields a short exact sequence

$$0 \longrightarrow \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M}_1 \longrightarrow \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M}_2 \longrightarrow \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M}_3 \longrightarrow 0\,.$$

(ii) If \mathcal{M}_2 and \mathcal{M}_3 are flat, we have for any short exact sequence of Modules

$$0 \longrightarrow \mathcal{N}'' \longrightarrow \mathcal{N}' \longrightarrow \mathcal{N} \longrightarrow 0$$

an associated short exact sequence of complexes

$$0 \longrightarrow \begin{pmatrix} \mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_2 \\ \downarrow \\ \mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_3 \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_2 \\ \downarrow \\ \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_3 \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M}_2 \\ \downarrow \\ \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M}_3 \end{pmatrix} \longrightarrow 0 \,.$$

As \mathcal{M}_3 is flat, the associated long exact sequence of cohomology reduces to the short exact sequence

$$0 \longrightarrow \mathcal{N}'' \otimes_{\mathcal{O}} \mathcal{M}_1 \longrightarrow \mathcal{N}' \otimes_{\mathcal{O}} \mathcal{M}_1 \longrightarrow \mathcal{N} \otimes_{\mathcal{O}} \mathcal{M}_1 \longrightarrow 0 \,.$$

This means that \mathcal{M}_1 also is flat.

Corollary:

Let $f : (\mathcal{E}_1, \mathcal{O}_1) \to (\mathcal{E}_2, \mathcal{O}_2)$ = morphism of ringed toposes.

Then:

(i) The right-exact functor

$$f^*: \mathcal{M}\!od_{\mathcal{O}_2}
ightarrow \mathcal{M}\!od_{\mathcal{O}_1}$$

has a left derived functor

$$Lf^*: D^{-}(\mathcal{M}od_{\mathcal{O}_2}) \longrightarrow D^{-}(\mathcal{M}od_{\mathcal{O}_1})$$

whose restriction to complexes of flat Modules (or more generally f^* -acyclic Modules) is induced by f^* .

(ii) The left-exact functor

$$f_*: \mathcal{M}od_{\mathcal{O}_1} \longrightarrow \mathcal{M}od_{\mathcal{O}_2}$$

has a right exact functor

$$\mathbf{R}f_*: D^+(\mathcal{M}od_{\mathcal{O}_1}) \longrightarrow D^+(\mathcal{M}od_{\mathcal{O}_2})$$

whose restriction to complexes of injective Modules (or more generally f_* -acyclic Modules) is induces by f_* .

Remarks:

(i) If f* has finite cohomological dimension, it even has a derived functor

$$Lf^* : D(\mathcal{M}od_{\mathcal{O}_2}) \longrightarrow D(\mathcal{M}od_{\mathcal{O}_1})$$

whose restriction to complexes of f^* -acyclic objects is induced by f^* . It restricts to a functor

$$Lf^*: D^+(\mathcal{M}od_{\mathcal{O}_2}) \longrightarrow D^+(\mathcal{M}od_{\mathcal{O}_1})$$

which is left adjoint to Rf_* .

(ii) If f_* has finite cohomological dimension, it even has a derived functor

$$Rf_*: D(\mathcal{M}od_{\mathcal{O}_1}) \longrightarrow D(\mathcal{M}od_{\mathcal{O}_2})$$

whose restriction to complexes of f_* -acyclic objects is induced by f_* . It restricts to a functor

$$\mathbf{R}f_*: D^-(\mathcal{M}od_{\mathcal{O}_1}) \longrightarrow D^-(\mathcal{M}od_{\mathcal{O}_2})$$

which is right adjoint to Lf^* .

(iii) For any morphisms of ringed toposes

$$(\mathcal{E}_1, \mathcal{O}_1) \xrightarrow{f} (\mathcal{E}_2, \mathcal{O}_2) \xrightarrow{g} (\mathcal{E}_3, \mathcal{O}_3),$$

the functor

 $g^* = \mathcal{O}_2 \otimes_{g^{-1}\mathcal{O}_3} ullet$

transforms flat \mathcal{O}_3 -Modules into flat \mathcal{O}_2 -Modules. Therefore the canonical morphism

$$Lf^* \circ Lg^* \longrightarrow L(g \circ f)^*$$

is an isomorphism.

(iv) In the same situation, the canonical functor

$$\mathbf{R}(\boldsymbol{g}\circ\boldsymbol{f})_*\longrightarrow\mathbf{R}\boldsymbol{g}_*\circ\mathbf{R}\boldsymbol{f}_*$$

is also an isomorphism.

Indeed, we first remark that this statement is true if $\mathcal{O}_1 = f^{-1}\mathcal{O}_2$ as, in that case, $f^* = f^{-1} : \mathcal{M}od_{\mathcal{O}_2} \to \mathcal{M}od_{\mathcal{O}_1}$ is exact and its right adjoint $f_* : \mathcal{M}od_{\mathcal{O}_1} \to \mathcal{M}od_{\mathcal{O}_2}$ transforms injective \mathcal{O}_1 -Modules in injective \mathcal{O}_2 -Modules.

The general case follows from this remark and the following lemma:

Lemma:

For any morphism of ringed toposes

$$(\mathcal{E}_1, \mathcal{O}_1) \xrightarrow{f} (\mathcal{E}_2, \mathcal{O}_2),$$

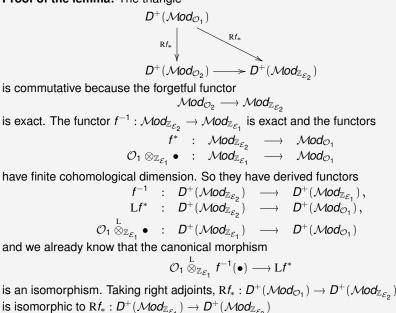
the diagram

$$\begin{array}{c|c} D^{+}(\mathcal{M}od_{\mathcal{O}_{1}}) \longrightarrow D^{+}(\mathcal{M}od_{\mathbb{Z}_{\mathcal{E}_{1}}}) \\ & Rf_{*} \\ & & \downarrow \\ D^{+}(\mathcal{M}od_{\mathcal{O}_{2}}) \longrightarrow D^{+}(\mathcal{M}od_{\mathbb{Z}_{\mathcal{E}_{2}}}) \end{array}$$

is commutative up to isomorphism.

Remark:

For any topos \mathcal{E} and its canonical morphism $\mathcal{E} \xrightarrow{(p^{-1}, p_*)}$ Set and any ring R, we denote $R_{\mathcal{E}} = p^{-1}R$. In particular, $\mathcal{M}od_{\mathbb{Z}_{\mathcal{E}}}$ is the category of abelian objects of \mathcal{E} . We know that any submodule of a flat \mathbb{Z} -module is flat. So the subcategory of $\mathcal{M}od_{\mathbb{Z}_{\mathcal{E}}}$ on flat $\mathbb{Z}_{\mathcal{E}}$ -Modules has codimension ≤ 1 .



composed with $D^+(\mathcal{M}od_{\mathcal{O}_1}) \to D^+(\mathcal{M}od_{\mathbb{Z}_{\mathcal{E}_1}}).$

The previous theorem and proposition also imply:

Corollary:

Let $(\mathcal{E}, \mathcal{O}) =$ commutative ringed topos

= topos \mathcal{E} endowed with a commutative ring object \mathcal{O} .

Then:

(i) The right-exact additive bifunctor

 $\otimes_{\mathcal{O}}: \mathcal{M}\!\textit{od}_{\mathcal{O}} \times \mathcal{M}\!\textit{od}_{\mathcal{O}} \longrightarrow \mathcal{M}\!\textit{od}_{\mathcal{O}}$

has a left derived functor

$$\overset{\mathrm{L}}{\otimes}_{\mathcal{O}}: \mathcal{D}(\mathcal{M}\!\textit{od}_{\mathcal{O}}) \times \mathcal{D}^{-}(\mathcal{M}\!\textit{od}_{\mathcal{O}}) \longrightarrow \mathcal{D}(\mathcal{M}\!\textit{od}_{\mathcal{O}})$$

constructed by factorising

$$\mathsf{K}(\mathcal{M}\!\mathit{od}_{\mathcal{O}}) \times \mathsf{K}^{-}(\mathcal{F}\!\mathit{lat}_{\mathcal{O}}) \xrightarrow{\bullet \otimes_{\mathcal{O}} \bullet} \mathsf{K}(\mathcal{M}\!\mathit{od}_{\mathcal{O}}) \xrightarrow{\mathsf{Q}} \mathsf{D}(\mathcal{M}\!\mathit{od}_{\mathcal{O}})$$

if $\mathcal{F}lat_{\mathcal{O}}$ denotes the full additive subcategory of $\mathcal{M}od_{\mathcal{O}}$ on flat \mathcal{O} -Modules. Furthermore, if $\bullet \otimes_{\mathcal{O}} \bullet$ has finite cohomological dimension, it even has a derived functor

$$\overset{\text{L}}{\otimes}_{\mathcal{O}}: D(\mathcal{M}\!od_{\mathcal{O}}) \times D(\mathcal{M}\!od_{\mathcal{O}}) \longrightarrow D(\mathcal{M}\!od_{\mathcal{O}})$$

constructed by factorising

$$\textit{K}(\mathcal{M}\!\textit{od}_{\mathcal{O}}) \times \textit{K}(\mathcal{F}\!\textit{lat}_{\mathcal{O}}) \xrightarrow{\bullet \otimes_{\mathcal{O}} \bullet} \textit{K}(\mathcal{M}\!\textit{od}_{\mathcal{O}}) \xrightarrow{\textit{Q}} \textit{D}(\mathcal{M}\!\textit{od}_{\mathcal{O}}).$$

(ii) The left-exact additive bifunctors

 $\begin{array}{rcl} \mathcal{H}\!om & : & \mathcal{M}\!od_{\mathcal{O}}^{op} \times \mathcal{M}\!od_{\mathcal{O}} & \longrightarrow & \mathcal{M}\!od_{\mathcal{O}} \,, \\ \mathrm{Hom} & : & \mathcal{M}\!od_{\mathcal{O}}^{op} \times \mathcal{M}\!od_{\mathcal{O}} & \longrightarrow & \mathrm{Ab} \end{array}$ have right derived functors $\begin{array}{rcl} \mathrm{R}\mathcal{H}\!om & : & D(\mathcal{M}\!od_{\mathcal{O}})^{op} \times D^+(\mathcal{M}\!od_{\mathcal{O}}) & \longrightarrow & D(\mathcal{M}\!od_{\mathcal{O}}) \\ \mathrm{R}\mathrm{Hom} & : & D(\mathcal{M}\!od_{\mathcal{O}})^{op} \times D^+(\mathcal{M}\!od_{\mathcal{O}}) & \longrightarrow & D(\mathrm{Ab}) \end{array}$

constructed by factorising

 $\begin{array}{lll} & \mathcal{K}(\mathcal{M}\!\textit{od}_{\mathcal{O}})^{\rm op} \times \mathcal{K}^{+}(\mathcal{I}\!\textit{nj}_{\mathcal{O}}) & \xrightarrow{\mathcal{H}\!\textit{om}} & \mathcal{K}(\mathcal{M}\!\textit{od}_{\mathcal{O}}) & \xrightarrow{\mathcal{O}} & \mathcal{D}(\mathcal{M}\!\textit{od}_{\mathcal{O}}) \,, \\ & \mathcal{K}(\mathcal{M}\!\textit{od}_{\mathcal{O}})^{\rm op} \times \mathcal{K}^{+}(\mathcal{I}\!\textit{nj}_{\mathcal{O}}) & \xrightarrow{\mathrm{Hom}} & \mathcal{K}(\mathrm{Ab}) & \xrightarrow{\mathcal{O}} & \mathcal{D}(\mathrm{Ab}) \,. \end{array}$

Remarks:

(i) Commutativity: The functors

$$(\mathcal{M}_1, \mathcal{M}_2) \longmapsto \mathcal{M}_1 \overset{L}{\otimes} \mathcal{M}_2 \quad \text{and} \quad (\mathcal{M}_1, \mathcal{M}_2) \longmapsto \mathcal{M}_2 \overset{L}{\otimes} \mathcal{M}_1$$

from $D^{-}(Mod_{\mathcal{O}}) \times D^{-}(Mod_{\mathcal{O}})$ to $D^{-}(Mod_{\mathcal{O}})$ are canonically isomorphic.

(ii) Associativity: The functors

$$\bullet \overset{L}{\otimes} \bullet) \overset{L}{\otimes} \bullet \quad \text{and} \quad \bullet \overset{L}{\otimes} (\bullet \overset{L}{\otimes} \bullet)$$

from $D(Mod_{\mathcal{O}}) \times D^{-}(Mod_{\mathcal{O}}) \times D^{-}(Mod_{\mathcal{O}})$ to $D^{-}(Mod_{\mathcal{O}})$ are canonically isomorphic.

(iii) Compatibility with pull-back: For any morphism of commutative ringed toposes $(\mathcal{E}_1, \mathcal{O}_1) \xrightarrow{f} (\mathcal{E}_2, \mathcal{O}_2).$ the functors $Lf^*(\bullet \overset{L}{\otimes} \bullet)$ and $Lf^*(\bullet) \overset{L}{\otimes} Lf^*(\bullet)$ from $D^{-}(\mathcal{M}od_{\mathcal{O}_2}) \times D^{-}(\mathcal{M}od_{\mathcal{O}_2})$ to $D^{-}(\mathcal{M}od_{\mathcal{O}_1})$ are canonically isomorphic. (iv) If \mathcal{M} is a flat \mathcal{O} -Module and \mathcal{I} an injective \mathcal{O} -Module, then $\mathcal{H}om(\mathcal{M},\mathcal{I})$ is an injective \mathcal{O} -Module. This follows from the identification between the functors Hom(\bullet , $\mathcal{H}om(\mathcal{M}, \mathcal{I})$) and Hom($\bullet \otimes_{\mathcal{O}} \mathcal{M}, \mathcal{I}$) from $\mathcal{M}od_{\mathcal{O}}$ to Ab. (v) The previous remark implies that the pairs of functors $RHom(\bullet, RHom(\bullet, \bullet))$ and $RHom(\bullet \overset{L}{\otimes} \bullet, \bullet)$ $\operatorname{RHom}(\bullet, \operatorname{R}\mathcal{Hom}(\bullet, \bullet))$ and $\operatorname{RHom}(\bullet \overset{L}{\otimes} \bullet, \bullet)$ or $\operatorname{Hom}(\bullet, \mathsf{R}\mathcal{Hom}(\bullet, \bullet))$ and $\operatorname{Hom}(\bullet \bigotimes^{\mathsf{L}} \bullet, \bullet)$ or from $D(Mod_{\mathcal{O}}) \times D^{-}(Mod_{\mathcal{O}}) \times D^{+}(Mod_{\mathcal{O}})$ to $D(Mod_{\mathcal{O}})$, D(Ab) or Abare canonically isomorphic.

(vi) Remark (iv) also implies that if

$$(\mathcal{E}, \mathcal{O}) \xrightarrow{p} (\operatorname{Set}, \mathbb{Z})$$

is the canonical morphism of commutative ringed toposes, the functors

RHom and $Rp_* \circ RHom$

from $D^-(Mod_{\mathcal{O}}) \times D^+(Mod_{\mathcal{O}})$ to $D^+(Ab)$ are canonically isomorphic. (vii) If $f : (\mathcal{E}_1, \mathcal{O}_1) \to (\mathcal{E}_2, \mathcal{O}_2)$ is a morphism of commutative ringed toposes such that \mathcal{O}_1 is flat over $f^{-1}\mathcal{O}_2$, then the functors

 $\operatorname{RHom}(f^*(\bullet), \bullet)$ and $\operatorname{RHom}(\bullet, \operatorname{R} f_*(\bullet))$

from $D(\mathcal{M}od_{\mathcal{O}_2})^{op} \times D^+(\mathcal{M}od_{\mathcal{O}_1})$ to D(Ab) are canonically isomorphic, as well as the functors

 $Rf_* \circ R\mathcal{H}om(f^*(\bullet), \bullet)$ and $R\mathcal{H}om(\bullet, Rf_*(\bullet))$

from $D(\mathcal{M}od_{\mathcal{O}_2})^{op} \times D^+(\mathcal{M}od_{\mathcal{O}_1})$ to $D(\mathcal{M}od_{\mathcal{O}_1})$.

Application to geometric categories

Suppose \mathcal{G} is a geometric category endowed with maps

$$(h \circ g \circ f)^{-1} \xrightarrow{\sim} f^{-1} \circ (h \circ g)^{-1} \xrightarrow{\sim} f^{-1} \circ (g^{-1} \circ h^{-1})$$

are equal.

We also suppose that, for any open embedding of \mathcal{G} ,

$$i: U \longrightarrow X$$
,

the morphism of toposes

$$(i^{-1}, i_*): \mathcal{E}_U \longrightarrow \mathcal{E}_X$$

identifies \mathcal{E}_U with an open subtopos of \mathcal{E}_X and the morphism

$$i^{-1}\mathcal{O}_X\longrightarrow \mathcal{O}_U$$

is an isomorphism.

Then one can associate to any object X of \mathcal{G} the abelian category $\mathcal{M}od_{\mathcal{O}_X}$ endowed with the functors Hom, $\mathcal{H}om$, \otimes and its derived categories

$$D(\mathcal{M}od_{\mathcal{O}_X}), \ D^+(\mathcal{M}od_{\mathcal{O}_X}), \ D^-(\mathcal{M}od_{\mathcal{O}_X}), \ D^b(\mathcal{M}od_{\mathcal{O}_X})$$

together with the derived functors

RHom, R
$$\mathcal{H}\!om,\stackrel{
m L}{\otimes}.$$

One can also associate to any morphism of \mathcal{G}

$$f: X \longrightarrow Y$$

a pair of adjoint functors

 $f^*: \mathcal{M}od_{\mathcal{O}_Y} \longrightarrow \mathcal{M}od_{\mathcal{O}_X}$ and $f_*: \mathcal{M}od_{\mathcal{O}_X} \longrightarrow \mathcal{M}od_{\mathcal{O}_Y}$

together with derived functors

 Lf^* and Rf_* .

If $i: U \hookrightarrow X$ is an open immersion,

 $i^*: \mathcal{M}od_{\mathcal{O}_X} \longrightarrow \mathcal{M}od_{\mathcal{O}_U}$

also has a left adjoint

$$i_{!}: \mathcal{M}od_{\mathcal{O}_{\mathcal{U}}} \longrightarrow \mathcal{M}od_{\mathcal{O}_{\mathcal{X}}}$$

which is exact and induces a functor

$$D(\mathcal{M}od_{\mathcal{O}_U}) \longrightarrow D(\mathcal{M}od_{\mathcal{O}_X}).$$

All these functors

RHom,
$$RHom$$
, $\overset{L}{\otimes}$, Lf^* , Rf_* , $i_!$

verify the properties stated before in the context of commutative ringed toposes.

For any commutative square of \mathcal{G}

such that s^*, x^* [resp. p_*, p'_*] have finite cohomological dimension, there is a canonical morphism of functors

$$L\boldsymbol{s}^* \circ R\boldsymbol{\rho}_* \longrightarrow R\boldsymbol{\rho}'_* \circ L\boldsymbol{x}^*$$

from $D^+(\mathcal{M}od_{\mathcal{O}_X})$ to $D^+(\mathcal{M}od_{\mathcal{O}_{S'}})$ [resp. from $D^-(\mathcal{M}od_{\mathcal{O}_X})$ to $D^-(\mathcal{M}od_{\mathcal{O}_{S'}})$]. **Definition:** A morphism of \mathcal{G}

$$X \xrightarrow{p} S$$
 [resp. $S' \xrightarrow{s} S$]

is called cohomologically proper [resp. coh. smooth] if:

- it is squarable in G,
- for any cartesian square of $\ensuremath{\mathcal{G}}$

completing $p: X \to S$ [resp. $s: S' \to S$],

 x^* always has finite cohomological dimension or p'_* always has finite cohomological dimension,

for any such cartesian square, the canonical morphism

$$Ls^* \circ Rp_* \longrightarrow Rp'_* \circ Lx^*$$

is an isomorphism.

The geometric category of schemes

Lemma:

Let A =commutative ring.

(i) For any $f \in A$, the functor

 $B \longmapsto \{u \in \operatorname{Hom}(A, B) \mid u(f) \text{ is invertible in } B\}$

is representable by

$$A_f = A[X]/(f \cdot X - 1).$$

(ii) For any *A*-module *M* and any element $f \in A$, elements of $A_f \otimes_A M = M_f$ can be written $f^{-n} \cdot m$ with $n \in \mathbb{N}$, $m \in M$. Two elements $f^{-n} \cdot m$ and $f^{-n'} \cdot m'$ are equal in M_f if and only if there exists $N \in \mathbb{N}$ such that $f^N \cdot (f^{n'} \cdot m - f^n \cdot m') = 0$ in *M*.

(iii) For any elements f_i , $i \in I$, of A such that $\sum f_i \cdot A = A$,

and any A-module M, the canonical morphism

$$M \longrightarrow \mathrm{Eq}\left(\prod_{i} M_{f_i} \rightrightarrows \prod_{i,j} M_{f_i f_j}\right)$$

is an isomorphism.

Proof:

(i) is obvious.

(ii) The A_f -module $M_f = A_f \otimes_A M$ is the quotient of the A[X]-module $A[X] \otimes_A M = \bigoplus_{n \in \mathbb{N}} X^n \otimes M$ by the submodule $(f \cdot X - 1) \cdot A[X] \otimes_A M$.

Any element of M_f can be represented by an expression

$$P = 1 \otimes m_0 + X \otimes m_1 + \cdots + X^n \otimes m_n$$

with $m_0, m_1, \ldots, m_n \in M$. Then $f^n \cdot P$ is also represented by $f^n \cdot m_0 + f^{n-1} \cdot m_1 + \cdots + f \cdot m_{n-1} + m_n \in M$

as $f^k \cdot X^k = 1$ in A_f for any $k \in \mathbb{N}$.

If an element $m \in M$ is 0 in M_f , there exists an expression $P = 1 \otimes m_0 + X \otimes m_1 + \cdots + X^n \otimes m_n \in A[X] \otimes_A M$ such that

 $m = (f \cdot X - 1) \cdot P$ in $A[X] \otimes_A M$.

This implies $m = m_0$, $f \cdot m_0 = m_1$,..., $f \cdot m_{n-1} = m_n$, $f \cdot m_n = 0$ and so $f^{n+1} \cdot m = 0$.

(iii) The equality $\sum_{i \in I} f_i \cdot A = A$ is equivalent to $1 \in \sum_{i \in I} f_i \cdot A$

so we can suppose that *I* is finite and equal to $\{1, ..., k\}$. It is also equivalent to the property that, for any prime ideal *p* of *A*, there exists *i* such that $f_i \notin p$.

So each f_i can be replaced by an arbitrary power of f_i .

Consider an element $m \in M$ whose image in each M_{f_i} is 0. Then there exist integers $n_i \ge 1$ such that $f_i^{n_i} \cdot m = 0$ in M for any i.

As there are elements $a_i \in A$ such that

we conclude

$$a_1 f_1^{n_1} + \cdots + a_k f_k^{n_k} = 1$$
,

$$m = a_1 f_1^{n_1} \cdot m + \cdots + a_k f_k^{n_k} \cdot m = 0 \quad \text{in} \quad M.$$

This means we have an embedding

$$M \hookrightarrow \prod M_{f_i}$$
.

Then consider a family of elements $f_i^{-n_i} \cdot m_i \in M_{f_i}$, $1 \le i \le k$, such that, for any i, j, $f_i^{-n_i} \cdot m_i = f_j^{-n_j} \cdot m_j$ in $M_{f_i f_j}$. We can suppose all the integers n_i to be equal to some $n \in \mathbb{N}$.

Then there is an integer $N \ge 0$ such that, for any *i*, *j*,

$$(f_i f_j)^N f_j^n \cdot m_i = (f_i f_j)^N f_i^n \cdot m_j$$
 in M .

Replacing each m_i by $f_i^N \cdot m_i$ and each f_i by f_i^{N+n} , our elements are now written $f_i^{-1} \cdot m_i$ and verify the equalities

 $f_j \cdot m_i = f_i \cdot m_j$ in *M* for any *i*, *j*.

Choosing elements $a_i \in A$ such that $a_1 f_1 + \cdots + a_k f_k = 1$, we define the element of M

For any *i*, we have in M $m = a_1 \cdot m_1 + \cdots + a_k \cdot m_k$.

$$f_i \cdot m = \sum_i a_j f_i \cdot m_j = \sum_i a_j f_j \cdot m_i = m_i$$

which means that $f_i^{-1} \cdot m_i = m$ in each M_{f_i} .

Corollary:

(i) Any commutative ring A defines a ringed space Spec(A) (called the spectrum of A) such that

- the underlying set of Spec(A) is the set of ideals p ⊂ A which are prime (meaning: a₁a₂ ∈ p ⇒ a₁ ∈ p or a₂ ∈ p)
- open subsets of Spec(A) are unions of subsets of the form

Spec(A_f) = {p prime | $f \notin p$ } with $f \in A$,

- the structure sheaf of Spec(A) is the unique sheaf of rings \mathcal{O}_A such that, for any $f \in A$, $\mathcal{O}_A(\text{Spec}(A_f)) = A_f$.
- (ii) Any morphism $u : A \to B$ of commutative rings defines a morphism of ringed spaces $Spec(B) \longrightarrow Spec(A)$ such that
 - the underlying map $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is

$$(\boldsymbol{q}\subset \boldsymbol{B})\longmapsto (\boldsymbol{p}=\boldsymbol{u}^{-1}(\boldsymbol{q})\subset \boldsymbol{A}),$$

- for any $f \in A$, the pull-back of the open subset $\text{Spec}(A_f)$ is the open subset $\{q \mid f \notin u^{-1}(q)\} = \text{Spec}(B_{u(f)}),$
- for any $f \in A$, the morphism

$$\mathcal{O}_{\mathcal{A}}(\operatorname{Spec}(\mathcal{A}_f)) \longrightarrow \mathcal{O}_{\mathcal{B}}(\operatorname{Spec}(\mathcal{B}_{u(f)}))$$

is the morphism $A_f \rightarrow B_{u(f)}$ induced by $u : A \rightarrow B$.

Remarks:

- (i) If Aff denotes the opposite category of the category of commutative rings, this defines a faithful functor $Aff \longrightarrow Sp$ to the category Sp of ringed spaces.
- (ii) The category Aff, which is called the category of affine schemes, has a terminal object $\text{Spec}(\mathbb{Z})$ and arbitrary fiber products $\text{Spec}(B_1) \times_{\text{Spec}(A)} \text{Spec}(B_2) = \text{Spec}(B_1 \otimes_A B_2).$

(iii) For any point p of some affine scheme Spec(A), the fiber

$$\mathcal{O}_{A,p} = \varinjlim_{f \notin p} A_f = A_p$$

has a unique maximal ideal $p \cdot A_p$ and the quotient $A_p/p \cdot A_p = \kappa_p$ (called the residue field at *p*) is the fraction field of the domain A/p. So Spec(*A*) is a locally ringed space.

(iv) For any morphism $u: A \to B$ inducing $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ and any point $q \in \operatorname{Spec}(B)$ sent to $u^{-1}(q) = p \in \operatorname{Spec}(A)$, the induced morphism between the fibers

$$A_{
ho} = \mathcal{O}_{A,
ho} \longrightarrow \mathcal{O}_{B,q} = B_q$$

sends $p \cdot A_p$ to $q \cdot B_q$.

So $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is a morphism of locally ringed spaces.

(v) Conversely, one can prove that any morphism of locally ringed spaces $\operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A)$

is induced by a ring morphism $A \rightarrow B$.

Examples of affine schemes:

(i) For any family of polynomials

$$P_i \in A[X_1,\ldots,X_n]$$

with coefficients in a commutative ring A, the functor

$$\begin{array}{rcl} \mathrm{Aff}/\mathrm{Spec}(A)]^{\mathrm{op}} &\longrightarrow & \mathrm{Set}\,,\\ (A \to B) &\longmapsto & \{(b_1,\ldots,b_n) \in B^n \mid P_i(b_1,\ldots,b_n) = 0\,,\,\forall\,i\}\end{array}$$

is represented by the affine scheme

 $\operatorname{Spec}(A[X_1,\ldots,X_n]/I)$

associated to the A-algebra $A[X_1, ..., X_n]/I$ defined by the ideal $I = \sum_i P_i \cdot A[X_1, ..., X_n].$

(ii) In particular, the functor

$$\begin{array}{rccc} \operatorname{Aff}^{\operatorname{op}} & \longrightarrow & \operatorname{Set}, \\ \mathcal{A} & \longmapsto & \mathcal{A}^n \end{array}$$

is represented by the affine scheme

$$\mathbb{A}^n = \operatorname{Spec}(\mathbb{Z}[X_1,\ldots,X_n]).$$

(iii) The functor

$$\begin{array}{rcl} \mathrm{Aff}^{\mathrm{op}} & \longrightarrow & \mathrm{Set}\,, \\ \boldsymbol{\mathcal{A}} & \longmapsto & \boldsymbol{\mathcal{A}}^{\times} = \mathrm{GL}_1(\boldsymbol{\mathcal{A}}) \end{array}$$

is represented by the affine scheme

$$\mathbb{G}_m = \mathrm{GL}_1 = \mathrm{Spec}(\mathbb{Z}[X, X^{-1}]).$$

(iv) More generally, for any $r \ge 1$, the functor

$$\begin{array}{rccc} \operatorname{Aff}^{\operatorname{op}} & \longrightarrow & \operatorname{Set}, \\ \boldsymbol{A} & \longmapsto & \operatorname{GL}_r(\boldsymbol{A}) \end{array}$$

is represented by the affine scheme

$$\operatorname{GL}_r = \operatorname{Spec}(\mathbb{Z}[(X_{i,j})_{1 \le i,j \le r}, Y] / (Y \cdot \det(X_{i,j}) - 1).$$

Corollary:

- Let A = commutative ring,
 - M = A-module.

Then there is a unique \mathcal{O}_A -Module \overline{M} on Spec(A) such that, for any $f \in A$,

 $\widetilde{M}(\operatorname{Spec}(A_f)) = M_f = A_f \otimes_A M.$

Remark:

(i) The functor

$$egin{array}{rcl} \operatorname{Mod}_{\mathcal{A}} & \longrightarrow & \mathcal{M} \mathit{od}_{\mathcal{O}_{\mathcal{A}}}\,, \ & & & & \widetilde{\mathcal{M}} \end{array}$$

is fully faithful, it is left-adjoint to the functor

$$\begin{array}{ccc} \mathcal{M}od_{\mathcal{O}_{\mathcal{A}}} & \longrightarrow & \mathrm{Mod}_{\mathcal{A}}, \\ \mathcal{M} & \longmapsto & \mathcal{M}(\mathrm{Spec}(\mathcal{A})) \, . \end{array}$$

 (ii) An O_A-Module M on Spec(A) is called "quasi-coherent" [resp. "coherent"] if it is isomorphic to M for some A-module M [resp. some finitely presentable A-module M].

Proposition:

Let $X = \operatorname{Spec}(B) \to \operatorname{Spec}(A) = Y$ be a morphism of affine schemes. Then there is a quasi-coherent \mathcal{O}_X -Module on X, called the sheaf $\Omega_{X/Y}$ of relative differentials,

such that for any $f \in B$,

 $\Omega_{X/Y}(\operatorname{Spec}(B_f)) = \Omega_{B_f/A}.$

Remarks:

(i) Recall that for any $A \xrightarrow{u} B$, $\Omega_{B/A}$ represents the functor

$$\begin{array}{ccc} \operatorname{Mod}_{B} & \longrightarrow & \operatorname{Set}, \\ M & \longmapsto & \left\{ d: B \to M \middle| \begin{array}{c} \mathrm{d}(b_{1} + b_{2}) = \mathrm{d}b_{1} + \mathrm{d}b_{2}, & \forall b_{1}, b_{2}, \\ \mathrm{d}(b_{1} \cdot b_{2}) = b_{1} \cdot \mathrm{d}b_{2} + b_{2} \cdot \mathrm{d}b_{1}, & \forall b_{1}, b_{2}, \\ \mathrm{d}u(a) = 0, & \forall a \in A \end{array} \right\}$$

(ii) If B is finitely presentable over A, i.e. isomorphic to

$$A[X_1,\ldots,X_n]/\Big(\sum_{1\leq i\leq k}P_i\cdot A[X_1,\ldots,X_n]\Big),$$

then $\Omega_{B/A}$ is the quotient of the free module

$$\bigoplus_{j} B \cdot \mathrm{d}X_{j}$$

by the submodule generated by the elements

$$\sum_{j} \frac{\partial P_{i}}{\partial X_{j}} \cdot dX_{j}, \quad 1 \leq i \leq k.$$

So $\Omega_{B/A}$ is a finitely presentable *B*-module and $\Omega_{\text{Spec}(B)/\text{Spec}(A)}$ is a coherent \mathcal{O}_B -Module.

Proof of the proposition:

We just have to check that for any element $f \in B$, the B_f -module $\Omega_{B_f/A}$ identifies with $B_f \otimes_B \Omega_{B/A}$. By definition, $\Omega_{B_f/A}$ represents the functor

$$egin{array}{ccc} \operatorname{od}_{B_f} &\longrightarrow &\operatorname{Set}\,, \ && M &\longmapsto & \left\{ egin{array}{ccc} \operatorname{differentials}\,\operatorname{d}:B_f o M \ \operatorname{such}\,\operatorname{that}\,\operatorname{d}\!u(a) = 0,\,orall\,a\in A
ight\}. \end{array}
ight.$$

For any differential $d: B_f \to M$, the composite

M

$$B \longrightarrow B_f \longrightarrow M$$

is also a differential and uniquely factorises as a morphism

$$\Omega_{B/A} \longrightarrow M$$

of B-modules.

As the forgetful functor $\operatorname{Mod}_{B_f} \to \operatorname{Mod}_B$ is right adjoint to the functor $B_f \otimes_B \bullet$, this morphism of *B*-modules corresponds to a morphism of B_f -modules

$$B_f \otimes_B \Omega_{B/A} \longrightarrow M$$
.

Conversely, any such morphism $B_f \otimes_B \Omega_{B/A} \to M$ defines a differential

$$d: B \longrightarrow M$$

which uniquely extends to

$$\mathbf{d}: \boldsymbol{B}_f = \boldsymbol{B}[\boldsymbol{X}]/(f\cdot\boldsymbol{X}-1) \longrightarrow \boldsymbol{M}$$

by the formula $f \cdot dX + X \cdot df = 0$ or, equivalently, $dX = -f^{-2} \cdot df$.

Definition:

(i) A scheme is a ringed space (X, O_X)
 which has a covering by open subspaces (U_i, O_{Ui})
 which are isomorphic to some affine schemes Spec(A_i).

(ii) A morphism of schemes

$$(X, \mathcal{O}_X) \xrightarrow{f} (Y, \mathcal{O}_Y)$$

is a morphism of ringed spaces such that, for any point $x \in X$ there are affine open neighborhoods

 $x \in U \cong \operatorname{Spec}(B)$ and $f(x) \in V \cong \operatorname{Spec}(A)$

with $U \subset f^{-1}(V)$ and a morphism of affine schemes

 $\operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A)$

which corresponds to the restriction $(U, \mathcal{O}_U) \rightarrow (V, \mathcal{O}_V)$ of *f*.

Remarks:

- (i) The category Sch of schemes is a geometric subcategory of the category Sp of ringed spaces.
- (ii) It is a full subcategory of the category of locally ringed spaces.
- (iii) For any scheme X, its topology on the underlying set is called the Zariski topology.

Lemma:

(i) Any scheme X defines a contravariant functor $\begin{array}{ccc} \operatorname{Aff}^{\operatorname{op}} & \longrightarrow & \operatorname{Set}, \\ & \mathcal{A} & \longmapsto & \operatorname{Hom}(\operatorname{Spec}(\mathcal{A}), X) = X(\mathcal{A}). \end{array}$

(ii) This defines a fully faithful functor

 $\operatorname{Sch} \longrightarrow [\operatorname{Aff}^{\operatorname{op}}, \operatorname{Set}].$

(iii) A contravariant functor $F : Aff^{op} \to Set$ is a scheme if and only if there exist morphisms $x_i : Hom(\bullet, Spec(A_i)) \longrightarrow F$

from representable functors such that:

• each x_i is open in the sense that for any morphism

 $\operatorname{Hom}(\bullet, \operatorname{Spec}(A)) \longrightarrow F$

from a representable functor, the fiber product

 $\operatorname{Hom}(\bullet, \operatorname{Spec}(A_i)) \times_F \operatorname{Hom}(\bullet, \operatorname{Spec}(A))$

is representable by an open subspace $\text{Spec}(A_i) \times_F \text{Spec}(A)$ of the ringed space Spec(A),

• the family (x_i) is a covering in the sense that for any

 $\operatorname{Hom}(\bullet, \operatorname{Spec}(A)) \longrightarrow F$,

the open subspaces $\text{Spec}(A_i) \times_F \text{Spec}(A)$ make up an open covering of Spec(A).

Remark: The set X(A) = Hom(Spec(A), X) is called the set of points of the scheme *X* with coefficients in the commutative ring *A*.

Corollary:

- (i) The category Sch has arbitrary finite limits and disjoint sums.
- (ii) The embedding functor

 $Aff \longrightarrow Sch$

preserves finite limits.

Proof:

(ii) The statement follows from the fact that for any scheme (X, \mathcal{O}_X) and any affine scheme Spec(A), the map

 $\operatorname{Hom}(X, \operatorname{Spec}(A)) \longrightarrow \operatorname{Hom}(A, \mathcal{O}_X(X))$

is a bijection.

(i) It follows from (ii) that the terminal object $Spec(\mathbb{Z})$ of Aff is also a terminal object in Sch. So it is enough to show that for morphisms of schemes

 $f: X \longrightarrow S$ and $g: Y \longrightarrow S$,

the fiber product $X \times_S Y$ in [Aff^{op}, Set] is a scheme.

Let's consider an open covering of *S* by affine schemes S_i and, for any *i*, open coverings of $f^{-1}(S_i)$ and $g^{-1}(S_i)$ by affine schemes $X_{i,j}$ and $Y_{i,k}$.

Then the fiber products $X_{i,j} \times_{S_i} Y_{i,k}$ in Aff make up an open covering of the presheaf $X \times_S Y$.

(i) For any *n*, the union of the open affine subschemes

$$\operatorname{Spec}(\mathbb{Z}[X_1,\ldots,X_n,X_i^{-1}]), \quad 1 \leq i \leq n,$$

of $\mathbb{A}^n = \operatorname{Spec}(\mathbb{Z}[X_1, \ldots, X_n])$ is an open subscheme

$$\mathbb{A}^n - \{\mathbf{0}\} \hookrightarrow \mathbb{A}^n$$
.

It is endowed with a free action of \mathbb{G}_m

(ii) The contravariant functor

$$\begin{array}{rcl} \operatorname{Aff}^{\operatorname{op}} & \longrightarrow & \operatorname{Set}, \\ \boldsymbol{\mathcal{A}} & \longmapsto & \mathbb{G}_m(\boldsymbol{\mathcal{A}}) \setminus (\mathbb{A}^{n+1} - \{\mathbf{0}\})(\boldsymbol{\mathcal{A}}) \end{array}$$

is separated for the Zariski topology (in the sense that sections coincide if they coincide locally).

Its sheafification is representable by a scheme \mathbb{P}^n

called the projective space of dimension *n*.

The commutative square

is both cartesian and cocartesian.

If
$$\mathbb{A}^{n+1} = \operatorname{Spec}(\mathbb{Z}[X_0, \dots, X_n])$$
, the affine schemes
 $\operatorname{Spec}\left(\mathbb{Z}\left[\frac{X_0}{X_i}, \dots, \frac{X_{i-1}}{X_i}, \frac{X_{i+1}}{X_i}, \dots, \frac{X_n}{X_i}\right]\right)$ make up an open covering of \mathbb{P}^n .

Definition:

Let (X, \mathcal{O}_X) = scheme. An \mathcal{O}_X -Module \mathcal{M} is called quasi-coherent [resp. coherent] if, for any affine open subscheme $U = \operatorname{Spec}(A)$ of X, the restriction of \mathcal{M} to U is quasi-coherent [resp. coherent].

Remarks:

- (i) An O_X-Module M is quasi-coherent [resp. coherent] if and only if there exists an open covering of X by schemes U_i such that the restriction of M to each U_i is quasi-coherent [resp. coherent].
- (ii) For any morphism of schemes f : X → Y, f* : Mod_{OY} → Mod_{OX} transforms quasi-coherent [resp. coherent] O_Y-Modules into quasi-coherent [resp. coherent] O_X-Modules and f* : Mod_{OX} → Mod_{OY} transforms quasi-coherent O_X-Modules into quasi-coherent O_Y-Modules.
- (iii) For any morphism of schemes $f: X \to Y$, the derived functors

$$L^{k}f^{*}: \mathcal{M}od_{\mathcal{O}_{Y}} \longrightarrow \mathcal{M}od_{\mathcal{O}_{X}}$$

transform quasi-coherent \mathcal{O}_Y -Modules into quasi-coherent \mathcal{O}_X -Modules. Indeed, any quasi-coherent Module on an affine scheme has a resolution by flat quasi-coherent Modules. (iv) One can prove that for any morphism of affine schemes $X = \operatorname{Spec}(B) \xrightarrow{f} \operatorname{Spec}(A) = Y$ we have

$$\mathbf{R}^{k}f_{*}\mathcal{M}=\mathbf{0}$$

for any quasi-coherent \mathcal{O}_X -Module \mathcal{M} and any $k \ge 1$. One can deduce from this property that for any morphism of schemes $f: X \to Y$, the derived functors

$$\mathrm{R}^{k}f_{*}:\mathcal{M}od_{\mathcal{O}_{X}}\longrightarrow\mathcal{M}od_{\mathcal{O}_{Y}}$$

transform quasi-coherent \mathcal{O}_X -Modules into quasi-coherent \mathcal{O}_Y -Modules.

(v) One can prove that for any base scheme *S* and any $n \ge 0$ defining the projective projection

$$p: \mathbb{P}^n \times S \longrightarrow S$$
,

the derived functors

$$\mathrm{R}^{k} p_{*} : \mathcal{M}\!od_{\mathcal{O}_{\mathbb{P}^{n} \times S}} \longrightarrow \mathcal{M}\!od_{\mathcal{O}_{S}}, \quad k \geq 0,$$

transform coherent $\mathcal{O}_{\mathbb{P}^n \times S}$ -Modules into coherent \mathcal{O}_S -Modules. Moreover we have

$$\mathbf{R}^{k}\boldsymbol{p}_{*}\mathcal{M}=\mathbf{0}$$

for any quasi-coherent $\mathcal{O}_{\mathbb{P}^n \times S}$ -Module \mathcal{M} and any k > n.

Example of quasi-coherent Module: the sheaf of differentials

Definition:

Let $f: X \to Y$ be a morphism of schemes. We denote

 $\Omega_{X/Y}$

the unique quasi-coherent \mathcal{O}_X -Module such that, for any open subschemes $U = \operatorname{Spec}(B)$ of X and $V = \operatorname{Spec}(A)$ of Y with $U \subset f^{-1}(V)$, we have

 $\Omega_{X/Y}(U) = \Omega_{B/A}.$

Remark:

The sheaves of higher differentials

$$\Omega_{X/Y}^k = \Lambda^k \Omega_{X/Y}$$

are also quasi-coherent \mathcal{O}_X -Modules. The De Rham complex

$$\mathbf{0} \longrightarrow \mathcal{O}_{X} \xrightarrow{d} \Omega^{\mathbf{1}}_{X/Y} \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{k}_{X/Y} \xrightarrow{d} \cdots$$

is a complex of $f^{-1}\mathcal{O}_Y$ -Modules.

Lemma:

(i) Any morphisms of schemes

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

yield an exact sequence of quasi-coherent \mathcal{O}_X -Modules

$$f^*\Omega_{Y/Z} \longrightarrow \Omega_{X/Z} \longrightarrow \Omega_{X/Y} \longrightarrow 0$$
.

(ii) For any cartesian square of schemes

 $\Omega_{X'/Y'}$ identifies with $x^*\Omega_{X/Y}$.

Proof:

(i) Any morphisms of commutative rings

$$A \longrightarrow B \longrightarrow C$$

yield an exact sequence of C-modules

$$\mathcal{C} \otimes_{\mathcal{B}} \Omega_{\mathcal{B}/\mathcal{A}} \longrightarrow \Omega_{\mathcal{C}/\mathcal{A}} \longrightarrow \Omega_{\mathcal{C}/\mathcal{B}} \longrightarrow 0.$$

Indeed, for any *C*-module *M*, a *B*-linear differential $d : C \to M$ is an *A*-linear differential $C \to M$ whose composite with $B \to C$ is 0.

(ii) For any ring morphisms A → B and A → A', Ω_{A'⊗AB/A'} identifies with (A' ⊗_A B) ⊗_B Ω_{B/A} = A' ⊗_A Ω_{B/A}. Indeed, for any module M over A' ⊗_A B, an A' ⊗_A B-linear morphism Ω_{A'⊗AB/A'} → M corresponds to an A'-linear differential d : A' ⊗_A B → M or, equivalently, to an A-linear differential d : B → M. This corresponds to a B-linear morphism Ω_{B/A} → M or, equivalently, to an A' ⊗_A B-linear morphism Ω_{B/A} → M.

Definition:

A morphism of schemes $X \xrightarrow{f} Y$ is called

(1) quasi-compact

if, for any open subset $V \subset Y$ which is quasi-compact (in the sense that any open covering has a finite subcovering), $f^{-1}(V) \subset X$ is quasi-compact,

- (2) locally of finite type [resp. locally of finite presentation]
 if *Y* has a covering by affine open subschemes V_i = Spec(A_i)
 and each f⁻¹(V_i) has a covering by affine open subschemes U = Spec(B)
 such that *B* is an A_i-algebra of finite type [resp. of finite presentation],
- (3) of finite type [resp. of finite presentation] if it is quasi-compact and locally of finite type [resp. locally of finite presentation].

Remarks:

- (i) These properties are universal (i.e. stable by base change), stable by composition and local on the base.
- (ii) The properties (2) are even local on the source.
- (iii) An affine scheme Spec(A) is always quasi-compact.
- (iv) An affine scheme Spec(A) is called noetherian if any finitely generated A-module is finitely presentable (or, equivalently, if any ideal of A is finitely generated). A scheme is called locally noetherian if it has a covering by noetherian affine open subschemes.

If $X \xrightarrow{f} Y$ is locally of finite type and Y is locally noetherian, X is also locally noetherian and f is locally of finite presentation.

Definition: A morphism of schemes $X \xrightarrow{f} Y$ is called

- (4) affine if for any morphism Spec(A) → Y from an affine scheme, the fiber product Spec(A) ×_Y X is affine,
- (5) finite [resp. a closed immersion] if it is affine and for any morphism Spec(A) → Y with Spec(A) ×_Y X = Spec(B), B is finitely generated as an A-module [resp. A → B is surjective],
- (6) a locally closed immersion if it is the composite of a closed immersion and an open embedding.

Remarks:

- (i) These properties are universal, stable by composition and local on the base.
- (ii) If $j: Z \hookrightarrow X$ is a closed immersion, the induced morphism of \mathcal{O}_X -Modules $\mathcal{O}_X \to j_* \mathcal{O}_Z$ is an epimorphism and its kernel is a sheaf of ideals of \mathcal{O}_X , called the defining Ideal of Z.

Conversely, any sheaf of ideals $\mathcal{I} \hookrightarrow \mathcal{O}_X$ defines a closed subscheme $Z \hookrightarrow X$.

(iii) If $Z \hookrightarrow X$ is a locally closed immersion factorised as the composition

$$Z \stackrel{j}{\hookrightarrow} U \stackrel{i}{\hookrightarrow} X$$

of a closed immersion *j* and an open embedding *i*, and \mathcal{I} is the defining Ideal of *Z* in *U*, the \mathcal{O}_Z -Module $j^*\mathcal{I} = \mathcal{N}_{Z/X}$

is called the normal sheaf of Z in X.

Lemma:

Let $X \xrightarrow{f} Y$

= morphism of schemes.

Then:

(i) The diagonal morphism $X \to X \times_Y X$ is a locally closed immersion.

(ii) Its normal sheaf identifies with the \mathcal{O}_X -Module $\Omega_{X/Y}$.

Proof:

(i) It is enough to consider the case when Y = Spec(A). Consider a covering of X by affine open subschemes Spec(B_i). The morphism X → X ×_Y X factorises through the union of the open subschemes Spec(B_i) ×_Y Spec(B_i) = Spec(B_i ⊗_A B_i) and, by the base changes Spec(B_i ⊗_A B_i) → X ×_Y X it becomes Spec(B_i) → Spec(B_i ⊗_A B_i)

which are closed immersions as the canonical morphisms

d

$$B_i \otimes_A B_i \longrightarrow B_i$$

are surjective.

ii) If
$$Y = \text{Spec}(A)$$
, $X = \text{Spec}(B)$ and *I* is the kernel of the canonical epimorphism $B \otimes_A B \to B$, $\Omega_{B/A}$ identifies with I/I^2 endowed with the differential

Definition:

A morphism of schemes $X \xrightarrow{f} Y$ is called

(7) separated

if the diagonal embedding $X \hookrightarrow X \times_Y X$ is a closed immersion,

- (8) proper if
 - it is separated,
 - it is of finite type,
 - it is universally closed (i.e. for any Y' → Y, the morphism X ×_Y Y' → Y' transforms closed subsets of X ×_Y Y' in closed subsets of Y').

Remarks:

- (i) These properties are universal, stable by composition and local on the base.
- (ii) One can prove that if $f: X \to Y$ is proper, the derived functors

$$\mathrm{R}^{k} f_{*}: \mathcal{M}od_{\mathcal{O}_{X}} \longrightarrow \mathcal{M}od_{\mathcal{O}_{Y}}$$

transform coherent \mathcal{O}_X -Modules in coherent \mathcal{O}_Y -Modules.

Examples of separated and proper morphisms:

- (i) Any locally closed immersion is separated.
- (ii) Any affine morphism is separated.
- (iii) Any finite morphism (in particular, any closed immersion) is proper.
- (iv) For any n, the projection

 $\mathbb{P}^n \longrightarrow \operatorname{Spec}(\mathbb{Z})$

is a proper morphism.

(v) A scheme X over some base scheme S is called projective [resp. quasi-projective] over S if the morphism $X \rightarrow S$ factorises as the composite of a closed [resp. locally closed] immersion

$$X \hookrightarrow \mathbb{P}^n \times S$$

followed by the projection

$$\mathbb{P}^n \times S \longrightarrow S.$$

This implies that

$$X \longrightarrow S$$

is proper [resp. separated].

Definition: A morphism of schemes $X \xrightarrow{f} Y$ is called

(9) flat [resp. faithfully flat]

if \mathcal{O}_X is flat as a Module over $f^{-1}\mathcal{O}_Y$

[resp. and the underlying map $X \rightarrow Y$ is surjective],

- (10) smooth of dimension d [resp. étale] if
 - it is locally of finite presentation,
 - it is flat,
 - the sheaf of relative differentials Ω_{X/Y} is locally free of rank *d* as on *O*_X-Module [resp. is 0].

Remarks:

- (i) These properties are universal and local on the base and on the source (except for faithful flatness which is only local on the base).
- (ii) The properties (9) are stable by composition.
- (iii) If $X \xrightarrow{f} Y$ is smooth of dimension *d* [resp. étale]

and $Y \xrightarrow{g} Z$ is smooth of dimension d' [resp. étale], then $g \circ f$ is smooth of dimension d + d' [resp. étale].

(iv) One can prove that if $f: X \to Y$ is smooth of dimension d, x is a point of X, f_1, \ldots, f_n are sections of \mathcal{O}_X in an open neighborhood U of x such that df_1, \ldots, df_n is a basis of $\Omega_{X/Y}$ on U, then the morphism they define $U \to \mathbb{A}^n \times Y$ is étale.

Examples of flat, étale and smooth morphisms:

- (i) Any open immersion is étale.
- (ii) The schemes \mathbb{A}^n and \mathbb{P}^n are smooth of dimension *n* over $\text{Spec}(\mathbb{Z})$. The group scheme GL_n is smooth of dimension n^2 .
- (iii) For any commutative ring A and any polynomial P of the form

 $P = X^d + a_{d-1} \cdot X^{d-1} + \dots + a_1 \cdot X + a_0 \quad \text{in} \quad A[X],$

with B = A[X]/(P), the morphism

$$\operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A)$$

is finite and flat.

It is étale if and only if *P* and *P'* generate the full ideal A[X].

(iv) More generally, if

$$B = A[X_1,\ldots,X_n]/I$$

for some ideal I of $A[X_1, \ldots, X_n]$ generated by polynomials

$$P_j(X_1,\ldots,X_n), \quad 1\leq j\leq k$$

then Spec(B) is smooth of dimension n - k over Spec(A) if and only if the ideal of *B* generated by the *k*-minors of the matrix

$$\left(\frac{\partial P_j}{\partial X_i}(X_1,\ldots,X_n)\right)_{\substack{1\leq i\leq r\\1\leq j\leq k}}$$

is the whole B.

Proposition:

- (i) If *M* is an *A*-module, the quasi-coherent \mathcal{O}_A -Module \widetilde{M} on Spec(*A*) is flat if and only if *M* is flat.
- (ii) A finitely generated A-module M is flat if it is locally free on Spec(A). The converse is true if A is not the real.
- (iii) In particular, a finite morphism $X \xrightarrow{f} Y$ is flat if $f_*\mathcal{O}_X$ is locally free as an \mathcal{O}_Y -Module, and the converse is true if Y is locally noetherian.
- (iv) If a scheme morphism $f: X \to Y$ is locally of finite type, $\Omega_{X/Y} = 0$ if and only if $X \to X \times_Y X$ is an open immersion.
- (v) A finite morphism $X \xrightarrow{f} Y$ such that $f^* \mathcal{O}_X$ is locally free of rank d over \mathcal{O}_Y is étale if and only if there exists a finite étale surjective [resp. quasi compact faithfully flat] morphism $Y' \to Y$ such that $X \times_Y Y' \longrightarrow Y'$ is isomorphic to the trivial cover

$$\coprod_{|\leq i\leq d} Y'\longrightarrow Y'.$$

Proof of (i): If *M* is a flat *A*-module, $M_f = A_f \otimes_A M$ is flat over A_f for any $f \in A$, so \widetilde{M} is a flat \mathcal{O}_A -Module. The functors $M \longmapsto \widetilde{M}$

and $\mathcal{M} \longmapsto \mathcal{M}$ $\mathcal{M} \longmapsto \mathcal{M}(\operatorname{Spec}(A))$

define an equivalence between the abelian category of *A*-modules and the abelian category of quasi-coherent \mathcal{O}_A -Modules.

In particular, they are exact.

Furthermore, they commute with tensor products.

So, *M* is a flat *A*-module if M is a flat \mathcal{O}_A -Module.

Proof of (iv):

We can suppose that X = Spec(B) and Y = Spec(A).

Let's denote *I* the kernel of $B \otimes_A B \to B$ so that $\Omega_{B/A}$ identifies with I/I^2 .

As *B* is of finite type over *A*, *I* is finitely generated.

If $X \to X \times_Y X$ is an open immersion, *I* is 0 in an open neighborhood of X = Spec(B) and a fortiori $\Omega_{B/A} = 0$.

Conversely, $I = I^2$ implies that I = 0 in an open neighborhood of Spec(B) as follows from the lemma:

Lemma:

Let I = ideal of a commutative ring A,

M = finitely generated A-module such that $I \cdot M = M$.

Then there exists an element $a \in I$ such that

 $(1+a) \cdot m = 0, \quad \forall m \in M.$

In particular, *M* is 0 in the open neighborhood $\text{Spec}(A_{(1+a)})$ of Spec(A/I) in Spec(A).

Proof of the lemma:

Consider a finite family of generators m_1, \ldots, m_k of M. Any m_i , $1 \le i \le k$, can be written

$$m_i = \sum_{1 \le j \le k} a_{i,j} \cdot m_j$$

for some coefficients $a_{i,j} \in I$. The determinant of the matrix

$$\mathrm{Id}-(a_{i,j})_{1\leq i,j\leq k}$$

has the form

$$1 + a$$
 for some $a \in I$,

and we have

$$(1+a)\cdot m_i=0, \quad 1\leq i\leq k$$

Proof of (ii) and (iii):

(iii) is a particular case of (ii).

(ii) According to (i), the property of flatness is local

so *M* is flat if it is locally free.

Conversely, suppose *M* is finitely generated and flat and *A* is notherian. Consider a point $x \in \text{Spec}(A)$ corresponding to a prime ideal *p*

and the residue field $\kappa_p = A_p / p \cdot A_p$.

Choose a finite basis over κ_p of the vector space $\kappa_p \otimes_A M$ and lift is to a family of sections m_1, \ldots, m_d of \widetilde{M} in an open neighborhood of x.

They induce a morphism $\mathcal{O}_X^d \to \widetilde{M}$ whose cokernel has the form \widetilde{N} for some finitely generated N such that $\kappa_p \otimes N = 0$. According to the previous lemma $\widetilde{N} = 0$ in an open neighborhood of x and $\mathcal{O}_X^d \to \widetilde{M}$ is an epimorphism there.

Its kernel has the form \tilde{K} for some module K which is finitely generated as A is noetherian.

As M is flat, the exact sequence $0 \to \widetilde{K} \to \mathcal{O}_X^d \to \widetilde{M} \to 0$ yields an exact sequence $0 \longrightarrow \kappa_p \otimes \widetilde{K} \longrightarrow \kappa_p^d \longrightarrow \kappa_p \otimes \widetilde{M} \longrightarrow 0$.

It means that $\kappa_p \otimes \widetilde{K} = 0$ as $\kappa_p^d \to \kappa_p \otimes \widetilde{M}$ is an isomorphism. According to the previous lemma, $\widetilde{K} = 0$ is an open neighborhood of x and $\mathcal{O}_X^d \to \widetilde{M}$ is an isomorphism there.

Proof of (v):

Suppose $X \xrightarrow{f} Y$ is étale.

The diagonal morphism $X \to X \times_Y X$ is an open embedding and also a closed immersion as the finite morphism $X \to Y$ is separated.

The scheme $X \times_Y X$ over X can be written as the disjoint union of $X \xrightarrow{id} X$ and a finite étale morphism

$$f_1:X_1\longrightarrow Y_1=X$$

such that $(f_1)_* \mathcal{O}_{X_1}$ is locally free of rank d - 1. We get by induction on the rank d that there exist a finite étale morphism

such that the morphism

$$egin{array}{ccc} Y_d \longrightarrow Y \ X imes_Y Y_d \longrightarrow Y_d \end{array}$$

is isomorphic to

$$\coprod_{\leq i \leq d} Y_d \longrightarrow Y_d \,.$$

Conversely, suppose that there exists a quasi-compact and faithfully flat morphism $Y' \to Y$ such that $X \times_Y Y' \to Y'$ is isomorphic to $\coprod_{1 \le i \le d} Y' \to Y'$.

We can suppose that Y = Spec(A) and Y' = Spec(B). The conclusion follows from the lemma:

Lemma:

Let $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$

= faithfully flat morphism of affine schemes.

Then:

(i) For any A-module, the canonical morphism

$$M \longrightarrow B \otimes_A M$$

is a monomorphism. In particular, *M* is 0 if and only if $B \otimes_A M$ is 0.

(ii) A complex of A-modules

$$M_1 \longrightarrow M_2 \longrightarrow M_3$$

is exact if and only if the complex of *B*-modules $B \otimes_A M_1 \longrightarrow B \otimes_A M_2 \longrightarrow B \otimes_A M_2$

$$B \otimes_A M_1 \longrightarrow B \otimes_A M_2 \longrightarrow B \otimes_A M_3$$

is exact.

Proof:

(i) A non zero element *m* of *M* can be seen as a non zero morphism

 $A \longrightarrow M$.

Its kernel *I* is an ideal contained in a prime ideal *p* and, by hypothesis, there exists a prime ideal *q* of *B* such that $p = u^{-1}(q)$ for $u : A \to B$. Then B/q is a quotient of $B \otimes_A A/I$. As *u* is flat, $B \otimes_A A/I \to B \otimes_A M$ is a monomorphism. So the image of *m* in $B \otimes_A M$ is non zero.

(ii) Let
$$H = \text{Ker}(M_2 \to M_3)/\text{Im}(M_1 \to M_2)$$
. As $A \to B$ is flat, we also have
 $B \otimes_A H = \text{Ker}(B \otimes_A M_2 \longrightarrow B \otimes_A M_3)/\text{Im}(B \otimes_A M_1 \longrightarrow B \otimes_A M_2)$.

According to (i), *H* is 0 if and only if $B \otimes_A H$ is 0.

Definition:

 (i) A sieve on an object X of Sch is called a covering sieve for the "étale" topology [resp. for the faithfully flat quasi-compact (fpqc) topology] if it contains a family of morphisms

$$X_i \longrightarrow X, \qquad i \in I,$$

such that the morphism

$$\coprod_{i\in I} X_i \longrightarrow X$$

is quasi-compact, étale [resp. flat] and surjective.

(ii) The "big" étale [resp. fppf] site of a scheme X consists in the essentially small category

 $\mathrm{Sch}_{\mathrm{fp}/X}$

of morphisms $X' \to X$ of finite presentation, endowed with the étale [resp. fpqc] topology. The "big" étale [resp. fpqc] topos of X is the associated topos. It can be denoted Ét_X [resp. Fl_X].

(iii) The "small" étale [resp. fppf] site of a scheme X consists in the subcategory of $\operatorname{Sch}_{\operatorname{fp}/X}$ on étale [resp. flat] morphisms $X' \to X$ endowed with the étale [resp. fpqc] topology. The "small" étale [resp. flat] topos of X is the associated topos. It can be denoted ét_X [resp. fl_X].

Remarks:

(i) For any scheme *X*, there is a commutative square of morphisms of toposes

whose push-forward components are restriction functors. Furthermore, $\operatorname{Fl}_X \hookrightarrow \operatorname{\acute{E}t}_X$ is a subtopos.

(ii) For any morphism of schemes $X \xrightarrow{f} Y$, the functor

 $(Y' \longrightarrow Y) \longmapsto (Y' \times_Y X \longrightarrow X)$

respects finite limits and disjoint sums.

It preserves the property of morphisms to be étale, flat, quasi-compact, surjective or of finite presentation.

So it induces morphisms of toposes

$$\begin{array}{rcccc} (f^*, f_*) & : & \operatorname{Fl}_X & \longrightarrow & \operatorname{Fl}_Y, \\ & & \operatorname{fl}_X & \longrightarrow & \operatorname{fl}_Y, \\ & & \operatorname{\acute{Et}}_X & \longrightarrow & \operatorname{\acute{Et}}_Y, \\ & & & \operatorname{\acute{et}}_X & \longrightarrow & \operatorname{\acute{et}}_Y. \end{array}$$

Proposition:

(i) For any scheme X, the associated presheaf

 $\begin{array}{rcl} \mathrm{Sch}^{\mathrm{op}} & \longrightarrow & \mathrm{Set} \\ Y & \longmapsto & \mathrm{Hom}(Y,X) \end{array}$

is a sheaf for the fpqc topology.

(ii) All properties (1)–(10) of morphisms of schemes

$$X \longrightarrow Y$$

are local on the base for the fpqc topology.

(iii) For any quasi-compact faithfully flat morphism

$$X' \longrightarrow X$$
,

the category of quasi-coherent \mathcal{O}_X -Modules on X is equivalent to the category of quasi-coherent $\mathcal{O}_{X'}$ -Modules \mathcal{M}' on X' endowed with an isomorphism

 $\sigma: p_1^* \mathcal{M}' \xrightarrow{\sim} p_2^* \mathcal{M}' \quad \text{for the two projections} \quad X' \times_X X' \stackrel{\rho_1}{\rightrightarrows} X',$ such that the triangle associated with the three projections

 $q_{1}, q_{2}, q_{3}: X' \times_{X} X' \times_{X} X' \xrightarrow{\sim} Q_{3}^{*} \mathcal{M}'$ $q_{1}^{*} \mathcal{M}' \xrightarrow{\sim} q_{3}^{*} \mathcal{M}'$ is commutative. $q_{2}^{*} \mathcal{M}'$

The proof follows from the previous lemma completed with:

Lemma:

Let $\operatorname{Spec}(B) \longrightarrow \operatorname{Spec}(A)$

= faithfully flat morphism of affine schemes.

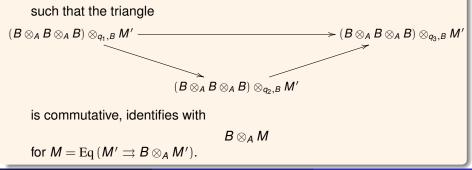
Then:

(i) Any A-module M identifies with

$$\mathrm{Eq}\,(B\otimes_A M \rightrightarrows B\otimes_A B\otimes_A M)\,.$$

(ii) Any *B*-module M' endowed with an isomorphism

$$\sigma: (B \otimes_A B) \otimes_{\rho_1, B} M' \xrightarrow{\sim} (B \otimes_A B) \otimes_{\rho_2, B} M$$



Proof:

(i) The morphism $M \to \text{Eq} (B \otimes_A M \Rightarrow B \otimes_A B \otimes_A M)$ is an isomorphism because the functor $B \otimes_A \bullet$ transforms it into an isomorphism. Indeed, the sequence

$$0 \longrightarrow B \longrightarrow B \otimes_A B \longrightarrow B \otimes_A B \otimes_A B$$

consisting in the morphisms

 $b \mapsto b \otimes 1$ and $b \otimes b' \mapsto b \otimes b' \otimes 1 - b \otimes 1 \otimes b'$

is split exact, with the splitting

$$egin{array}{cccc} B\otimes_AB&\longrightarrow&B\ b\otimes b'&\longmapsto&bb'\,. \end{array}$$

(ii) The morphism $B \otimes_A \text{Eq}(M' \Rightarrow B \otimes_A M') \to M'$ is an isomorphism because, according to (i), $B \otimes_A \bullet$ transforms it into an isomorphism.

Points of small étale sites

Proposition: If $Y = \text{Spec}(\overline{k})$ for an algebraically closed field \overline{k} , any quasi-compact étale morphism

is isomorphic to some

$$X \longrightarrow Y = \operatorname{Spec}(\overline{k})$$
$$\prod_{1 \le i \le d} \operatorname{Spec}(\overline{k}) \longrightarrow \operatorname{Spec}(\overline{k}).$$

Proof: Let's consider a \overline{k} -algebra of finite presentation

$$A = \overline{k}[X_1,\ldots,X_n]/(P_1,\ldots,P_k)$$

which is étale over \overline{k} .

For any maximal ideal *m* of *A*, the morphism

$$\overline{k} \longrightarrow A/m$$

is an isomorphism as \overline{k} is algebraically closed and A is finitely generated. Furthermore, the closed embedding

$$\operatorname{Spec}(\overline{k}) = \operatorname{Spec}(A/m) \hookrightarrow \operatorname{Spec}(A)$$

is also an open embedding as A is étale.

For distinct maximal ideals m_1, \ldots, n_d , A decomposes as a product

$$A \cong (A/m_1) \times \cdots \times (A/m_d) \times A'$$
.

As A is generated by n elements, it yields $d \le n$. If d is maximal, we get

$$\underline{A} \cong (\underline{A}/\underline{m}_1) \times \cdots \times (\underline{A}/\underline{m}_d) \cong \overline{\underline{k}}^d.$$

Corollary:

- (i) If $X = \text{Spec}(\overline{k})$ for an algebraically closed field, the topos ét_X identifies with Set.
- (ii) For any scheme X, any "geometric point" of X

 $\overline{x}: \operatorname{Spec}(\overline{k}) \longrightarrow X$

(where \overline{k} is an algebraically closed field) defines a point

 $(\overline{\mathbf{X}}^*, \overline{\mathbf{X}}_*) : \operatorname{Set} \longrightarrow \operatorname{\acute{e}t}_{\mathbf{X}}$

of the small étale topos of X.

Proof:

(i) follows from the previous proposition.

(ii) follows from (i).

Theorem:

Let X = connected scheme endowed with a geometric point

 $\overline{x}:\operatorname{Spec}(\overline{k})\longrightarrow X,$

 $\begin{array}{rcl} \operatorname{Cov}_X = \operatorname{category} \text{ of finite \'etale morphisms } X' \to X \\ & & \operatorname{such} \operatorname{that} p_* \mathcal{O}_{X'} \text{ is locally free over } \mathcal{O}_X, \\ \pi_1(X,\overline{x}) = \operatorname{group} \text{ of automorphisms of the functor} \\ & & \operatorname{Cov}_X \quad \longrightarrow \quad \operatorname{Set}_f = \operatorname{category} \text{ of finite sets,} \end{array}$

 $(X' \to X) \longmapsto \operatorname{Hom}_{\overline{X}}(\operatorname{Spec}(\overline{k}), X') = F_{\overline{X}}(X')$

endowed with the smallest topology for which its action on each finite set $F_{\overline{X}}(X')$ is continuous.

Then the functor

$$(X' \to X) \longmapsto F_{\overline{X}}(X')$$

is an equivalence from the category Cov_X to the category of finite sets endowed with a continuous action of the profinite group $\pi_1(X, \overline{X})$.

Remark: If X = Spec(k) for some field k, this equivalence is Galois theory.

Sketch of proof: For any object $p: X' \to X$ of Cov_X , the locally free \mathcal{O}_X -Module $p_*\mathcal{O}_{X'}$ has a constant rank d as X is connected, and there is a finite étale surjective morphism $V \longrightarrow X$ such that $X' \times_X Y \to Y$ is isomorphic to $\begin{bmatrix} & Y \\ & Y \end{bmatrix} Y \longrightarrow Y.$ $1 \le i \le d$ In the other direction, for any finite étale surjective morphism $Y \longrightarrow X$. let $\operatorname{Cov}_X^{\gamma}$ = full subcategory of Cov_X on objects $X' \rightarrow X$ such that $X' \times_X Y \to Y$ is isomorphic to some $\coprod_{1 \le i \le d} Y \to Y$. $1 \le i \le d$ So, Cov_X is the filtering union of its full subcategories Cov_X^Y and we have $\pi_1(\overline{X}, x) = \varprojlim_{X} \pi_1^Y(X, \overline{x})$ where, for any Y, $\pi_1^Y(X, \overline{X})$ is the automorphism group of the restricted functor $F_{\overline{\mathbf{v}}}: \operatorname{Cov}_{\mathbf{v}}^{\mathbf{v}} \longrightarrow \operatorname{Set}_{\mathbf{f}}$

For any such *Y*, there exists a finite étale surjective morphism $Y' \rightarrow Y$ such that

$$Y' \times_X Y \cong \coprod_{1 \le i \le d} Y'.$$

Furthermore, Y' can be constructed as $Y' = Y_d$ where $Y_d \rightarrow Y_{d-1} \rightarrow \cdots \rightarrow Y_1 \rightarrow Y_0$ is the sequence of finite étale morphisms defined by $Y_0 = Y$ and, for any i < d,

$$Y_{i+1} = Y_i \times_X Y - Y_i$$

as $Y_i \hookrightarrow X_i \times_X Y$ is a closed and open subscheme. So $Y' = Y_d$ is a closed and open subscheme of $Y \times_X \cdots \times_X Y$ (*d* times) and $Y' \times_X Y'$ is a closed and open subscheme of $Y' \times_X Y \times_X \cdots \times_X Y$ which is a disjoint sum of copies of Y'.

So we are reduced to the study of functors

$$F_{\overline{X}}: \operatorname{Cov}_X^Y \longrightarrow \operatorname{Set}_f$$

when

$$Y \times_X Y \cong \coprod_{1 \le i \le d} Y.$$

We can even suppose that Y is connected. Then $Y \times_X Y$ is the sum of the graphs of the automorphisms

$$\sigma \in \boldsymbol{G} = \operatorname{Aut}_{\boldsymbol{X}}(\boldsymbol{Y})$$
.

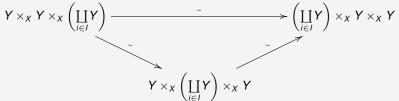
The category

is equivalent to the category of finite sets *I* endowed with an isomorphism over $Y \times_X Y$

$$\tau: Y \times_X \left(\coprod_{i \in I} Y \right) \xrightarrow{\sim} \left(\coprod_{i \in I} Y \right) \times_X Y$$

 Cov_{Y}^{Y}

such that the triangle



is commutative.

As $Y \times_X Y$ is the sum of the graphs of the automorphisms

$$\sigma \in G$$
,

 $\operatorname{Cov}_X^{\gamma}$ is equivalent to the category

 $[G, \operatorname{Set}_f]$

of finite sets *I* endowed with an action of *G*.

We conclude by observing that the group of automorphisms of the forgetful functor

$$[G, \operatorname{Set}_f] \longrightarrow \operatorname{Set}_f$$

identifies with G.

Locally constant and constructible étale sheaves

Definition: Let X = scheme.

(i) An étale sheaf *F* over *X* is called locally constant and finite if it is representable by a finite étale morphism

$$p: X' \longrightarrow X$$

such that $p_*\mathcal{O}_{X'}$ is locally free as an \mathcal{O}_X -Module.

(ii) An étale sheaf F on X is called constructible if, on any quasi-compact open subscheme U of X, there exists a finite sequence of closed subschemes of U

 $\emptyset = X_{d+1} \hookrightarrow X_d \hookrightarrow \cdots \hookrightarrow X_1 \hookrightarrow X_0 = U$

such that the restriction of F on each locally closed subscheme

$$X_i - X_{i+1} \hookrightarrow X$$

is locally constant and finite.

Remarks:

- (i) If X is connected and \overline{x} is a geometric point of X, a locally constant finite étale sheaf F on X corresponds to a finite set endowed with an action of $\pi_1(X, \overline{x})$.
- (ii) If X is a noetherian scheme, any decreasing sequence of closed subschemes of X is finite.
- (iii) Any finite limit or colimit of locally constant and finite [resp. constructible] sheaves is locally constant and finite [resp. constructible].

O. Caramello & L. Lafforgue

Cohomology of toposes

Etale cohomology

Definition: Let R = commutative ring. For any scheme *X*, let

 $\mathcal{M}\!\textit{od}_{R_{\chi}} = \mathcal{M}\!\textit{od}_{R_{\chi}}^{\acute{e}t}$ [resp. $\mathcal{M}\!\textit{od}_{R_{\chi}}^{fl}$, resp. $\mathcal{M}\!\textit{od}_{R_{\chi}}^{Zar}$]

be the abelian category of Modules on the constant ring object R_X defined by R in the topos

 $\acute{e}t_X$ [resp. ft_X , resp. the topos Zar_X of sheaves on the topological space X].

Remarks:

(i) The categories $\mathcal{M}od_{R_{\chi}}$ [resp. $\mathcal{M}od_{R_{\chi}}^{fl}$, resp. $\mathcal{M}od_{R_{\chi}}^{Zar}$] have arbitrary limits and colimits.

They are endowed with functors \otimes , *Hom* and Hom.

They have enough injective objects and enough R_X -flat objects so that \otimes ,

Hom and Hom have derived functors $\overset{\,\,{}_{\scriptstyle \wedge}}{\otimes}$, RHom and RHom.

(ii) These categories are related by restriction functors

$$\mathcal{M}od_{\mathrm{R}_{X}}^{\mathrm{fl}} \longrightarrow \mathcal{M}od_{\mathrm{R}_{X}} \longrightarrow \mathcal{M}od_{\mathrm{R}_{X}}^{\mathrm{Zar}}$$

which have exact left adjoint functors.

(iii) Any morphism of schemes $X \xrightarrow{t} Y$ induces direct image functors f_* which are compatible in the sense that the diagram

$$\begin{array}{c|c} \mathcal{M}od_{R_{X}}^{\mathrm{fl}} \longrightarrow \mathcal{M}od_{R_{X}} \longrightarrow \mathcal{M}od_{R_{X}}^{\mathrm{Zar}} \\ f_{*} & & & & \\ f_{*} & & & & \\ \mathcal{M}od_{R_{Y}}^{\mathrm{fl}} \longrightarrow \mathcal{M}od_{R_{Y}} \longrightarrow \mathcal{M}od_{R_{Y}}^{\mathrm{Zar}} \end{array}$$

is commutative.

They have exact left adjoint functors f^* and they have derived functors Rf_* which are right adjoint to f^* .

(iv) If f : X → Y is an étale morphism [resp. is flat and finitely presentable, resp. is an open embedding], the functor f* also has an exact left adjoint

$$\begin{array}{rcccc} f_{!} & : & \mathcal{M}od_{R_{X}} & \longrightarrow & \mathcal{M}od_{R_{Y}} \\ [\text{resp.} & f_{!} & : & \mathcal{M}od_{R_{X}}^{\text{fl}} & \longrightarrow & \mathcal{M}od_{R_{Y}}^{\text{fl}}, \\ \text{resp.} & f_{!} & : & \mathcal{M}od_{R_{X}}^{\text{Zar}} & \longrightarrow & \mathcal{M}od_{R_{Y}}^{\text{Zar}} \end{array}].$$

Quick presentation of Čech cohomology

Proposition:

Let $(\mathcal{C}, J) = \text{site endowed with a sheaf of rings } \mathcal{O},$ $X = \text{object of } \mathcal{C},$ $(U_i \to X)_{i \in I} = J\text{-covering family of } X \text{ such that each } U_i \to X \text{ is squarable in } \mathcal{C},$ $\mathcal{M} = \text{sheaf of modules over } \mathcal{O}.$ Then:

Then:

 (i) In the derived category D⁺(Mod_{O(X)}), there is a canonical morphism from the complex

$$\prod_{i_0\in I}\mathcal{M}(U_{i_0})\to\prod_{i_0,i_1\in I}\mathcal{M}(U_{i_0}\times_X U_{i_1})\to\cdots\to\prod_{i_0,\dots,i_n\in I}\mathcal{M}(U_{i_0}\times_X\cdots\times_X U_{i_n})\to\cdots$$

to the object $R\Gamma(X, \mathcal{M})$.

(ii) This morphism is an isomorphism if

$$\mathbf{R}^{k}\Gamma(U_{i_{0}}\times_{X}\cdots\times_{X}U_{i_{n}},\mathcal{M})=\mathbf{0},\quad\forall k\geq1\,,\,\forall i_{0},\ldots,i_{n}\in I.$$

Remarks:

(i) Part (ii) applies in particular if
 C is the category O(X) of open subsets of a topological space X,
 J is the usual notion of open covering,
 any connected component of any intersection U_{i₀} ∩ · · · ∩ U_{i₀}, n ≥ 0,
 is contractible.

(ii) Part (ii) also applies if
C is the category of open subschemes of a scheme X which is separated over Spec(Z),
J is the usual notion of open covering,
M is a quasi-coherent O_X-Module,
the U_i's are affine open subschemes of X (so that, as X is separated over Spec(Z), all intersections U_{i₀} ×_X ··· ×_X U_{i₀} are also affine).

Proof of the proposition:

(i) For any morphism $i: U \to X$ of C, denote $\mathcal{O}_U = i_! i^* \mathcal{O}$. The complex of \mathcal{O} -Modules

$$\cdots \longrightarrow \bigoplus_{i_0, \dots, i_n \in I} \mathcal{O}_{U_{i_0} \times_X \cdots \times_X} U_{i_n} \longrightarrow \cdots \longrightarrow \bigoplus_{i_0, i_1 \in I} \mathcal{O}_{U_{i_0} \times_X} U_{i_1} \longrightarrow \bigoplus_{i_0 \in I} \mathcal{O}_{U_{i_0}} \longrightarrow \mathcal{O}_X$$

is exact: indeed, its restriction to any U_i is homotopic to 0.

So, for any injective \mathcal{O} -Module \mathcal{I} , the morphism from the complex $\mathcal{I}(X)$ (concentrated in degree 0) to the complex

$$\prod_{i_0} \mathcal{I}(U_{i_0}) \longrightarrow \prod_{i_0, i_1} \mathcal{I}(U_{i_0} \times_X U_{i_1}) \longrightarrow \cdots \longrightarrow \prod_{i_0, \dots, i_n} \mathcal{I}(U_{i_0} \times_X \cdots \times_X U_{i_n}) \longrightarrow \cdots$$

is a quasi-isomorphism.

Therefore, if $\mathcal{I}_0 \to \mathcal{I}_1 \to \mathcal{I}_2 \to \cdots$ is an injective resolution of $\mathcal{M}, R\Gamma(X, \mathcal{M})$ is represented by the simple complex associated to the double complex

It is endowed with a canonical morphism from the simple complex:

$$\prod_{i_0} \mathcal{M}(U_{i_0}) \longrightarrow \prod_{i_0,i_1} \mathcal{M}(U_{i_0} \times_X U_{i_1}) \longrightarrow \cdots \longrightarrow \prod_{i_0,\dots,i_n} \mathcal{M}(U_{i_0} \times_X \cdots \times_X U_{i_n}) \longrightarrow \cdots$$

(ii) This morphism of complexes is a quasi-isomorphism if, for any i_0, \ldots, i_n , the morphism of complexes from

 $\mathcal{M}(U_{i_0} \times_X \cdots \times_X U_{i_n})$ concentrated in degree 0

to

$$\mathcal{I}_{0}(U_{i_{0}}\times_{X}\cdots\times_{X}U_{i_{n}})\longrightarrow \mathcal{I}_{1}(U_{i_{0}}\times_{X}\cdots\times_{X}U_{i_{n}})\longrightarrow \mathcal{I}_{2}(U_{i_{0}}\times_{X}\cdots\times_{X}U_{i_{n}})\longrightarrow \cdots$$

is a quasi-isomorphism.

It is equivalent to ask that

$$\mathbf{R}^{k}\Gamma(U_{i_{0}}\times_{X}\cdots\times_{X}U_{i_{n}},\mathcal{M})=\mathbf{0}, \qquad \forall \ k\geq 1.$$

Proposition:

Let $\mathcal{C} =$ small category with arbitrary fiber products,

J = topology on C,

 $\mathcal{O} =$ sheaf of rings on (\mathcal{C}, J) ,

 $\mathcal{M} = \mathcal{O}$ -Module in $\widehat{\mathcal{C}}_J$,

X =object of C.

For any *J*-covering family $U_{\bullet} = (U_i \rightarrow X)_{i \in I}$, note

S

 $H^n(U_{\bullet},\mathcal{M})$

the cohomology modules of the complex:

$$\prod_{i_0 \in I} \mathcal{M}(U_{i_0}) \longrightarrow \prod_{i_0, i_1 \in I} \mathcal{M}(U_{i_0} \times_X U_{i_1}) \longrightarrow \cdots \longrightarrow \prod_{i_0, \dots, i_n \in I} \mathcal{M}(U_{i_0} \times_X \cdots \times_X U_{i_n}) \longrightarrow \cdots$$

Then:

- (i) Each Hⁿ(U_•, M) only depends on the sieve S ∈ J(X) generated by U_• and can be denoted Hⁿ(S, M).
- (ii) The canonical morphism

$$\varinjlim_{\in J(X)} H^n(S, \mathcal{M}) \longrightarrow R^n \Gamma(X, \mathcal{M})$$

is an isomorphism for n = 1.

Remark: As \mathcal{M} is a sheaf,

$$H^0(U_{ullet},\mathcal{M})\longrightarrow \Gamma(X,\mathcal{M})$$

is an isomorphism for any U_{\bullet} .

Proof of the proposition:

(i) If S is the sieve generated by U_{\bullet} , the canonical morphism from the complex

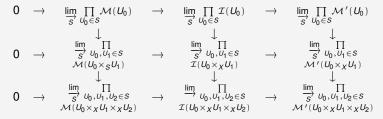
$$\prod_{i_0 \in I} \mathcal{M}(U_{i_0}) \longrightarrow \prod_{i_0, i_1 \in I} \mathcal{M}(U_{i_0} \times_X U_{i_1}) \longrightarrow \cdots$$

to the complex

$$\prod_{U_0 \in \mathcal{S}} \mathcal{M}(U_0) \longrightarrow \prod_{U_0, U_1 \in \mathcal{S}} \mathcal{M}(U_0 \times_X U_1) \longrightarrow \cdots$$

is an homotopy equivalence.

(ii) Let $\mathcal{M} \hookrightarrow \mathcal{I}$ be an embedding into an injective \mathcal{O} -Module and $\mathcal{M}' = \mathcal{I}/\mathcal{M}$. Then the short exact sequence $0 \to \mathcal{M} \to \mathcal{I} \to \mathcal{M}' \to 0$ yields an isomorphism $\operatorname{Coker}(\mathcal{M}(X) \to \mathcal{I}(X)) \xrightarrow{\sim} R^1\Gamma(X, \mathcal{M})$. On the other hand, we have a commutative diagram



whose lines are exact as the colimit lim is filtering.

The middle column is also exact as \mathcal{I} is injective. As $\mathcal{I}(X) = \operatorname{Ker}\left(\prod_{U_0 \in S} \mathcal{I}(U_0) \to \prod_{U_0, U_1 \in S} \mathcal{I}(U_0 \times_X U_1)\right)$, $\mathcal{M}'(X) = \operatorname{Ker}\left(\prod_{U_0 \in S} \mathcal{M}'(U_0) \to \prod_{U_0, U_1 \in S} \mathcal{M}'(U_0 \times_X U_1)\right)$ for any Sand $\mathcal{M}'(X)$ is contained in the image of $\varinjlim_{S} \prod_{U_0 \in S} \mathcal{I}(U_0)$, we get an isomorphism

we get an isomorphism

$$\operatorname{Coker}(\mathcal{I}(X) \longrightarrow \mathcal{M}'(X)) \xrightarrow{\sim} \varinjlim_{S} H^{1}(S, \mathcal{M}).$$

Corollary:

Let (\mathcal{C}, J) = site endowed with a sheaf of commutative rings \mathcal{O} , X = object of \mathcal{C} .

Then the cohomology group

$$H^1(X, \mathcal{O}^{\times}) = \mathrm{R}^1\Gamma(X, \mathcal{O}^{\times})$$

of the sheaf of abelian groups

$$\mathcal{O}^{\times}: X' \longmapsto \mathcal{O}(X')^{\times}$$

identifies with the abelian group of isomorphism classes of \mathcal{O} -Modules \mathcal{L} on $(\mathcal{C}/X, J_X)$ which are locally isomorphic to \mathcal{O} , endowed with the group law defined by \otimes .

Proof:

For any *J*-covering family $U_{\bullet} = (U_i \rightarrow X)_{i \in I}$, the group

 $H^1(U_\bullet,\mathcal{O}^\times)$

identifies with the group of \mathcal{O} -Modules \mathcal{L} on $(\mathcal{C}/X, J_X)$ whose restriction to any \mathcal{C}/U_i is isomorphic to \mathcal{O} . Indeed, for any object X' of \mathcal{C} , $\mathcal{O}^{\times}(X')$ is the automorphism group of the restriction of the sheaf \mathcal{O} to the relative category \mathcal{C}/X' .

Corollary:

Let X = scheme endowed with the sheaf

 $\mathcal{O}_X^{\times} = \operatorname{Hom}(\bullet, \mathbb{G}_m)$

for the fppf, étale or Zariski topology.

Then the canonical morphisms

$$H^1_{\operatorname{Zar}}(X, \mathcal{O}_X^{\times}) \longrightarrow H^1_{\operatorname{\acute{e}t}}(\mathcal{O}_X^{\times}) \longrightarrow H^1_{\operatorname{fppf}}(\mathcal{O}_X^{\times})$$

are isomorphisms.

Proof: We have to prove that any \mathcal{O}_X -Module \mathcal{L} for the fppf [resp. étale] topology which is locally isomorphic to \mathcal{O}_X is also isomorphic to \mathcal{O}_X for the Zariski topology.

We can suppose X is an affine scheme Spec(A).

First, \mathcal{L} is locally quasi-coherent for the fppf [resp. étale] topology so it is quasicoherent: there exists an *A*-module *L* such that, for any $X' \xrightarrow{p} X$, $\mathcal{L}(X')$ identifies with $p^* \widetilde{L}(X')$.

Secondly, *L* is a flat *A*-module and it is finitely generated as it is so locally. Lastly, as $B \otimes_A L$ is isomorphic to *B* for some faithfully flat [resp. étale] *A*-algebra *B* of finite presentation, we can suppose that *L* has the form $A \otimes_{A'} L'$ for some ring *A'* finitely generated over \mathbb{Z} , some morphism $A' \to A$ and some *A'*-module *L'* locally isomorphic to *A'* for the fppf [resp. étale] topology. As *A'* is notherian, *L'* is locally isomorphic to *A'* for the Zariski topology.

119 / 151

The expression of arbitrary $H^k(X, \mathcal{M}) = R^k \Gamma(X, \mathcal{M})$ in terms of Čech cohomology requires the notion of hypercovering. It is based on:

Lemma:

Let $\mathcal{E} = category$ with finite limits,

 $\Delta =$ simplicial category whose objects are denoted [*n*], $n \in \mathbb{N}$, and whose morphisms [*m*] \rightarrow [*n*] are increasing maps

$$\{0,1,\ldots,m\}\longrightarrow\{0,1,\ldots,n\},\$$

 Δ_n = full subcategory of Δ on objects [0], [1], ..., [n].

Then the restriction functor

$$\operatorname{sk}_n : [\Delta^{\operatorname{op}}, \mathcal{E}] \longrightarrow [\Delta_n^{\operatorname{op}}, \mathcal{E}]$$

has a right adjoint

$$\begin{array}{rcl} \operatorname{cosk}_n & : & [\Delta_n^{\operatorname{op}}, \mathcal{E}] & \longrightarrow & [\Delta^{\operatorname{op}}, \mathcal{E}], \\ & & F_{\bullet} & \longmapsto & \operatorname{cosk}_n F_{\bullet} = F'_{\bullet} \end{array}$$

defined by the formula

$$F'_m = \varprojlim_{(\alpha:[m']\to [m])} F_{m'}, \quad \forall m \in \mathbb{N},$$

where the limit is computed on the category $\Delta_n/[m]$ of objects [m'] of Δ_n endowed with a morphism $[m'] \rightarrow [m]$.

Definition:

Let $(\mathcal{C}, J) =$ small site endowed with $\ell : \mathcal{C} \xrightarrow{y} \widehat{\mathcal{C}} \xrightarrow{j^*} \widehat{\mathcal{C}}_J$, X = object of \mathcal{C} .

An hypercovering of X is a simplicial object

such that

$$P_{\bullet}: \Delta^{\operatorname{op}} \longrightarrow \widehat{\mathcal{C}}/\mathcal{Y}(X)$$

• for any *n*, the presheaf *P_n* has the form

$$P_n \cong \coprod_{i \in I} y(X_i)$$

where each X_i is an object of C endowed with a morphism $X_i \rightarrow X$,

• for any *n*, the transform by *j** of the canonical morphism

is an epimorphism of $\widehat{\mathcal{C}}_J/\ell(X)$

Remarks:

- (i) If *K* is an infinite cardinal containing the cardinal of *C*, one can restrict to sums $P_n \cong \prod_{i \in I} y(X_i)$ indexed by subsets *I* of *K*.
- (ii) If C has finite limits and any J-covering family of an object of C has a finite subcovering (which is the case for the fppf, étale or Zariski topology over a quasi-compact scheme), one can restrict to finite sums

$$P_n \cong \coprod_{1 \le i \le k} y(X_i).$$

Theorem:

Let (\mathcal{C}, J) = small site,

- $\mathcal{O} =$ sheaf of rings on (\mathcal{C}, J) ,
- $\mathcal{M} = \text{sheaf of } \mathcal{O}\text{-modules on } (\mathcal{C}, J),$
- X = object of C.

Then there are canonical isomorphisms

$$\lim_{P_{\bullet}} H^{k}(P_{\bullet}, \mathcal{M}) \xrightarrow{\sim} H^{k}(X, \mathcal{M}) = \mathbb{R}^{k} \Gamma(X, \mathcal{M}), \quad \forall k \geq 0,$$

where:

- the colimits are taken on the filtered category of hypercoverings P. of X,
- for any hypercovering P_• of X, the H^k(P_•, M) are the cohomology modules of the complex:

 $\operatorname{Hom}(\boldsymbol{P}_0,\mathcal{M}) \longrightarrow \operatorname{Hom}(\boldsymbol{P}_1,\mathcal{M}) \longrightarrow \cdots \longrightarrow \operatorname{Hom}(\boldsymbol{P}_k,\mathcal{M}) \longrightarrow \cdots$

Remark: For any $P_n \cong \coprod_{i \in I} y(X_i)$, $\operatorname{Hom}(P_n, \mathcal{M})$ identifies with $\prod_{i \in I} \mathcal{M}(X_i)$.

Proof: See Chapter VI.

Corollary:

Let $\mathcal{C} =$ essentially small category with finite limits,

J = topology on \mathcal{C} such that any J-covering family

contains a finite subcovering,

- $\mathcal{O} = \text{sheaf of rings on } (\mathcal{C}, J),$
- X =object of C.

Then the functors

$$egin{array}{ccc} \mathcal{M}od_{\mathcal{O}} &\longrightarrow & \mathrm{Mod}_{\mathcal{O}(X)}\,,\ \mathcal{M} &\longmapsto & \mathcal{H}^k(X,\mathcal{M}) \end{array}$$

respect arbitrary filtered colimits.

Remark: This corollary applies in particular to the fppf, étale or Zariski topology of quasi-compact schemes.

Proof: We know $H^k(X, \mathcal{M}) \cong \varinjlim_{P_{\bullet}} H^k(P_{\bullet}, \mathcal{M})$ where the filtered colimit is taken over hypercoverings P_{\bullet} such that each P_n is a finite sum $\coprod_{1 \le i \le k} y(X_i)$, and, therefore, the functor $\mathcal{M} \mapsto \operatorname{Hom}(P_n, \mathcal{M}) = \prod_{1 \le i \le k} \mathcal{M}(X_i)$ respects colimits. As colimits respect colimits and filtered colimits are exact functors, the conclusion follows.

The notion of geometric dimension

Definition:

(i) The dimension (or Krull dimension) of a scheme X is

 $\dim(X) = \sup \{ \ell \in \mathbb{N} \mid \exists x_0, x_1, \dots, x_\ell \in X \text{ such that } \overline{x}_0 \subsetneq \overline{x}_1 \subsetneq \dots \subsetneq \overline{x}_\ell \}.$

(ii) The (relative) dimension of a scheme morphism $X \rightarrow Y$ is

 $\dim(X/Y) = \sup \{\dim X_y \mid y = \operatorname{Spec}(k) = \text{ point of } y, \ X_y = X \times_Y y\}.$

Remarks:

 (i) A topological space is called irreducible if intersections of pairs of non empty open subsets are non empty.

For any point x of a topological space X, its closure \overline{x} is irreducible.

A topological space is called sober if any irreducible closed subset of the closure of a unique point. Any scheme is sober.

(ii) If a scheme X is a union of open subschemes U_i , $i \in I$,

$$\dim(X) = \sup_{i \in I} \dim(U_i).$$

(iii) If X = Spec(A) is a scheme, $\dim(X) = \dim(A)$ is

 $\sup \{\ell \in \mathbb{N} \mid \exists p_0, \dots, p_\ell = \text{ prime ideals of } A \text{ such that } p_0 \not\supseteq p_1 \supseteq \dots \supseteq p_\ell \}.$

Basic facts about dimensions

- (i) Spec(ℤ) has dimension 1 and, for any field k, Spec(k) has dimension 0.
 (ii) If Spec(A) is an affine scheme of dimension d,
- Spec($A[X_1, ..., X_n]$) has dimension n + d.
- (iii) If $Z \hookrightarrow X$ is a locally closed subscheme,

```
\dim(Z) \leq \dim(X).
```

Therefore, any scheme of finite type over a scheme of finite dimension has finite dimension.

(iv) If $U \subset X$ is a dense open subscheme,

 $\dim(X) = \dim(U).$

(v) For any morphism $X \to Y$,

 $\dim(X) \leq \dim(Y) + \dim(X/Y).$

(vi) For any scheme X over a field k and any field k' containing k,

```
\dim(X) = \dim(X \times_{\operatorname{Spec}(k)} \operatorname{Spec}(k')).
```

Therefore, for any morphisms $X \rightarrow Y$ and $Y' \rightarrow Y$,

$$\dim(X \times_Y Y'/Y') \le \dim(X/Y)$$

and one even has an equality if $Y' \to Y$ is surjective.

(vii) For any finitely presented and flat morphism

$$X \longrightarrow Y$$
,

the map

$$\begin{array}{cccc} y & \longmapsto & \dim(X_y) \\ \| & \| \end{array}$$

point of Y fiber $X \times_Y y$ of X over y

is locally constant on Y.

(viii) For any finitely presented morphism $X \xrightarrow{f} Y$ of relative dimension d, the Zariski topology derived functors

$$\mathcal{M} \longmapsto \mathrm{R}^{k} f_{*} \mathcal{M}$$

are 0 on all quasi-coherent \mathcal{O}_X -Modules \mathcal{M} for all k > d.

Relative curves

Definition:

A relative curve over a base scheme *Y* is a finitely presented and flat morphism

$$X \longrightarrow Y$$

such that, for any point y = Spec(k) of *Y*, the fiber

$$X_y = X \times_Y y = X \times_Y \operatorname{Spec}(k)$$

has dimension 1.

Remark:

One can prove that a relative curve $X \rightarrow Y$ is proper if and only if, for any affine open subscheme

$$\operatorname{Spec}(A) = V \subset Y$$
,

the curve $X \times_Y V$ over V = Spec(A) is projective, in the sense that $X \times_Y V \to V$ factorises as the composition of some closed immersion

$$X \times_Y V \hookrightarrow \mathbb{P}^n \times V$$

and the projection $\mathbb{P}^n \times V \longrightarrow V$.

Relative jacobians

Proposition: Let $X \xrightarrow{p} Y$ be a relative curve such that

- *p* is proper and smooth (of dimension 1),
- the fibers of p are "geometrically connected" in the sense that, for any morphism $\overline{y} = \operatorname{Spec}(\overline{k}) \to Y$ from an algebraically closed field \overline{k} , the fiber $X_{\overline{y}} = X \times_Y \overline{y}$ is connected.

Then the images $\mathbb{R}^k p_* \mathbb{G}_m$ of the étale sheaf \mathbb{G}_m on X by the étale direct image cohomology functors are:

- (i) $\mathbb{R}^k p_* \mathbb{G}_m$ is 0 if k > 2,
- (ii) $p_* \mathbb{G}_m$ is the étale sheaf \mathbb{G}_m on Y,

(iii) $R^1 p_* \mathbb{G}_m$ associates to any étale morphism $Y' \to Y$ the cokernel of the morphism:

$$\begin{array}{cccc} H^1_{Zar}(Y', \mathcal{O}_{Y'}^{\times}) & \longrightarrow & H^1_{Zar}(X \times_Y Y', \mathcal{O}_{X \times_Y Y'}^{\times}) \\ \| & & \| \\ \text{group of } \mathcal{O}_{Y'}\text{-Modules} & \text{group of } \mathcal{O}_{X \times_Y Y'}\text{-Modules} \\ \text{locally isomorphic to } \mathcal{O}_{Y'} & \text{locally isomorphic to } \mathcal{O}_{X \times_Y Y} \end{array}$$

gı

Theorem: In the same situation, the functor

$$\begin{array}{rcl} \mathrm{Sch}/Y & \longrightarrow & \mathrm{Set} \\ (Y' \to Y) & \longmapsto & H^{1}_{\mathrm{Zar}}(X \times_{Y} Y', \mathcal{O}^{\times}_{X \times_{Y} Y'})/H^{1}_{\mathrm{Zar}}(Y', \mathcal{O}^{\times}_{Y'}) \end{array}$$

is representable by a locally finitely presented scheme over Y

 $\mathcal{P}ic_{X/Y} \longrightarrow Y$ (called the Picard scheme of X over Y)

endowed with an abelian group scheme structure and a short sequence of abelian group schemes over Y

such that

- this sequence is exact for the étale topology,
- $\mathcal{J}ac_{X/Y}$ is proper (even projective over any affine open subscheme of *Y*) and smooth over *Y*, and its fibers are geometrically connected.

Remark:

- $\mathcal{J}ac_{X/Y}$ is called the relative jacobian of the relative curve X/Y,
- the relative dimension g of *Jac_{X/Y}* over Y is locally constant, it is called the "genus" of the relative curve X over Y,
- the morphism $\mathcal{P}ic_{X/Y} \xrightarrow{\text{deg}} \mathbb{Z}_Y$ is called the degree map.

Definition:

On any scheme *X*, one denotes μ_n the étale sheaf of $\mathbb{Z}/n\mathbb{Z}$ -modules defined as the kernel of

$$\mathbb{G}_m \longrightarrow \mathbb{G}_m, \ \lambda \longmapsto \lambda^n.$$

Remark:

If *n* is invertible on *X* or, equivalently, if *X* is a scheme over $\mathbb{Z}_{(n)} = \mathbb{Z}[X]/(n \cdot X - 1) = \mathbb{Z}[\frac{1}{n}]$, the $(\mathbb{Z}/n\mathbb{Z})$ -Module μ_n is isomorphic to the constant Module $(\mathbb{Z}/n\mathbb{Z})$ on the finite étale cover

$$X \times_{\operatorname{Spec}(\mathbb{Z}_{(n)})} \operatorname{Spec}(\mathbb{Z}_{(n)}[X]/(X^n-1))$$

of *X*.

Proposition:

Suppose *n* is invertible on a scheme *Y*.

Let $X \rightarrow Y$ be a smooth and proper curve with geometrically connected fibers such that the smooth proper morphism

$$\mathcal{J}ac_{X/Y} \longrightarrow Y$$

has constant relative dimension g.

Then the scheme over Y defined as the kernel of the morphism

$$\begin{array}{rccc} n & : & \mathcal{J}ac_{X/Y} & \longrightarrow & \mathcal{J}ac_{X/Y}\,, \\ & \mathcal{L} & \longmapsto & \mathcal{L}^{\otimes n} \end{array}$$

is a finite étale scheme over Y

 $\mathcal{J}ac_{X/Y}[n]$

which is locally isomorphic to the constant $(\mathbb{Z}/n\mathbb{Z})$ -Module $(\mathbb{Z}/n\mathbb{Z})^{2g}$.

Corollary: In the same situation of a smooth proper curve

$$p: X \longrightarrow Y$$

with geometrically connected fibers and constant genus g, the étale direct images

 $\mathbf{R}^{k} p_{*} \mu_{n}$

of the locally constant étale $\mathbb{Z}/n\mathbb{Z}$ -Module μ_n are:

(i) $\mathbf{R}^{k} \boldsymbol{p}_{*} \boldsymbol{\mu}_{n}$ is 0 for any $k \geq 3$,

(ii) $R^2 p_* \mu_n$ identifies with the constant sheaf $\mathbb{Z}/n\mathbb{Z}$,

(iii) $R^1 p_* \mu_n$ identifies with the locally constant finite étale $\mathbb{Z}/n\mathbb{Z}$ -Module

 $\mathcal{J}ac_{X/Y}[n]$

which is locally isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{2g}$,

(iv) $p_*\mu_n$ identifies with the locally constant étale sheaf μ_n on Y.

Grothendieck's six operations for étale cohomology

Definition:

A morphism of schemes $X \to S$ is called "compactifiable" if it factorises as the composite

$$X \stackrel{i}{\hookrightarrow} \overline{X} \stackrel{p}{\longrightarrow} S$$

of an open embedding *i* and a proper morphism *p*.

Remarks:

- (i) Any compactifiable morphism is locally of finite type.
- (ii) If S is a base scheme, let's denote

Sch_{c}/S

the full subcategory of Sch/S on compactifiable morphisms $X \rightarrow S$.

(iii) If *S* is quasi-compact, all objects $X \to S$ of Sch_c/S have finite relative dimension and, more generally, all morphisms $X \to Y$ of Sch_c/S have finite relative dimension.

Choice of torsion coefficients

Let n = integer which is invertible in $\mathcal{O}_{\mathcal{S}}(\mathcal{S})$. We consider:

• for any object $X \to S$ of Sch_c/S the category

 $\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X}$

of étale $(\mathbb{Z}/n\mathbb{Z})_X$ -Modules on X, together with the functors \otimes , $\mathcal{H}om$, Hom and their derived functors $\overset{L}{\otimes}$, $\mathcal{R}\mathcal{H}om$, $\mathcal{R}Hom$,

- for any morphism $f: X \to Y$ of Sch_c/S the pair of adjoint functors $f^* = f^{-1}, f_*$ between $\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X}$ and $\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y}$ and their derived functors $f^* = f^{-1}, Rf_*$,
- for any étale morphism $i: X \to Y$ of Sch_c/S , the exact left adjoint $i_!$ of i^* .

Remark:

If $n = \ell_1^{m_1} \cdots \ell_k^{m_k}$ is the prime decomposition of *n*, we have for any *X* a canonical decomposition

$$\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X} = \mathcal{M}od_{(\mathbb{Z}/\ell_1^{m_1}\mathbb{Z})_X} \times \cdots \times \mathcal{M}od_{(\mathbb{Z}/\ell_k^{m_k}\mathbb{Z})_X}.$$

So there is no restriction in supposing that

$$n = \ell^m$$

is a power of a prime ℓ .

The main theorems

Theorem:

Let S = quasi-compact base scheme,

n = integer which is invertible in $\mathcal{O}_{\mathcal{S}}(S)$. Consider a proper morphism of Sch_c/S

$$f: X \to Y$$
.

Then:

(i) (Proper base change theorem)For any cartesian square of Sch completing *f*

$$\begin{array}{c|c} X' \xrightarrow{x} X \\ f' & & \downarrow \\ f' & & \downarrow \\ Y' \xrightarrow{y} Y \end{array}$$

the canonical morphisms

$$egin{array}{ccc} y^* \circ f_* & \longrightarrow & f'_* \circ x^* \,, \ y^* \circ \mathrm{R}f_* & \longrightarrow & \mathrm{R}f'_* \circ x^* \end{array}$$

of functors from $\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X}$ to $\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y}$, or from $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X})$ to $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y})$ are isomorphisms.

(ii) If *d* is the relative dimension of $X \xrightarrow{f} Y$, f_* has cohomological dimension $\leq 2d$. In other words,

$$\mathbf{R}^{k}f_{*}=\mathbf{0}$$

for any k > 2d.

(iii) The functors

$$f_*, \mathbb{R}^k f_* : \mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X} \longrightarrow \mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y}$$

transform constructible $(\mathbb{Z}/n\mathbb{Z})_X$ -Modules into constructible $(\mathbb{Z}/n\mathbb{Z})_Y$ -Modules.

Remark:

(ii) implies that Rf_* is well-defined as a functor from $D(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X})$ to $D(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y})$. In the situation of (i), there is a morphism of functors from $D(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X})$ to $D(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y})$

$$y^* \circ \mathbf{R}f_* \longrightarrow \mathbf{R}f'_* \circ x^*$$

and it is an isomorphism.

Corollary (of the proper base change theorem): We can associate to any morphism of Sch_c/S

 $f: X \to Y$

a functor

$$\mathbf{R}f_{!}: D^{+}(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{X}}) \longrightarrow D^{+}(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{Y}})$$

(or even: $D(Mod_{(\mathbb{Z}/n\mathbb{Z})_X}) \longrightarrow D(Mod_{(\mathbb{Z}/n\mathbb{Z})_Y}))$

such that:

• for any factorisation of f

$$X \stackrel{i}{\hookrightarrow} \overline{X} \stackrel{p}{\longrightarrow} Y$$

as the composite of an open embedding i and a proper morphism p, there is a canonical isomorphism

$$\mathbf{R}\mathbf{f}_{!}\cong\mathbf{R}\mathbf{p}_{*}\circ\mathbf{i}_{!},$$

• for any pair of morphisms of Sch_c/S

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$
,

there is a canonical isomorphism

$$\mathrm{R}(\boldsymbol{g}\circ\boldsymbol{f})_{!}\cong\mathrm{R}\boldsymbol{g}_{!}\circ\mathrm{R}\boldsymbol{f}_{!}$$
 .

Remarks:

(i) Any morphism *f* : *X* → *Y* of Sch_c/*S* factorises as the composite of an open embedding followed by a proper morphism.
 Indeed, *X* → *S* has such a factorisation

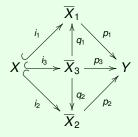
$$X \stackrel{i}{\hookrightarrow} \overline{X} \stackrel{p}{\longrightarrow} S.$$

Then, $\overline{X} \times_S Y \to Y$ is proper as well as $\overline{X}_1 \to Y$ if \overline{X}_1 is the smallest closed subscheme of $\overline{X} \times_S Y$ containing the image of

$$X \xrightarrow{(i,f)} \overline{X} \times_{S} Y.$$

So $X \xrightarrow{i_1} \overline{X}_1 \xrightarrow{p_1} Y$ is a factorisation of *f* as the composite of an open embedding i_1 and a proper morphism p_1 .

(ii) If $X \xrightarrow{i_1} \overline{X}_1 \xrightarrow{p_1} Y$ and $X \xrightarrow{i_2} \overline{X}_2 \xrightarrow{p_2} Y$ are two such factorisations, there is a commutative diagram



such that

 i_3 is an open embedding, just as i_1, i_2 , p_3, q_1, q_2 are proper, just as p_1, p_2 , $q_1^{-1}(i_1(X)) = i_3(X) = q_2^{-1}(i_2(X))$.

- (iii) The corollary formally follows from the proper base change theorem combined with remarks (i) and (ii), just as in the case of ringed topological spaces.
- (iv) The functors Rf_1 commute with base change.
- (v) We can associate to any morphism $f: X \to Y$ of Sch_c/S a functor

$$f_{!}: \mathcal{M}\!od_{(\mathbb{Z}/n\mathbb{Z})_{X}} \longrightarrow \mathcal{M}\!od_{(\mathbb{Z}/n\mathbb{Z})_{Y}}$$

such that:

- for any factorisation of f as $X \stackrel{i}{\hookrightarrow} \overline{X} \stackrel{p}{\to} Y$, $f_!$ identifies with $p_* \circ i_!$, for any pair of morphisms of Sch_c/S

$$X \xrightarrow{f} Y \xrightarrow{g} Z,$$

 $(g \circ f)_{!}$ is canonically isomorphic to $g_{!} \circ f_{!}$.

Nevertheless, in general, Rf_1 is not the derived functor of f_1 .

The Künneth formula

Proposition:

(i) For any morphism $f: X \to Y$ of Sch_c/S and objects \mathcal{M} of $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X}), \mathcal{N}$ of $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y}),$ $Rf_!(\mathcal{M} \overset{L}{\otimes} f^{-1}\mathcal{N})$ and $Rf_!\mathcal{M} \overset{L}{\otimes} \mathcal{N}$

are canonically isomorphic.

(ii) For any cartesian square of Sch_c/S

$$\begin{array}{c} X_1 \times_Y X_2 \xrightarrow{\rho_2} X_2 \\ \downarrow \\ p_1 \\ \downarrow \\ X_1 \xrightarrow{q_1} Y \end{array}$$

with $r = q_1 \circ p_1 = q_2 \circ p_2$, and objects \mathcal{M}_1 of $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{X_1}})$, \mathcal{M}_2 of $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{X_2}})$, $\operatorname{Rr}_!(p_1^{-1}\mathcal{M}_1 \overset{\mathrm{L}}{\otimes} p_2^{-1}\mathcal{M}_2)$ and $\operatorname{R}(p_1)_!\mathcal{M}_1 \overset{\mathrm{L}}{\otimes} \operatorname{R}(p_2)_!\mathcal{M}_2$

are canonically isomorphic.

Sketch of proof of the proposition: It is similar to the case of topological spaces. (ii) is a formal consequence of (i). (i) is obvious when *f* is an open immersion. So we can suppose that *f* is proper and $Rf_! = Rf_*$. For any \mathcal{M} and \mathcal{N} , the canonical morphism

$$f^{-1} \circ \mathbf{R} f_* \mathcal{M} \longrightarrow \mathcal{M}$$

yields a morphism

$$(f^{-1} \circ \mathbf{R} f_* \mathcal{M}) \overset{\mathrm{L}}{\otimes} f^{-1} \mathcal{N} \longrightarrow \mathcal{M} \overset{\mathrm{L}}{\otimes} f^{-1} \mathcal{N}$$
$$\stackrel{||^{2}}{f^{-1}(\mathbf{R} f_* \overset{\mathrm{L}}{\otimes} \mathcal{N})}$$

and by adjunction, a morphism

$$\mathbf{R}f_* \overset{\mathrm{L}}{\otimes} \mathcal{N} \longrightarrow \mathbf{R}f_*(\mathcal{M} \overset{\mathrm{L}}{\otimes} f^{-1}\mathcal{N}).$$

We have to check that this morphism is an isomorphism.

As Rf_* commutes with base change, we can suppose that *Y* is a geometric point. We can also suppose that N is a flat $(\mathbb{Z}/n\mathbb{Z})$ -module.

Then $\bullet\otimes \mathcal{N}$ is an exact functor.

So, for any $(\mathbb{Z}/n\mathbb{Z})_X$ -Module $\mathcal{M}, U \mapsto \mathcal{M}(U) \otimes \mathcal{N}$ is a $(\mathbb{Z}/n\mathbb{Z})_X$ -Module (in particular a sheaf) and it is f_* -acyclic if \mathcal{M} is f_* -acyclic. The conclusion follows.

The exceptionnal inverse image functor

Theorem:

Let $f: X \to Y$ = morphism of Sch_c/S . Then:

(i) The functor

$$\mathbf{R}f_{!}: D^{+}(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{X}}) \longrightarrow D^{+}(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{Y}})$$

has a right adjoint

$$f^{!}: D^{+}(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{Y}}) \longrightarrow D^{+}(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{X}}).$$

(ii) The two functors

$$\begin{array}{cccc} D^{+}(\mathcal{M}\!\textit{od}_{(\mathbb{Z}/n\mathbb{Z})_{X}}) \times D^{+}(\mathcal{M}\!\textit{od}_{(\mathbb{Z}/n\mathbb{Z})_{Y}}) & \longrightarrow & D(\mathcal{M}\!\textit{od}_{(\mathbb{Z}/n\mathbb{Z})_{Y}}), \\ & (\mathcal{M}, \mathcal{N}) & \longmapsto & \mathsf{R}f_{*}\mathsf{R}\mathcal{H}\!\textit{om}(\mathcal{M}, f^{!}\mathcal{N}), \\ & (\mathcal{M}, \mathcal{N}) & \longmapsto & \mathsf{R}\mathcal{H}\!\textit{om}(\mathsf{R}f_{!}\mathcal{M}, \mathcal{N}) \end{array}$$

are canonically isomorphic.

Remarks:

 (i) Composing the isomorphism of (ii) with RΓ(Y, ●), we get that the two functors

$$\begin{array}{cccc} D^{+}(\mathcal{M}\!\textit{od}_{(\mathbb{Z}/n\mathbb{Z})_{X}}) \times D^{+}(\mathcal{M}\!\textit{od}_{(\mathbb{Z}/n\mathbb{Z})_{Y}}) & \longrightarrow & D(\mathcal{M}\!\textit{od}_{\mathbb{Z}/n\mathbb{Z}}), \\ (\mathcal{M}, \mathcal{N}) & \longmapsto & \operatorname{RHom}(\mathcal{M}, f^{!}\mathcal{N}), \\ (\mathcal{M}, \mathcal{N}) & \longmapsto & \operatorname{RHom}(\operatorname{Rf}_{!}\mathcal{M}, \mathcal{N}) \end{array}$$

are canonically isomorphic.

(ii) The isomorphism of (ii) also means that, for any object \mathcal{N} of $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y})$, the square

is commutative up to canonical isomorphism.

(iii) For any morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ of Sch_c/S , $(g \circ f)^!$ is canonically isomorphic to $f^! \circ g^!$.

(iv) If $f : X \to Y$ is an open immersion, $Rf_!$ is the extension by 0 functor $f_!$ and so $f^!$ is the restriction functor $f^* = f^{-1}$. More generally, if $f : X \to Y$ is étale, $Rf_!$ is $f_!$ and so $f^!$ is $f^* = f^{-1}$.

(v) For any object \mathcal{N} of $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y})$, the identity morphism $f^!\mathcal{N} \to f^!\mathcal{N}$ corresponds by adjunction to a morphism

$$\mathrm{Tr}: \mathbf{R}\mathbf{f}_{!} \circ \mathbf{f}^{!} \mathcal{N} \longrightarrow \mathcal{N}$$

called the "trace morphism".

(vi) For any such object \mathcal{N} , the morphism

$$\mathbf{R}f_!(f^!(\mathbb{Z}/n\mathbb{Z})_Y\overset{\mathrm{L}}{\otimes}f^{-1}\mathcal{N}\cong\mathbf{R}f_!\circ f^!(\mathbb{Z}/n\mathbb{Z})_Y\overset{\mathrm{L}}{\otimes}\mathcal{N}\longrightarrow\mathcal{N}$$

corresponds by adjunction to a morphism

$$f^!(\mathbb{Z}/n\mathbb{Z})_Y \overset{\mathrm{L}}{\otimes} f^{-1}\mathcal{N} \longrightarrow f^!\mathcal{N}.$$

Principles of the construction

They are very similar to the case of topological spaces.

- We can suppose that $f: X \to Y$ is proper of relative dimension d so that $Rf_! = Rf_*$ has dimension $\leq 2d$.
- There exists a finite resolution

$$0 \longrightarrow (\mathbb{Z}/n\mathbb{Z})_X \longrightarrow S^0 \longrightarrow S^1 \longrightarrow \cdots \longrightarrow S^{2d} \longrightarrow 0$$

of $(\mathbb{Z}/n\mathbb{Z})_X$ by objects S^j of the full additive subcategory \mathcal{S}_X of $\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X}$ on $(\mathbb{Z}/n\mathbb{Z})_X$ -Modules S which are flat and such that,

for any étale morphism $U \xrightarrow{i} X$, $S_U = i_! i^* S$ is f_* -acyclic. For this we denote $|X|_f$ the set of points x of X which are closed in their fiber over Y and lift any $x \in |X|_f$ to a geometric point \overline{x} of X. We define

$$\begin{split} & \mathcal{C}_0 = (\mathbb{Z}/n\mathbb{Z})_X, \\ & \mathcal{C}_j = \mathcal{S}_{j-1}/\mathcal{C}_{j-1} \text{ for } 1 \leq j \leq 2d, \\ & \mathcal{S}_j = \prod_{x \in |\mathcal{X}|_f} \overline{x}_* \circ \overline{x}^* \mathcal{C}_j \text{ for } 0 \leq j \leq 2d-1, \\ & \mathcal{S}_{2d} = \mathcal{C}_{2d} \end{split}$$

so that there is an exact sequence

$$0 \longrightarrow (\mathbb{Z}/n\mathbb{Z})_X \longrightarrow S^0 \longrightarrow S^1 \longrightarrow \cdots \longrightarrow S^{2d} \longrightarrow 0.$$

We prove by induction on *j* that each C_j and S_j is flat over $(\mathbb{Z}/n\mathbb{Z})_X$. For any étale morphism $U \xrightarrow{i} X$, the $(\mathbb{Z}/n\mathbb{Z})_X$ -Modules

$$(S_j)_U = i_! \circ i^* S_j, \quad 0 \leq j \leq 2d-1,$$

are f_* -acyclic because they are products

$$\prod_{\substack{x \in |X|_f \\ = \text{ lift of } \overline{x} \to X}} \overline{X}_* \circ \overline{x}^* C_j.$$

Lastly, each $(S_{2d})_U$ is f_* -acyclic because the $(S_j)_U$, $0 \le j < 2d$, are f_* -acyclic and f_* has cohomological dimension $\le 2d$.

 For any object S of S_X and for any injective (ℤ/nℤ)_X-Module I, the presheaf

$$(U \to X) \longmapsto \operatorname{Hom}_{(\mathbb{Z}/n\mathbb{Z})_Y}(f_*((\mathbb{Z}/n\mathbb{Z})_U \otimes_{(\mathbb{Z}/n\mathbb{Z})_X} S), \mathcal{I})$$

is an injective $(\mathbb{Z}/n\mathbb{Z})_Y$ -Module (in particular an étale sheaf) denoted $f_S^!(\mathcal{I})$.

If *N* is an object of *D*⁺(*Mod*_{(ℤ/nℤ)Y}), and *N* → *I* is an injective resolution of *N* by *I* = (*I^k*), we define *f*[!]*N* as the complex

$$\left(\bigoplus_{k-j=n} f^!_{S^j}(\mathcal{I}^k)\right)_{n\in\mathbb{Z}}$$

Theorem:

Let S = quasi-compact base scheme,

n = integer which is invertible in $\mathcal{O}_{\mathcal{S}}(\mathcal{S})$.

Consider a morphism of Sch_c/S

$$y: Y' \longrightarrow Y$$

which is smooth of dimension *d*. Then:

(i) (Smooth base change theorem)

For any cartesian square of Sch_c/S completing y

the canonical morphisms

$$\begin{array}{rccc} y^* \circ f_* & \longrightarrow & f'_* \circ x^* \\ y^* \circ \mathbf{R} f_* & \longrightarrow & \mathbf{R} f'_* \circ x^* \end{array}$$

of functors from $\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X}$ to $\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{Y'}}$ or from $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_X})$ to $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{Y'}})$ are isomorphisms

(ii) The object of $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{Y'}})$

 $f^!(\mathbb{Z}/n\mathbb{Z})_Y$

is concentrated in degree 2*d* and quasi-isomorphic to

$$(\mu_n^{\otimes d})[-2d] = \left(\overbrace{\mu_n \otimes_{(\mathbb{Z}/n\mathbb{Z})_{Y'}} \cdots \otimes_{(\mathbb{Z}/n\mathbb{Z})_{Y'}} \mu_n}^{d \text{ times}}\right)[-2d].$$

Furthermore, the functor

$$f^{!}: D^{+}(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{Y}}) \longrightarrow D^{+}(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{Y'}})$$

is canonically isomorphic to the functor

$$\mathcal{N} \longmapsto f^!(\mathbb{Z}/n\mathbb{Z})_Y \otimes f^{-1}\mathcal{N}$$
.

Remark:

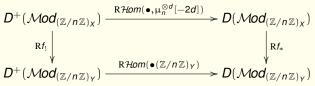
In particular, if $y : Y' \to Y$ is étale, (ii) means that $f^! = f^{-1} = f^*$ or, equivalently, that $Ry_! = y_!$ is the exact functor of extension by 0.

Corollary:

Let $X \xrightarrow{f} Y$

= smooth morphism of dimension *d* in Sch_c/*S*.

Then the square



is commutative up to canonical isomorphism.

Remark: If $Y = \operatorname{Spec}(k)$ is a base field k, $\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y}$ is the category of $(\mathbb{Z}/n\mathbb{Z})$ -linear representations of the Galois group $\operatorname{Gal}_k = \operatorname{Aut}_k(\overline{k})$ for some algebraic closure \overline{k} of k.

For any object \mathcal{M} of $D^+(\mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_Y})$,

 $R^{2d-i}\textit{f}_{*}(R\mathcal{H}\!\textit{om}(\mathcal{M},\mu_{n}^{\otimes d}))$

is the image of

 $\mathbf{R}f_{!}\mathcal{M}$

by the duality functor $R^i \mathcal{H}om(\bullet, (\mathbb{Z}/n\mathbb{Z})_Y)$ in the category of $(\mathbb{Z}/n\mathbb{Z})$ -linear representations of Gal_k .

Theorem:

Let $X \xrightarrow{f} Y$

= morphism of Sch_c/S which is both proper and smooth.

Then the functors

$$\mathbf{R}^{k} f_{!} = \mathbf{R}^{k} f_{*} = \mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{X}} \longrightarrow \mathcal{M}od_{(\mathbb{Z}/n\mathbb{Z})_{Y}}$$

transform locally constant constructible $(\mathbb{Z}/n\mathbb{Z})_X$ -Modules into locally constant constructible $(\mathbb{Z}/n\mathbb{Z})_Y$ -Modules.

Remark:

In other words, if X and Y are connected, \overline{x} is a geometric point of X and \overline{y} its composite with $f: X \to Y$, the functors

$$\mathbf{R}^{k}f_{*}=\mathbf{R}^{k}f_{!}$$

transform $(\mathbb{Z}/n\mathbb{Z})$ -linear representations of the profinite group

 $\pi_1(X, \overline{X})$

into $(\mathbb{Z}/n\mathbb{Z})$ -linear representations of the profinite group

$$\pi_1(Y,\overline{y})$$
.