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Chapter V:

Operations on linear sheaves on topological spaces,
derived categories, derived functors

and Grothendieck’s six operations
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Reminder on sheaves

Definition:
Let X = topological space,
O(X) = ordered set of open subsets of X considered as a category.

(i) The category of presheaves on X
Psh(X) = [O(X)*, Set]
is the category of contravariant functors
P:O(X)® — Set,
U —— P(U) = set of “sections” of Pon U,
(VCU) +~— (P(U)— P(V)) = restriction map from Uto V C U.

(ii) A presheaf P: O(X)® — Set is a sheaf if and only if,

for any open cover (U;);c; of some U, the map

PWU) —Eq([]PW)= ] PW, N U;z))

) iel it i€l
is one-to-one.

(iii) The category of sheaves is the full subcategory

Sh(X) < Psh(X)

on sheaves.
0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 3/161



The sheafification functor

Proposition: The canonical embedding functor

C Jx
has a left adjoint Sh(X) . Psh(X)
Psh(X) —— Sh(X),
P — JjP,
characterized by the property that any morphism
P—F

from a presheaf P to a sheaf F uniquely factorises as

P—j"P—F.

Remark: The sheafification j* P of P can be constructed by the formula

j"P(U) = lim 7“an’ ) Eq (H PU) = ‘H‘P(Vihig,/'))
where ' e

e the functor |IL)T1 is indexed by the filtering ordered set of coverings (U;) of U,
u

e for any such covering U = (U;), ILn is indexed by the filtering ordered set of

v
coverings (Vj, ,;); of the intersections U, N U,.

4
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Exactness properties

Proposition:
(i) The category Psh(X) has arbitrary limits and colimits and they are

component-wise, i.e.
(im Pa) (U) = lim P4(U),
D

D
(im Py ) (U) = limy Py(U).
D D

(ii) The category Sh(X) has arbitrary limits and colimits with
(im Fy) (V) = lim Fy(V),

D D
m Fd:j*(li%n) ioFa).

(iii) The functor j»  Sh(X) —> Psh(X)

respects arbitrary limits, while its left adjoint
j* : Psh(X) — Sh(X)
respects arbitrary colimits and finite limits.

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 5/161




Remarks:
(i) For any pair of adjoint functors

(CLD,DLC),

F respects arbitrary colimits, and
G respects arbitrary limits.

(if) A functor
F:C— D

is called right-exact [resp. left-exact]
if it respects finite colimits
[resp. finite limits].
It is called exact if it respects
both finite limits and finite colimits.

Ex:
j*: Psh(X) — Sh(X) isexact,
j«: Sh(X) — Psh(X) isleft-exact.
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Corollary:

(i) A group object [resp. ring object, resp. module object over a
ring object O] of Sh(X) is a sheaf of sets

U— G(U) [resp. O(U), resp. M(U) ]

endowed with a structure of group [resp. ring, module over the ring O(U)]

on each G(U) [resp. O(U), resp. M(U)]

such that all restriction maps
GgU) — gV [resp. O(U) — O(V), resp. M(U) —» M(V)]

are groups [resp. ring, resp. module] morphisms.

(if) A morphism of group objects [resp. ring objects, resp. module objects
over some ring object O] is a morphism of sheaves

G — G [resp. O1 — Oz, resp. My — Moz ]
such that all maps

Gi(U) — G2(U)  [resp. O1(U) — O2(U), resp. M1(U) — M2(U) ]

are group [resp. ring, resp. module] morphisms.
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The abelian categories of Modules

Definition:
Let (X, Ox) = ringed space
= topological space X
+ ring object Ox of Sh(X).
Then module objects over Oy in Sh(X)
are called Ox-Modules, and their category is denoted

MOdo I ©

Proposition:
For any ringed space,
MOC/@X

is an abelian category
with arbitrary limits and colimits.
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Definition:
(i) A category A is called additive if

e it has arbitrary finite products and coproducts,

in particular a terminal object 1 and an initial object 0,
e the canonical morphism 0 — 1 is an isomorphism,
o for any object M, the morphism

MIOIM — Mx M
defined by the matrix

idy M—1=0—->M
M—1=0—-M idy

is an isomorphism,
e for any objects M and N, the morphism

Mx M=MIIM L)y
defines by composition a law
Hom(N, M) x Hom(N, M) — Hom(N, M)

which makes Hom(N, M) an abelian group whose 0 element is

N—1=0—5 M.
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(ii) A category A is abelian if
e it is additive,
e it has arbitrarily finite limits and colimits or, equivalently, any morphism

M, - My

has a kernel
Ker(u) = My xum, 0

and a cokernel
Coker(u) = Mz Iy, O,

e for any such u: My — M., the canonical morphism
Coker(Ker(u) — M;) — Ker(M> — Coker(u)) = Im(u)

is an isomorphism.

Remark:
o A functor between additive categories
F:A— A
is called additive if it respects finite products (or, what is the same,
coproducts) or, equivalently, if all maps
Hom(N, M) — Hom(F(N), F(M))
are morphisms of abelian groups.

¢ Any functor between additive categories which has an adjoint is additive.
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Change of structure ring-sheaf

Proposition:
Let X = topological space,
(O1 — O2) = morphism of sheaves of rings on X.
Then the forgetful functor
./\/lOd(f)2 — ./\/lOd(f)1 )
M — M,

./\/IOdo1 — M0d02 y
M — O Ko, M.

has a left adjoint denoted

Remarks:

(i) For any object M of Modp,,
02 ®o, M
is constructed as the sheafification of the presheaf

U— 02(U) ®0p,uy M(U).
(ii) The forgetful functor respects arbitrary limits and colimits while its left
adjoint M — 02 ®p, M

respects arbitrary colimits.
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Exponentials (or “inner Hom’) and tensor products

Definition: For any open embedding U < X, the inclusion O(U) — O(X)
induces a functor [O(X), Set] — [O(U), Set] which restricts to a functor called the

restriction functor i Sh(X) — Sh(U),
F — Hu.

Remarks:
(i) Restriction functors respect arbitrary limits and colimits. In particular, they
transform any ring object Ox of Sh(X) into ring objects Oxy = Oy and induce
additive exact functors Modo, — Modo, .

(ii) For any sheaves F; and F, on X, the presheaf
U — Hom(Fyy, Fou)
is a sheaf denoted F2F1 or Hom(Fy, F2). It is characterised by the property that, for
any sheaf G,
Hom(G, Hom(F, F2)) identifies with Hom(G x Fi, F2).

(iii) In the same way, for any Ox-Modules M1, My, the presheaf
U— HOInoU(Mﬂu,Mz\U)
is a sheaf denoted Homo, (M1, M>).
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Proposition:
Let (X, Ox) = commutative ringed space
= topological space X + commutative ring object Ox of Sh(X),
N = Ox-Module.
Then the functor
MOdoX — MOdoX o
L +— 'HOmoX (N, E)

has a left adjoint denoted
Modp, — Modp, ,
M — Mo, N.
Furthermore, ® extends as a double functor
Modp, x Modp, — Modo, ,

(M)N) — M ®OX N
such that the two triple functors

Mody x Mody x Modo, — Ox(X)-modules,
(MyN,L) — Homp, (M ®o, N, L),
(M,N,L) — Homp, (M,Homo, (N, L))

are isomorphic.
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Remarks:

(i) The tensor product M ®¢, A is constructed
as the sheafification of the functor

Ur— M(U) R0y (U) N(U).
(ii) The two functors Modo, x Modo, — Modo,

(MN) — Mo N
and (M,N) — N ®o, M

are canonically isomorphic.

(iif) The double functor
(M,N) — M Koy N

respects arbitrary colimits in M or N,
while the double functor

(N, L) — Homo, (N, L)

respects arbitrarily limits in £
and transforms arbitrary colimits in A into limits.
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Push-forward and pull-back functors

Proposition:
Let (X LR Y) = continuous map between topological spaces.
(i) The functor
Psh(X) = [O(X), Set] — [O(Y)?, Set] = Psh(Y)
induced by the order-preserving map f~' : O(Y) — O(X)

restricts to a functor
f. : Sh(X) — Sh(Y).

(ii) This functor £, has a left adjoint
f~1:Sh(Y) — Sh(X)

which preserves not only arbitrary colimits
but also finite limits.
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Remarks:

(i) The functor f~': Sh(Y) — Sh(X) assigns to each sheaf F on Y the sheaf
f~1(F) on X obtained as the sheafification of the presheaf

=1 (v)ou

(ii) Both functors f, and f~! are left-exact.

So they transform group objects into group objects, ring objects
into ring objects and define additive functors

f.: Modp, — Mod;, o, (which is left-exact),

f~': Modo, — Mod;1p, (Whichis exact).
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Corollary:
Let (X, Ox) — (Y, Oy)
= morphism of ringed spaces,
=continuousmap f: X — Y
+ morphism of sheaves of rings
Oy — f.Ox or, equivalently, 'Oy — Ox.
Then:

(i) The composition of the functor
fo: MOdoX — MOdf* Ox
and of the forgetful functor defines a functor
f.: MOO'OX — MOO'OY 5
(ii) This functor f. : Modo, — Modo, has a left adjoint functor
i~ g MOd(')y — MOC/OX
constructed as the composition of the functors
' Modo, — Mod;-10,
and

Modi—1p, — Modo,,
M — OX ®f710y M 3

o
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Remark:

f. : Modp, — Modp, respects limits,

f*: Modp, — Modp, respects colimits.
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Extension by 0

Proposition:
Let (X, Ox) = ringed space,

(U < X) = open subspace endowed with Oy = Oxy.

Then the restriction functor
i : Modo, — Modo,,
has also a left adjoint functor

defined as ir : Modo,, — Modo,

Mi—s i M = [ V' — {meMUNV)|supp(m) s closed in V}].
open subset
of X

Reminder: For m € M(U), the support of mis
supp(m) = smallest closed subset Z of U suchthatm=0o0on U — Z.

Remark: For any x € X, the fiber of iM at x is

) My If xeU,
(’!M)X:{o it x¢U.

Therefore, the functor j is exact.

v
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Derived categories of linear sheaves

Derived categories are formed from any abelian categories, in particular from the
categories Modo, .

Definition: Let A = additive category. Then:
(i) One denotes C(.A) the additive category of complexes
iy A A f0 4,k A pkt 4
verifying in any degree dod = 0.

(ii) One denotes K(.A) the additive homotopy category of A defined in the following
way:

e the objects of K(.A) are the objects of C(.A),
e the morphisms of K(.A) . .
A* — B
are the equivalence classes of morphisms A®* — B*® of C(.A) for the homotopy
equivalence relation.

4

Reminder: Two morphisms f*,g°® : A* — B® are homotopic if there exists a family of
morphisms N
such that

g =doh +hH" od.
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Definition: Let A = additive category.
(i) Forany n € Z, one denotes

A+— Aln]
the functor of C(.A) or K(A) which associates to any object
A= (A%
the object
Alnl = (Aln]*)

defined by Aln* = A" in any degree
and darm = (—1)" - da in any degree K.

(ii) For any morphism u: A — B of C(A), its “cone” M(u) is the object of
C(A) defined by
M(U)n _ An+1 D B"

and the differentials

endowed with the morphisms

B — M(u) — A[1].
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Corollary: Let A = abelian category.

(i) The formulas
A= (A®) —s H"(A) = Ker(A" -5 A™")/Im(A™ ' <15 A)

define functors n
H":CA) — A

H':K(A) — A.

which factorise as

(ii) Any short exact sequence of the abelian category C(.A)

0—A—B—C—0
yields a long exact sequence of cohomology
oo — H"(A) — H"(B) — H"(C) — H™'(A) — H™'(B) — - --
and any morphism of such short exact sequences of C(.A) yields a morphism of
the associated long exact sequences of A.

(iii) This applies in particular to the exact sequences of C(.A)
0—B— Mu) — A1l — 0
associated to morphisms u: A — B of C(.A), yielding long exact sequences
oo — H"(A) — H"(B) — H"(M(u)) — H""(A) — H™'(B) — -

which depend on u : A — B in a functorial way, and whose connecting
homomorphisms H"(A) — H"(B) are the H"(u)’s.
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Definition: Let .4 = abelian category.
A morphism of C(A) or K(A) A B

is called a quasi-isomorphism if it induces isomorphisms of A
H"(A) — H"(B) in all degrees n.

Proposition:
(i) For any commutative triangle of C(A) or K(A)

A Z B
6

all arrows are quasi-isomorphisms if two of them are.

(if) In the homotopy category K(.A), the collection of quasi-isomorphisms

satisfies the Ore condition:

for any morphism u: A — Bresp. v : A’ — B] and any
quasi-isomorphism q: B — B’ [resp. q' : A’ — A],

there exist a morphism v: A’ — Bresp. u: A— B’] and

quasi-isomorphism q’ : A” — A[resp. q: B — B’] suchthatgov =uoq’.

a
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Proof:

(i) is obvious.

(i) As A can be replaced by .A°°, we only have to consider the case of a morphism
u: A — Band a quasi-isomorphism g : B’ — B.

The complex C defined by

C"=B"™"" @ B" and differentials <7qd 2)

is acyclic as q is a quasi-isomorphism.
If A" is the complex defined by

—-d 0 0
A"=A"aC"'=A"a (B B"") and differentials o d o0 |,
u —q —d
the morphism A’ — A'is a quasi-isomorphism as C is acyclic.
Lastly, the two morphisms

A—ALSB and AA—B 5B
defined as (a, b’, b) — u(a) and (a, b’, b) — q(b’) are related by the homotopy h = (h")
defined as
hn . Aln — An @ (Bln @ Bn71) — Bn71 ,
(a,b',b) — b
because d o h"(a,b’, b) = d(b)
and h™' o d(a,b’,b) = u(a) — q(b’) — d(b).
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Definition: Let A = abelian category.

The derived category of A

is the additive category D(.A) deduced from K(.A)

by formally inverting quasi-isomorphisms.

In other words, it is characterized up to unique isomorphism
by the following properties:

(1) Itis endowed with an additive functor

K(A) — D(A)

which transforms quasi-isomorphisms into isomorphisms.
(2) For any additive functor to an additive category

K(A) — D

which transforms quasi-isomorphisms into isomorphisms, there is a
unique additive functor
D(A) — D

which factorises K(A) — D as

K(A) — D(A) — D.
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Remark:

Thanks to part (ii) of the previous Proposition,
the derived category D(.A) can be concretely constructed in the following way:

e Objects of D(.A) are the same as the objects of C(A) and K(A).
e Any morphism of D(.A) can be formally written as

uoqg ':A—B Jresp. g 'ou:A— B]

where g: A’ — Alresp. g : B — B’] is a quasi-isomorphism of K(.A)
andu: A’ — BJresp. u: A— B’]is a morphism of K(A).
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e Two formal writings
uog,' and wogq,' [resp. q;'ou; and g, ous]

define the same morphism of D(.A) if and only if there exists a
commutative diagram of K(.A)

Aj B{
2N 71N
~9 a_Y_ B [resp. A—top <9 B]

A B}

such that g is a quasi-isomorphism as well as ¢g; and @o.

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 27/161



e The composite of two morphisms

urogy' and tpogy' [resp. Gy 'ou; and gy ou:]
is equal to . ’
(Uzou)o(qioq)” [resp. (qog)  o(uou)]

for any commutative diagram of K(.A)

A/l
AN
A’ B’
A B C

AN
AN A N

such that g1, g2, g are quasi-isomorphisms.
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Lemma:
Let A = abelian category.
The derived category D(.A) inherits from C(.A) and K(.A) functors

[n]: D(A) — D(A),

A — Aln]
and
H":D(A) — A,
A — H"A)
such that
[No[ml=[n+m], Vnm,
and

H'olm =H™™, VYnm.
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Definition:
Let A = abelian category.

One denotes
D*(A), D (A) and D°(A)

the full additive subcategories of D(.A)
on objects A such that

n< 0 inthe case D™(A),
H"(A) =0 for n>0 inthecase D—(A),
In| > 0 inthe case DP(A).

Remarks:

(i) D*(A), D~ (A) and DP(A)
are equivalent to the full additive subcategories of D(.A)
on objects A = (A®) such that

n<ko0,
A"=0 for n>0,
In| > 0.

(ii) These full subcategories are respected by the functors [m], m € Z.
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Definition:
(i) Atriangle of D(.A) is a diagram
A—B— C— Al]

and a morphism of triangles is a commutative diagram:

A B C All]
NN
A’ B’ C’ A'[1]

(ii) A triangle of D(A) is called “distinguished” if it is isomorphic to a triangle of the

form
AL B— M(u) — Al1]

where u: A — Bis a morphism of C(.A) and M(u) is its cone.

Lemma:
Any short exact sequence of the category C(.A)

0——ALSB—C—0

yields a quasi-isomorphism M(u) — C in C(A) and so defines a distinguished triangle

of D(A
(A4) A—B— C— Al].
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Proposition:
(i) The notion of distinguished triangle is stable under rotation: that is,

A B Cc - Al
is distinguished if and only if

B C % Al — B[]
is distinguished.

(ii) Any distinguished triangle
A— B— C— Al]

yields a long exact sequence of cohomology
coo — H"(A) — H"(B) — H"(C) — H™(A) — - -

(iii) For any object A of A, the triangle

id
is distinguished. A— A—0— Al]

(iv) Any morphism A — B of D(A)
can be completed in a distinguished triangle

A—B—C— Al].
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(v) For any distinguished triangles
A— B— C— Al],
A —B —C — A1,
any commutative diagram of D(.A)

A——B

L

A ——= B’

can be completed (not uniquely in general) to a morphism of triangles:

A B C All]
A’ B’ C’ A'[1]
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Proof:

(i) Consider a morphism A - B of C(A),
its cone M(u) = C defined as

C" = A" ¢ B" with differentials (_ud 2)

and the cone D of B — C defined as

—-d 0
D" =B 'aC" = B ' g(A"'@B")  with differentials (o —d
id u

The projections D" = B™' @ (A™' @ B") — A" define a morphism
D — A[1] such that the square

C——D

C——= All]
is commutative.

0
0].
d
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Furthermore, the square
D —— BJ1]

u

All] —— B[1]
is commutative up to the homotopy h = (h") defined as
h" . D"=B"'g(At'eB") — BH]"'=8",
(bya,b’) —— b’
because do h"(b,a,b’) = —d(b’)
and h"od(b,a,b’) = b+ u(a) + d(b’).
(ii) follows from the corresponding statement for cones of C(.A)
A B— M(u) — A1)

(iii) is a consequence of (i).
(iv) follows from the fact that any morphism of C(.A) has a cone.

(v) reduces to the corresponding statement for K(.A) which is obvious on the

definition of cones.
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Remarks:
(i) A morphism of distinguished triangles of D(.A)

A B C Al1]
Tk
A’ B’ C’ A'[1]

is an isomorphism if two of the three arrows

ab,c
are isomorphisms of D(.A).

(ii) In a distinguished triangle of D(.A)
A— B— C— All]
the objects A, B, C are in the subcategory

D" (A), D (A)or D°(A)
if two of them are.

Application: Any ringed space (X, Ox) defines derived categories

D(Modo, ), D" (Modo,), D™ (Modo,), D’(Modo,)

endowed with functors [m] and H" plus a notion of distinguished triangle.
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Derived functors

Proposition:
Let F : A — B = exact additive functor between abelian categories.
Then:

(i) The induced functor

K(A) — K(B),
A= (A"pez — F(A) = F(A") ez

respects quasi-isomorphisms.
(if) It induces a functor
F:D(A) — D(B)
which

e commutes with the functors [m], m € Z,
e respects distinguished triangles,
e is endowed with canonical isomorphisms

H'oF = FoH"

of functors D(A) — B.

vy
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Application:

(M)

(ii)

Any morphism of ringed spaces
(X,0x) 4 (Y, 0y)
f~': D(Modo,) — D(Mod;—+,,)
which commutes with the functors [m], respects distinguished triangles,
and commutes with the functors H™.

defines a functor

Any open embedding in a ringed space

(U, Ox) <4 (X,0x), with Oy = Oxu,
defines two functors
i'=i" : D(Modo,) — D(Modo,)
i : D(Modo,) — D(Modo,)
which commute with the functors [m], respect distinguished triangles

and commute with the functors H".
Furthermore, i is left adjoint to i*.

Remark: These functors f~', i* or iy send the subcategories D* (—), D~ (—) and D°(—)
to the subcategories D™ (—), D~ (—) and D°(—).
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Lemma:
LetF:A—-Band G: B—C
= two exact additive functors between abelian categories.

i GoF - A—C

is an exact additive functor
and the diagram of induced functor

D(A) GoF D(C)
S A
D(B)

Application: The formation of the functors

is commutative.

=10 or
between derived categories of linear sheaves
associated to a morphism of ringed spaces (X, Ox) !, (Y,Oy)
or to an open embedding U 4y x
is compatible with composition.
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Definition:
LetF: A— B
= additive functor between abelian categories
which is left-exact [resp. right-exact].
A derived functor of F is a functor

RF : D™ (A) — D" (B) LG : D (A — D (B)
or D°(A) — DP(B) [resp. or DP(A) — D°(B) ]
or D(A) — D(B) or D(A) — D(B)
such that:

(1) RF [resp. LF] commutes with the functors [m]
and respects distinguished triangles

(2) Denoting Q the quotient functors
K(A) — D(A) and K(B) — D(B),

RF [resp. LF] is endowed with a morphism of composite functors

QoF —RFoQ [resp. LFoQ — Qo F]
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(3) RF [resp. LF]is universal with respect to these properties in the sense
that for any functor R’F [resp. L’F] verifying (1) and (2),
there is a morphism of functors
RF —R'F  [resp. L'F—LF],
unique up to isomorphism, such that

QoF —R'FoQ [resp. L'FoQ— QoF]

is isomorphic to

QoF —RFoQ —R'FoQ [resp. L'FoQ —LFoQ — QoF].
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Remarks:

(i) If F: A— Bis left-exact [resp. right-exact]
and has a right [resp. left] derived functor

RF [resp. LF],
the composed functors

RF H¥
—

A — DT (A) Dt (B) —
H—k

[resp. A— D (A) X b-(B) 1 B]
are denoted
RKF  [resp. LKF].

(ii) In practice, derived functors are always constructed from a full additive
subcategory Z of A which is F-acyclic and big enough in the sense of the
following definition.

(iii) In that case, the functors
RKF  [resp. LKF]
are 0 for any k < 0 and the functor

ROF  [resp. LOF]
identifies with F.

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 42/161



(iv) As a consequence, any short exact sequence of A
0—A—B—C—0

yields a long exact sequence of B

0 — F(A) — F(B) = F(C) - R'F(A) - R'F(B) — ---R*F(C) - RFTF(A) — - -+

[resp.

- 5 LF(C) - L*F(A) — - 5 L'F(B) = L'F(C) — F(A) — F(B) — F(C) — 0].

(v) An object A of A is called F-acyclic if
RKF(A)=0, Vk>1.

(vi) The full additive category of A on F-acyclic objects is an “F-acyclic
category” in the sense of the following definition.
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Definition:
LetF: A— B
= additive functor between abelian categories
which is left-exact [resp. right-exact],
7 = full additive subcategory of A.
Then:

(i) Z is called “F-acyclic” if, for any short exact sequence of A
0—A—B—C—0,
e the induced short exact sequence of B
0 — F(A) — F(B) — F(C) — 0

is exact if A[resp. C] is an object of Z,
e the object C [resp. Alisin Z if A, B [resp. B, C] are in Z.

(if) Z is called “big enough” if, for any object A of A, there is an object / of Z
and a monomorphism A — [ [resp. an epimorphism / — A].

(iii) Zis called “of codimension < d” if, for any exact sequence of A of length d
A — A — A — - — Ay — 0,
[resp. 0— A — A — A — - — Ay ],

the object Ag [resp. Aol is in Z if Ag,...,Aq_1 [resp. A1,...,Ag] arein Z.
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Proposition:
LetF: A— B
= additive functor between abelian categories
which is left-exact [resp. right-exact],
7 = full additive subcategory of A which is F-acyclic.

Then:
(i) If Z is big enough,
there exist for any object A of C*(A) [resp. C~(A)]
an object / of C*(Z) [resp. C (Z)]
and a quasi-isomorphism in C*(A)

A— | [resp. — Al
Furthermore, F transforms any quasi-isomorphism
I1 — 12

between objects of C*(Z) [resp. C(Z)]
into a quasi-isomorphism of C*(B) [resp. C~(B)]

F(h) — F(k).
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(ii) If Z is big enough and of codimension < d,
there exist for any object A of C(.A) or C?(A)
an object / of C(Z) or C?(T)
and a quasi-isomorphism in C(.A)

A— | [resp. — Al
Furthermore, F transforms any quasi-isomorphism
I1 — /2

between objects of C(7)
into a quasi-isomorphism of C(B).

Remark:
Any such quasi-isomorphism

A— [resp. [— A]

is called a “resolution” of A
by a complex of the F-acyclic category Z.
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Sketch of proof of the proposition:
As one can replace A by A, it is enough to consider
the case where F is left-exact.

Existence of resolutions:
Let’s consider a complex A = (A®) of C(A).

If Z is big enough and A” = 0 for n <« 0 [resp. and Z has codimension < d],
one can construct a double complex (I”»k)nez’keN of objects of Z inserted in a
commutative diagram

0 An+1 /n+1,0 /n+1,1
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and such that

e each horizontal sequence is exact,
e ifA"is0,all I"*s are 0,
e if Z has codimension < d, then I =0 if k > d.

Then there is a quasi-isomorphism
A— |

to the complex / = (/*) defined by

"= & Ik, vn.

m-+k=n
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Preservation of quasi-isomorphisms

A morphism of C(7)
u: /1 — /2

is a quasi-isomorphism if and only if the complex M(u) is an exact sequence.

So we are reduced to proving that F transforms any long exact sequence of
objects of Z

an! d” 1

— = S — e

into a long exact sequence of B if Z is F-acyclic
and /" = 0 for n <« 0 [resp. and Z has codimension < d].

In both cases, our long exact sequence decomposes into short exact
sequences
0 — Im(d" ") — /" — Im(d") — 0

whose objects /" and Im(d") are all in Z.

The conclusion follows.
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Corollary:
LetF: A= B
= additive functor between abelian categories
which is left-exact [resp. right-exact],
7 = full additive subcategory of A which is F-acyclic.
Then:
(i) If Z is big enough, D" (A) [resp. D~ (A)]
is equivalent to the category D*(Z) [resp. D~ (Z)]
deduced from K (Z) [resp. K~ (Z)]
by formally inverting quasi-isomorphisms.

Furthermore, F has a right [resp. left] derived functor
RF : D" (A) — D*(B) [resp. LF:D (A) — D (B)]

whose restriction to D' (Z) [resp. D~ (Z)] is defined by the commutative

square
K*(T) -~ K+(B) K—(I) -~ K- (B)

J{ [resp. J{ J{ ]
D+(7) X Dt (B) D-(7) -~ D~ (B)
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(ii) If Z is big enough and has codimension < d,
DP(A) and D(.A) are equivalent to the categories
D®(T) and D(Z) deduced from K?(Z) and K(Z)
by formally inverting quasi-isomorphisms.

Furthermore, F has a right [resp. left] derived functor

RF : DP(A) — D°(B), [resp. LF : DP(A) — D°(B), ]

D(A) — D(B) D(A) — D(B)
whose restriction to D?(Z) or D(Z) are defined by the commutative
squares:

Kb(T) i Kb(B) K(Z) i K(B)
l l and i
DP(7) ﬁ DP(B) D(T) ﬁ D(B)
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Remark:

o If A contains a full additive subcategory 7
which is F-acyclic and big enough,
then the full subcategory of F-acyclic objects
(which is automatically F-acyclic itself)
contains Z and is a fortiori big enough.

¢ In that case, the subcategory of F-acyclic objects
has codimension < d if and only if the derived functors

RKF  [resp. LKF]
are 0 in all degrees k > d.
Indeed, any exact sequence of A

0—wA—B—C—0
whose middle object B is F-acyclic yields isomorphisms
RKF(C) = RFFTF(A)  [resp. LKT'(C) = LAF(A)]

in all degrees k > 1.
e We say F has cohomological dimension < d if this condition is verified.
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Corollary:

LetA -8B -%¢
= additive functors between abelian categories
which are left-exact [resp. right-exact],
Z,J = full additive subcategories of A and B
such that Z is F-acyclic, J is G-acyclic
and F sends Z to J.
Then:

(i) If Z and J are big enough
R(GoF):D"(A) — D" (C) [resp. L(GoF):D (A) — D (C)]
is isomorphic to the composed morphism

RGoRF : D*(A) —s D+(B) — D*(C)
[resp. LGoLF:D (A) — D (B) — D (C)]
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and its restriction to D" (Z) [resp. Dt (Z)] is defined by the commutative square

KH(I) —= K+ (7) —S> K+ (B)

|

D+ (I) R(GoF)

[resp.
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(ii) If, furthermore, F has cohomological dimension < d
and G has cohomological dimension < d’, then
G o F has cohomological dimension < d + d’ and has derived functors

R(GoF) [resp. L(GoF)] : DP’(A) — DP(C),
D(A) — D(C)
which are isomorphic to the composites

RGoRF  [resp. LGoLF] : Db(A) — DP(B) — DP(C),
D(A) —s D(B) — D(C).

Proof:
(i) is obvious.
(ii) Under these hypotheses, the full additive subcategory Z’ of A
on the objects A which are F-acyclic and G o F-acyclic
and whose transform F(A) is G-acyclic, contains Z and it has
codimension < d + d’.

Indeed, for any exact sequence

h—h — - — gy — 0  Jresp. 0 — lypgr — - — l — b]

with ly, ..., ly1q/—1 INZ’, Iy,4- belongs to Z'.
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Application to linear sheaves

Proposition: Let (X, Ox) AN (Y, Oy) = morphism of ringed spaces.

(i) Let b, = full additive subcategory of Modp, on the sheaves M
which are “flabby” in the sense that, for any U c X open,
. o M(X) — M(U)
IS surjective.
Then Fbo, is f.-acyclic and big enough.
Furthermore, f, sends Fbo, into Fbo, .
(ii) Let Pfo, = full additive subcategory of Modp,
on the sheaves A/ whose fibers
Ny:"_>mN(V)3 er)
Vay
are projective modules (= direct summands of free modules)
over the fiber rings
Oyy = I|_>m Oy (V).
Voy
Then Po, is f*-acyclic and big enough.
Furthermore, f* sends Pfo, into Pfo,.

<
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Sketch of proof:

(i) Itis obvious that £, (M) is flabby on Y if M is flabby on X.
Any Ox-Module M on X has a canonical embedding

M= M’
into the flabby Ox-Module

M U— [ [ M.
xeU
So we are reduced to proving that, for any short exact sequence of
Modo, 00— My — Mp—3 Mg — 0,
the induced sequence
0— My — My — M3 —0

is exact if M is flabby, and M3 is flabby if M+, Mo are flabby.
These two statements follow from:

Lemma: For any exact sequence of Modp,
0 — My — My — M3 —0
such that My is flabby, and any open subset U C X, the sequence
0 — My (U) — Mz(U) — M3(U) —0

is exact.
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(ii) Any Oy-Module N has a canonical epimorphism
N> N

from the Ox-Module

-® @ o

ineN)

VY

whose fibers are the free modules

=D D OY»V

yeV neN(V
As for any x € X with f(x) =y
(f*N)x identifies with Oy x ®o,, Ny,

f* sends ¥ (Oy) into Bf(Ox).

The remaining statements follow from:
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Lemma:
(i) A sequence of Modp,

0— N, —No— N3 —0

is exact if and only if, for any y € Y,

O—>.A/1)y HNz‘y _)./\/’s’y —>0

is an exact sequence of Oy, ,-modules.

(i) If N3, is projective, a sequence

0 — Ny —MNoy — N3y —0

is exact if and only if it is split, yielding V2, = N7, ® N3 .

(iii) Additive functors always respect split exact sequences.
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Corollary: Let f: (X,0x) — (Y, Oy) = morphism of ringed spaces.

(i) The left-exact functor
f* : MOdoX — MOdoy

has a right derived functor
Rf, : D* (Modp,) — D*(Modo, )

whose restriction to the equivalent category D (Fbe, ) deduced from
K+ (Fbo,) by formally inverting quasi-isomorphisms is defined by the
commutative square: .

K* (Fboy) —— K" (Fboy)

| l

D* (Fbo,) —2= D+ (Fbo,)

Furthermore, if f, has finite cohomological dimension, it has right derived

functors
Rf, D(Mp,) — D(Modp,),

D°(Modo,) — DP(Modo,),
D~ (Modo,) — D~ (Modo,).

4
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(ii) The right-exact functor
f*: Modp, — Modo,

has a left derived functor
Lf*: D~ (Modp,) — D~ (Modo,)

whose restriction to the equivalent category D~ (Ffo, ) deduced from
K~ (Pfo,) by formally inverting quasi-isomorphisms is defined by the

commutative square: f*
K= (Pfo,) — K~ (Pfoy)

l l

D~ (Pfo,) —— D~ (Pfo,)
Furthermore, if f* has cohomological dimension < d (or, equivalently, if
for any x € X with y = f(x), the functor Ox x ®o, , ® has cohomological

dimension < d), it has left derived functors
Lf* . D(Modo,) — D(Modo,),

D°(Modp,) — DP(Modo,),
D+(M0doy) — D+(M0dox).

Como, Autumn 2019 61/161
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Remarks:
(i) For any composed morphism
(X,0x) - (Y, 0y) £ (2,07),
the functors
R(g o f). and Rg. o Rf,
[resp. L(gof)* and Lf*oLg* ]
are canonically isomorphic.

(ii) If £, has finite cohomological dimension
[resp. if f* has finite cohomological dimension,
resp. if both f, and f* have finite cohomological dimension],
the functors

Lf*: D (Modo,) — D™ (Modo,) and Rf, : D™ (Modo,) — D (Modo, ),
[resp.
Lf*: DY (Modp,) — D*(Modo,) and Rf, : D" (Modo,) — D" (Modob, ),

resp.
Lf*: D(Modo,) — D(Modo,) and Rf. : D(Modo,) — D(Modo, ) |

are adjoint.
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(iif) For any commutative triangle in the category of ringed spaces

(X1,0x,) (X2, Ox,)

and any Og-Module M,
f defines a morphism

poM — fof* opsM — Rf, 0o f* o ps M
and, taking its transform by Rpo .,
Rps,. o p5M — Rpo . oRf, o f* o p M = Rpy . 0 pf M
This induces morphisms of Og-Modules
R¥p, . o psM — R py . 0 pj M

which depend functorialy on f.
In other words, sheaf-cohomology defines contravariant functors.
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Computation of cohomology by soft sheaves

Definition:
Let X = topological space which is locally compact (in particular Hausdorff).

(i) A sheaf M on X
is called “soft”

if, for any compact subspace K dy x ,
the restriction map

NX,M)=M(X) — i"M(K)=T(K,M)
is surjective.
(if) If Oy is a sheaf of rings on X,
let’s denote Sfo,

the full additive subcategory of Modp,
on Ox-Modules M which are soft.

Remark:
The restriction of a soft sheaf on X
to any open subspace U C X is soft.

4
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Lemma:
Let X = locally compact topological space,

(K <5 X) = compact subspace,
M = sheaf on X.

Then:
(i) The natural map

Llji?mKM(U) — K, M) = i*M(K)

is one-to-one.
(ii) If K is written as a union of two compact subspaces

K=KiUK,,
the natural map

'K, M) — T(Ki, M) X1k K, m) T (K2, M)
is one-to-one.

Remark:
(i) implies that, on a locally compact topological space X,
any flabby sheaf is soft.

v
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Proof of the lemma:

(i) If my € M(Uy) and my € M(U-) are sections of M on U; D K and U> D K which
have the same image in I'(K, M), then for any x € K, they coincide on some
open neighborhood Uy of x and so they coincide on UUy.

In the other direction, let m € T'(K, M).

The compact subset K can be covered by open subsets Ui, ..., U, such that
each U; is compact and m lifts to some m; € T'(U;, M).

For any indices i, j, there is a closed subset Z; C U;n U; such that Z,; N K =0
and mj, m; coincide on (U;N U;) — Z;;.

Then the m;’s define a section of M on s Ui — I_;JjZ,-,,- which lifts m.

=<n

(ii) We may suppose that K = X. The map is obviously injective.
Conversely, consider elements my € I'(Ky, M), mo € T'(Kz, M) which coincide on
Ki N Ka.
There are open neighborhoods U; D Ky, U> D Kxand KN Ky Cc U C Uy N Uz
such that my, m; lift to m{ € M(U;), m; € M(U.) and my, m; coincide on U with
a section m’ € M(U). Then we may write

K:X:(U1—U1mKZ)U(UQ_U20K1)UU
with (Ui — Ui N K)N (U —UaNKy) =0
and the sections m{ € M(U; — Ui N Kz), mj € M(U> — U N Ki), m" € M(U)
define a section of M(X) =T'(K, M) as wanted.
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Corollary:
Let (X, Ox) = differential manifold,
M = Ox-Module on X.

Then M is a soft sheaf.

Proof:
Let K = compact subspace of X,
m = section of M on K.

Then m can be lifted to a section m € M(U) for some open neighborhood K C U.
There exists an open neighborhood V of K such that

KcvcVvcu.
There exists C* functions ¢,V : X — R such that ¢ +{ =1 and

_ supp(¢) C U, supp(p) C X — V.
The section

©-me M(U)

coincides with mon V and a fortiori on K.
Furthermore, its restriction to the open subset

U — supp(¢)
is 0 and it can be extended by 0 on X — supp(¢) to define a section
@-me M(X).
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Proposition:
Let (X, Ox) = locally compact ringed space.
Consider a short exact sequence of Ox-Modules

0 — My — My — M3 —0.
Then:
(i) If M is soft and K é X is a compact subspace, the sequence
0 —T(K,Mq) —T(K,M3) —T(K,M3) —0

is exact.
(ii) If My and M, are soft, M3 is soft.

(iii) If X is countable at infinity,
the sequence

0 — My(X) — Mso(X) — M3(X) — 0

is exact.
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Proof of the proposition:

(M)

(ii)

Let m e T'(K, M3).

We may cover the compact subspace K by open subspaces of K
K=KiU---UK,

such each K is compact and the restriction of min T'(K;, M3) lifts to some

m; € F(K,', Mz).

Let’s prove by induction on k that, writing K, = Ky U - - - U K, the restriction of m

to 'Ky, M3) lifts to some my, € T(K}/, M2).

Suppose it is proven for rank k.

Then the difference m;, — mx1 is well-defined as a section in I'(K)/ N K1, My)

and extends to a global section
mi'1 € T(X, My)
as M, is soft. Then the sections

mp € T(K{,Mz) and my 1 +myq € T(Kkyq, Ma)
coincide in T'(K/ N Kx.1, M2) and define a lift
Mkt € T(Ki 1, M)
of the restriction of min I'(K, 1, Ms3).

According to (i), any element m; € T'(K, M3) lifts to some my € T'(K, M) as M,
is soft, and m, extends to some mj; € I'(X, M>) as My is soft.

The image m4 of m; in I'(X, Ma) is an extension of ma.
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(iii) As X is countable at infinity, it can be written as a union
X = U Un
n
of a sequence of open subsets U, such that each U, is compact and
Un C Up C Upyq forany n.
Let m e M3(X).

For any n, one can choose a lift mj, of min I'(Upn, M>).
Let’s construct by induction on n a sequence of lifts

my € T(Upy, M)  ofm
such that, for any n, m, is the restriction of my1 in T'(Un, M>).
Suppose my, ..., m, are constructed.
The difference m, — mj,, ; is well defined as an element of I'(Up, M).
It extends to an element

Then ml.y € T(X, M;).
Mp1 = Mg + My

is well defined in T(Upy 1, M2).

It is a lift of m and extends m,, € T'(Un, M>).

Lastly, the family (m,) defines a section of Mz on X which lifts m.
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Corollary:
Let (X, 0x) - (Y, 0y)

= morphism of ringed spaces.

Suppose X is locally compact and countable at infinity.

Then the full subcategory Sfo, of soft Ox-Modules is f,-acyclic.

Remark:

If (X,Ox) is a differential manifold which is countable at infinity, we even see

that the functor

is exact.

f.: MOdoX — ./\/lOdoy
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The sheaf theoretic De Rham theorem

Corollary:
Let (X, Ox) = differential manifold
which is countable at infinity.
Then the cohomology spaces .
Hr(X)
of the De Rham complex
0— Q%(X) — Qk(X) — - — Qk(X) — -
identify with the cohomology spaces
HX(X,R) = R p,Rx
of the constant sheaf Ry = p~'R on X relatively to the projection
p: X — {e}.

w

Proof: According to Poincaré’s lemma, the sequence of Rx-Modules on the
topological space X

. 0 —Ry — 0% —0k—... 50— ...
is exact. X X X X

As the sheaves Qﬁ‘( are soft, they are p,-acyclic
and Q%(X) = p.Q% computes the cohomology of Ry.
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Additive bifunctors

Definition:
Let A, B,C = additive categories. A functor

F:AxB—ZC
is called additive if, for any object A of A or B of B, the functor

F(Aje): B—C or F(e,B): A—C
is additive.

Examples:
e For any additive category A,
Hom : A® x A — Ab,
(X,Y) ~— Hom(X,Y).

e For any commutative ringed space (X, Ox),

® MOdoX X MOdoX — ./\/lOdoX ,
(M)N) — M ®(9x N)
and
Hom : Mody x Modp, — Modo,,
(N, L) — Homp, (N, L).
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Lemma:
LetF:AxB—=C
= additive bifunctor between additive categories.
Then:
(i) F defines additive bifunctors
CtA) xCHB) — CH(),
C A xC(B) — C(0),
CP(A) x C°(B) — CP(C)
and even

if C has countable direct sums.
They associate to complexes (A®) and (B®) of A and B the complex (C*)
defined by

C"= & F(A™,B™)

m—+n=n
and whose differentials a7 : C" — C"*1 are the sums of the

F(dy',idg=) : F(A™,B™) — F(A™*+1 B™)
and

(=)™ - Flidam, d) : F(A™, B®) — F(A™, B™+1).
B
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(ii) These functors induce additive functors

K+ (A )><K+( ) — K*¥(C),
K=(A) xK(B) — K (C),
KP(A) x KP(B) — KP(C)
and even K(A) x K(B) — K(C) if C has countable direct sum.
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Definition:
LetF: AxB—C
= additive bifunctor between abelian categories.
Then F is called left-exact [resp. right-exact]
if, for any object A of A or B of B, the functor
F(Aje): B—C or F(e,B): A—C
is left-exact [resp. right-exact].
Examples:
e For any abelian category A, the additive bifunctor

Hom : A® x A — Ab,

(X,Y) ~— Hom(X,Y)
is left-exact.
e For any commutative ringed space (X, Ox), the additive bifunctor

Hom MOd(OQPX X ./\/lOdoX — MOdoX )

(N, L) — Homo, (N, L)
is left-exact, while the additive bifunctor
® MOO'OX X ./\/lOd@X — MOCIOX y

.. (M)N) — M ®OX N
is right-exact.
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Derived bifunctors

Definition:
LetF: AxB—C
= additive bifunctors between abelian categories
which is left-exact [resp. right-exact].
A derived functor of F is an additive bifunctor

RF : D(A)xD"(B)— D"(C) [resp. LG D= (A) x D~ (B) — D (C)
or D(A) x D (B) — D(C) or D(A) x D~ (B) — D(C)
or D(A) x D(B) — D(C) or D(A) x D(B) — D(C) ]
such that:

(1) RF [resp. LF] transforms the functors [m] of D(A) or D(B) into the
functors [m] of D(C) and the distinguished triangles of D(.A) or D(B) into
distinguished triangles of D(C).

(2) Denoting Q the quotient functors
K(A) — D(A), K(B) — D(B) and K(C) — D(C),
RF [resp. LF] is endowed with a morphism of composite functors
QoF —RFo(QxQ) [resp. LFo(Qx Q) — Qo F].

(3) RF [resp. LF] is universal with respect to these properties.
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Remarks:

(i) If F: Ax B — Cis left-exact [resp. right-exact] and has a derived functor RF
[resp. LF], the composed functors

AxB RFo(Qx Q) D*(C) HK C
5 —k
resp. AxB Y. pey HL, ¢

are denoted & i
RF [resp. L°F].

(ii) In practice, derived functors RF [resp. LF] are always constructed through the
following proposition and corollary.

Then R¥F [resp. L¥F] is 0 for any k < 0 and R°F [resp. L° F] identifies with F.
(iii) Therefore, any object A of A and any short exact sequence of B
0—B —B—B"—0
yield a long exact sequence of C
0— F(AB') — F(A,B) — F(A,B") — R'F(A,B") — - -
.. — R¥F(A,B") — R'F(AB') — - -

[resp.
s — LMTF(A B") — LKF(AB') — - -

— L'F(AB") — F(A,B') — F(A,B) — F(A,B") — 01].
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(iv) Same for any object of B and any short exact sequence of A.

(v) An object A of A or B of B is called “F-acyclic”
if, for any object B’ of B or A’ of A,

RKF(A,B') =0,Vk>1, or RKF(A',B)=0, Yk > 1

[resp. LXF(AB)=0,Yk>1, or LKF(A’,B)=0, VYk>1].

v
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Proposition:
LetF: AxB—C
= additive bifunctor between abelian categories
which is left-exact [resp. right-exact],
7 = full additive subcategory of B
which is F(A, e)-acyclic for any object A of A.

(i) For any object Aof C*(A) [resp. C~(A)] and any quasi-isomorphism
lh— kL of CT(I) [resp. C(Z) ],

the morphism of C*(C)
F(A L) — F(A )
is a quasi-isomorphism.

(ii) Furthermore, if C has countable direct sums and the functor I|_>m is exact in
N

C, the same result holds for any object A of C(A).

(iii) Furthermore, if these conditions are verified and Z has codimension < d,
the same result holds for any object A of C(.A) and any
quasi-isomorphism

I1—>/2 of C(I)
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Sketch of proof of the proposition:

It is enough to consider the case where F is left-exact.

Replacing the morphism /i — kL of C*(Z) or C(Z) by its cone, we are reduced
to the case of an object / of C*(Z) or C(Z) which is quasi-isomorphic to 0,

in other words is a long exact sequence.

If 1 = (/°) is bounded below or if Z has codimension < d,

the long exact sequence | decomposes into short exact sequences

0—Im(/"")— " —Im(/") — 0

whose three objects are in Z.
It follows that for any object A of A, the long exact sequence

F(A )

is exact.

Using the five lemma, we derive that for any A € C?(A), the complex
F(A D

is quasi-isomorphic to 0.
If / is an object of C*(Z), the result generalises to any object A of C*(A) as,
for any rank k, it reduces to the previous case.
Lastly, the result generalises from C?(A) to C(.A) if C has countable direct sums
and the functor Il_)m is exact in C.

N
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Corollary:
LetF: AxB—C
= additive bifunctor between abelian categories
which is left-exact [resp. right-exact],
7 = full additive subcategory of B
which is F(A, e)-acyclic for any object A of A
and such that F(e, /) is exact for any object / of Z.
Then:
(i) If Z is big enough,
F has aright [resp. left] derived functor

RF: D" (A) x D" (B) — D*(C) [resp. D (A)xD (B) — D (C)]

whose restriction to Dt (A) x D*(Z) [resp. D~ (A) x D~ (Z)] is defined by
the commutative square
F F

K+(A) x K+(T) —F~ K+(0) K- (A) x K- (I) — £~ k- (0)
i l [resp. l i 1.
D*+(A) x D*(T) X~ D+ () D-(A) x D—(T) -~ D ()

v
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(ii) If Z is big enough, C has countable direct sums and the functor ILrg is
N

exact in C, F has a right [resp. left] derived functor
RF : D(A) x DY(B) — D(C) [resp. LF:D(A)x D~ (B) — D(C)]

whose restriction to D(A) x D" (Z) [resp. D(A) x D~ (Z)]
is induced by the functor
K(A) x K*(Z) 25 K(C)  [resp. K(A) x K—(T) = K(©)].

(iii) If these conditions are verified and Z has codimension < d,
F has a right [resp. left] derived functor

RF : D(A) x D(B) — D(C) [resp. LF:D(A) x D(B) — D(C) ]
whose restriction to D(A) x D(Z) is induced by the functor
K(A) x K(Z) — K(C).
Furthermore, RF [resp. LF] restricts to derive functors

DP(A) x D°(B) — D*(C),
Dt (A) x D*(B) — D*(C),
D-(A)x D (B) — D (C).
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Remark:

o If B contains a full additive subcategory Z
which verifies the conditions of (i),
then the full subcategory of F-acyclic objects of B
contains Z and is a fortiori big enough.
¢ In that case, the subcategory of F-acyclic objects of B
has codimension < d if and only if
the derived functors
RKF [resp. LXF]
are 0 in all degrees k > d.

o [f this condition is verified,
we say F has cohomological dimension < d.
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Corollary:

Let F: AxB—=C
= left-exact [resp. right-exact] additive bifunctor,
G:B' — B
= left-exact [resp. right-exact] additive functor,

F' = F(e,G(e)): Ax B —C,

7 = full additive subcategory of B
which is F(A, e)-acyclic for any object A of A
and such that F(e, /) is exact for any object / of Z,

7' = full additive subcategory of B’
such that Z’ is G-acyclic and G sends Z' to 7.
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Then:

(i) If Z and Z’ are big enough,
F’ has a derived functor RF’ [resp. LF'] isomorphic to

RF(e,RG(e)) [resp. LF(e,LG(e))].

Its restriction to D™ (A) x D™ (Z’) [resp. D~ (A) x D~ (Z")]
is defined by the commutative square

K+ (A) x K+(T') 24 K+(A) x K+(T) —F> K+(C)

| l

D*(A) x D*(T") Rl D*(C)

[resp.

K—(A) x K~ (T') 29 K—(4) x K (T) ——~ K~ (C)

| |

D (A) x D~(T') LF!

D-(C)].

v
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(ii) If furthermore C has countable direct sums and
the functor ILrg is exactinC,

N
F’ has a derived functor

RF':D(A)xD"(B") — D(C) [resp. LF':D(A)xD (B') — D(C)]

isomorphic to RF(e,RG(e)) [resp. LF (e, LG(e))].

Its restriction to D(A) x D (Z’) [resp. D(A) x D~ (Z")] is defined by the

commutative square

K(A) x Kt(Z7) B K(A) x KT(Z) _F K(C)

|

D(A) x D*(T') RF! D(C)

[resp.

K(A) x K—(T') 29 K(A) x K—(T) —F—~ K(C)

| |

D(A) x D~ (Z') LF D(C) 1.
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(iii) If the previous conditions are verified,
F has cohomological dimension < d
and G has cohomological dimension < d’,
then F’ has cohomological dimension < d + d’
and has a right [resp. left] derived functor

RF’ [resp.LF'] : D(A) x D(B")
D®(A) x D°(B’)

which is isomorphic to the composite

RF

D(A) x D(B') [ X RG D(A) x D(B)

[resp. id x LG]

[resp. LF]
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Injective objects

Definition:
Let A = abelian category.
An object / of A is called injective if the functor

A® —  Ab,
X +—— Hom(X,]/)

is exact.

Remark:

An object P of A is called projective
if it is injective in AP
i.e. if the functor
A — Ab,
Y ~—— Hom(P,Y)

is exact.
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Lemma:
Let A = abelian category,
| = injective object of A.
Then any monomorphism
15 A
is a retract in the sense there exists a morphism

r:-A—| such that roi=idg.

In other words, / is a direct summand of A.

Proof:
As [ is injective, the sequence

0 — Hom(A/Il,I) — Hom(A, /) — Hom(/,/) — 0

is exact.
So the element id; € Hom(/, /) lifts to an element

r € Hom(A, /).

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 90/ 161



Corollary:
Let A = abelian category,
7 = full additive subcategory of A on injective objects.
Then Z is F-acyclic for any left-exact additive functor F: A — B
to an abelian category.
In particular, if A has “enough injectives” in the sense that Z is big enough,
then any such functor F : A — B has a right derived functor

RF: Dt (A) — D" (B)
whose restriction to Dt (Z) is induced by
K1) 5 K+(B).

Proof:
e Any exact sequence of A
0O— M — M, — M;—0
such that My is injective is split;
so it is preserved by any additive functor F : A — B.

o If furthermore M is also injective, M5 is injective
as it is a direct summand of Ms.
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Application to linear sheaves

Proposition:
For any (commutative) ringed space (X, Ox),
the abelian category of Ox-Modules

has enough injectives. S

Remark:
For any injective Ox-Module M and any Ox-Module N,
the Ox-Module Hom(N, M) is flabby. In particular, M is flabby.

Indeed, for any open subset (U <y X), the monomorphism of Ox-Modules

induces a surjective map:

Hom(N, M) ——»  Hom(iii*N, M)
| |
I'(X, Hom(N, M)) Hom(i* N, i* M)

I
(U, Hom(N, M)

V.
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Sketch of proof of the proposition:
(1) The case when X = {e} and Ox = R is a commutative ring:

e First, Q/Z is an injective Z-module as multiplication by any integer m is
surjective in Q/Z.

e The canonical isomorphism
Hompg(N,Homz(M,Q/Z)) = Homz(N @z M,Q/Z)

shows that, for any free R-module M, the R-module

L Homgz (M, Q/Z)

is injective.
e For any R-module M, the canonical morphism

M — Homgz(Homz (M, Q/Z), Q/Z)
is injective.
So, for any free R-module M’ endowed with an epimorphism
M’ — Homyz(M,Q/Z),
there is an induced embedding
M — Homgz(M',Q/Z)

into the injective R-module Homz(M’,Q/Z).
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(2) The general case of (X, Ox):

Let X’ = set X with the discrete topology,
(p: X' — X) = canonical continuous map.

The functor p~' : Sh(X) — Sh(X’) associates to any sheaf M on X
the family of its fibers My at the points x € X.

If M is an object of Modp,, choose at any x € X an embedding
My — M,

of M into an injective Ox x-module M.
It can be seen as an embedding

oM M

into an injective p~'Ox-Module.
It induces an embedding

M — p. M’
into the Ox-Module p, M.

Lastly, p, M’ is injective
according to the following lemma:
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Lemma:
Let (A4 - B,B -5 A)
= pair of adjoint (additive) functors between abelian categories A, 5.
Suppose the left adjoint F is exact.
Then the right adjoint G transforms
injective objects of B into injective objects of A.

Proof:
Consider an injective object / of B and a short exact sequence

0— A —A — A3 —0
of A.
Then the sequence

0 — Hom(As, G(/)) — Hom(A2, G(/)) — Hom(A{(G(/)) — 0
identifies with the sequence
0 — Hom(F(As),/) — Hom(F(Az),/) — Hom(F(A¢),/) — 0O

which is exact.
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Corollary:
Let (X, Ox) = commutative ringed space,
Injo, = full additive subcategory of Modp, on injective objects.

Then:
(i) The left-exact functor

Hom : Mody x Modp, — Ab
has a right derived functor

RHom : D(Modp,)® x D*(Modn,) — D(Ab),
D~ (Modp, )® x Dt (Modp,) — D+ (Ab)

whose restriction to the equivalent subcategory D(Modo, )P x D (Znjo, )
is defined by the commutative square:

K(Modp, ) x K*(Injo,) —2 > K(Ab)

| l

D(Modo, )*® x D+ (Injo,) — 25 D(Ab)

v
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(ii) The left-exact functor
Hom : Mody; x Modo, — Modo,
has a right derived functor

RH*om : D(MOd@X)OpXD+(MOdoX) — D(MOdoX),
D~ (Modo, ) x D*(Mode,) — D*(Mode,)

whose restriction to the equivalent subcategory D(Modp, )P x D (Znjo, )
is defined by the commutative square:

K(Modp, ) x K*(Injo,) Hom . K(Modo,)

| i

D(Modp, ) x D+ (Injo,) — 2" . D(Modo,)
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Remarks:

(I) Let p: (X) OX) — (S) OS)
= canonical projection to the point space S = {e}
endowed with Og = Z.
Then the functors
RHom and Rp, o RHom
from D~ (Modp, )P x D (Modo,) [resp. D(Modp, )? x DT (Modo, )]
to D*(Ab) [resp. D(Ab)]
are canonically isomorphic [resp. if p has finite cohomological dimension].
(ii) Let f: (X,0x) — (Y,0Oy)
= morphism of commutative ringed spaces
such that 7 : Modp, — Modp, is exact.
Then the functors
RHom(f*(e),e) and RHom(e,Rf,(e))

from D(Modp, )P x DT (Modo, ) to D(Ab) are canonically isomorphic,
as well as the functors

Rf, o RHom(f*(e),e) and RHom(e,Rf,(e))
from D~ (Modp, )" x D (Modo,) [resp. D(Modp, )? x D (Modo, )] to
Dt (Modp, ) [resp. to D(Mody, ) if f. has finite cohomological dimension].
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Proposition: Let (X, Ox) = commutative ringed space.

Then the full additive subcategory Pfp, of Modp, is

(M ®0, o)-acyclic for any object M of Modo,

and such that the functor e @, P is exact for any object P of Plo, .

Proof: The objects of Pfp, are Ox-Modules P such that, for any x € X, the
fiber Py is a projective Ox x-module (or, equivalently, a direct summand of a
free module).
The conclusion comes from the following facts:
e For any Ox-Modules M1, M5, the fiber (M1 @0, M2)x
at x € X identifies with My x ®o, , M2 x.
e A sequence of Ox-Modules
00— My — Mo — M3z —0
is exact if an only if, for any x € X, the sequence
0 — Myx — Moy — M3z x—0
of Ox x-modules is exact.
e If M is a projective module over a commutative ring R, the functor e g M
is exact and any exact sequence
0O—M — M, — M—0

is split.
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Corollary:
Let (X, Ox) = commutative ringed space.
Then:

(i) The right-exact functor
® : MOdoX X MOd@X — MOC/@X

has a left-exact functor
L

® D(MOdoX)XDf(MOdoX) — D(MOdoX),
Df(MOdoX) XDf(MOdoX) — Df(./\/lOdoX)

whose restriction to the equivalent subcategory D(Modp, ) x D~ (Pfo, ) is
defined by the commutative square:

K(MOdoX) X Kf(PfoX) K(MOd(')X)

| ,

D(MOdOX) x D~ (Pf@x) D(MOdoX)

®

(ii) If ® has cohomological dimension < d, it even has a left derived functor

& : D(Modo,) x D(Mode,) — D(Modo, ).

v

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 100/ 161



Remarks:

(i) An Ox-Module M is called “flat” if it is ®-acyclic, i.e. verifies the
equivalent conditions:

(1) The functor e ®o, M : Modo, — Modo, is exact.
(2) For any short exact sequence of Ox-Modules

00— My — Mz — M —0
and any Ox-Module \, the sequence
0 — N®oy Mi —m N ®oy M2 — N ®oy M — 0

is exact.

(if) An Ox-Module M is flat if and only if, for any x € X,
the fiber M, is flat as a module over Oy .

(iii) The functor ® in Modp, has cohomological dimension < d
if and only if, for any x € X,
the functor ® in Modo, , has cohomological dimension < d.
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(iv) Commutativity: The functors
(M, M2) — My & Mz and (M4, M2) — Mp & M;

from D~ (Modp, ) x D~ (Modp,) to D~ (Modop, )
[resp. from D(Modp, ) x D(Modo, ) to D(Modp, ) if ® has finite
cohomological dimension on Modp, ] are canonically isomorphic.

(v) Associativity: The functors
IL; IL 1L,

(e @e) ® o and oé(o@o)
from D(Modo, ) x D~ (Modp, ) x D~ (Modo, )
[resp. D(Modp, ) x D(Modp, ) x D(Modp, ) if ® has finite cohomological
dimension on Modp,] to D(Modp, ) are canonically isomorphic.
(vi) Compatibility with pull back: For any morphism of commutative ringed
spaces f: (X,0x) — (Y, Oy), the functors

L L
Lf'(e ® o) and Lf*(e) ® Lf*(e)

from D~ (Modp,) x D~ (Modp, ) to D~ (Modp, )

[resp. from D(Modp, ) x D~ (Modp, ) to D~ (Modp, ) if f* has finite
cohomological dimension, resp. from D(Modp,) x D(Modp,) to
D(Modo,) if ® has finite cohomological dimension on Modp, and on
Modp,] are canonically isomorphic.
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(vii) If M is a flat Ox-Module and A/ an injective Ox-Module,
then Hom(M, N') is an injective Ox-Module.
This follows from the identification between the functors

Hom (e, Hom(M, ) and Hom(e @ M, N)

from Modo, to Ab.
(viii) The previous remark implies that the pairs of functors

RHom(e, RHom(e,e)) and RHom(e & e,e)
or RHom(e,RHom(s,¢)) and RHom(e & e,e)
or Hom(e,RHom(e,e)) and Hom(e é o 0)

from D(Modo, ) x D~ (Modp, )P x Dt (Modo,) to D(Modw,, ), D(Ab)
or Ab are canonically isomorphic.

(ix) For any object £ of D (Modp, ), there is a canonical morphism from the
identity functor id : M — M of D(Modp, ) to the functor

M — RHom(RHom(M, L), L) .
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Geometric categories

Definition:
Let Sp = category of (commutative) ringed spaces (X, Ox).
A subcategory G of Sp is called “geometric” if:
e If (X,Ox) is an object of G,
then any open subspace (U, Ox y) isin G
and the associated open embedding (U, Oxy) — (X, Ox) isin G.

o If (X,0x) -5 (Y, Oy) is a morphism of &,
then for any open subspace V of Y, the induced morphism of Sp

(f71(v))OX|f1(V])L>(VaOYW) isin G.

e Conversely, if (X, Ox), (Y,Oy) are 2 objects of G

related by a morphism (X, Ox) N (Y,Oy) of Sp
such that there exists an open cover Y = |JV; of Y
i€l
for which the induced morphisms (—'(V;), Oxit—1(vpy) — (Vi, Oyyy)arein G,
then f is a morphism of G.
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Examples:
e The choice of any commutative ring R defines an embedding

Top — Sp
by endowing any topological space X with the “constant” structure ring
Rx = py 'R

if px denotes the canonical projection px : X — {e}.
e The category of (countable at infinity) differential manifolds.
e The category of (countable at infinity) analytic manifolds.
e The category of schemes.
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Definition: Let G = geometric subcategory of Sp.

(i) A property (P) of objects of G (which is stable by isomorphisms) is called
“local” if

e any open subspace of an object of G verifying (P) also verifies (P),
e conversely, if an object of G has an open cover by open subspaces which
verify (P), then it verifies (P).
(ii) A property (P) of morphisms X 1, 80fg (which is stable by
composition with isomorphisms) is called “local on the base” if,
for any morphism X 1, Sof G:
o if f verifies (P), then for any open subspace V of S, the induced morphism
(V) 5 V verifies (P),
e conversely, if there exists an open cover S = 'LeJ/V’ such that each
(V) AN V; verifies (P), then f verifies (P).
(iif) Such a property is called “local on the source” if, furthermore, for any
morphism X 1, Sofg:
o if f verifies (P), then for any open subspace U of X, the induced morphism
U -1 S verifies (P),
e conversely, if there exists an open cover X = -U/U’ such that each Ui — S
S

verifies (P), then f verifies (P).
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(iv) A morphism of G

X— S
is called “squarable” if, for any morphism of G
S’ — S,
the fiber product
X Xs S — 8

is representable in G.

(v) A (stable) property of morphisms of G is called “universal” if any
morphism X — S of G verifying (P) is squarable and all induced
morphisms

X Xs S — 8
also verify (P).

Remarks:
e A fiber product X xg S’ in the category G is not necessarily a fiber
product in the category Sp of (commutative) ringed spaces.
e A squarable morphism X 1, Sofgis said to verify “universally” some
property (P) if, for any morphism S’ — S, the induced morphism
X Xs S — 8

verifies (P).
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Examples:
(i) The property for an object (X, Ox) of Sp to be

a topological space endowed with a constant structure sheaf Ry,
locally ringed,

a differential [resp. analytic] manifold,

a scheme,

such that the functor e @, e has cohomological dimension < d,

is local.
(ii) The property for a morphism (X, Ox) — (Y, Oy) of Sp to be

e an open embedding,

e “closed” in the sense that the image of any closed subset of X
is a closed subset of Y,

e such that the functor f, has cohomological dimension < d,

is local on the base.
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(iii) The property for a morphism (X, Ox) — (Y, Oy) of Sp to be

a morphism of locally ringed spaces,

a morphism of differential [resp. analytic] manifolds,

a morphism of schemes,

such that the functor f* has cohomological dimension < d,

flat in the sense that Oy is flat over f~10y

(or, equivalently, Ox  is flat over Oy f() for any x € X),

e a submersion of differential [resp. analytic] manifolds

in the sense it is locally diffeomorphic to the projection
RIXY —Y Jresp. CIxY —Y]

is local on the source.

The property for a morphism X — Y of Top to be “smooth” of relative
dimension d, in the sense it is locally homeomorphic to the projection

RIXY —Y

is local on the source.
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(iv)

(v)

In the category of differential [resp. analytic] manifolds,
submersions are squarable.

In the category Top of topological spaces [resp. Sch of schemes],
all morphisms are squarable.

In any geometric category G,
the property to be an open immersion is universal.

In the category of differential [resp. analytic] manifolds,
the property to be a submersion is universal.

In the category Top of topological spaces,
the property to be “smooth” of relative dimension d is universal.

In the category Top or the category Sch of schemes,
the property for a morphism X — Y to be

e “separated” (= relatively Hausdorff)

in the sense that the diagonal morphism X — X xy X is closed,
e “proper” (= relatively compact)

in the sense that it is separated and universally closed

(i.e. X xy Y’ — Y’is closed forany Y’ — Y)

is universal.
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The base change morphisms

Lemma:
(i) For any commutative square of Sp

(X', 0x/) —— (X, 0x)
| b
(S,) OS/) L> (S) OS)
there is a canonical morphism of functors

s*op, — plof*
from Modop, to Modo,, .

(ii) If furthermore p., p. [resp. s*, f*] have finite cohomological dimension,
there is a canonical morphism of functors

Ls* oRp, — Rp. o Lf*

from D~ (Modo,) to D~ (Modo,, )
[resp. from D*(Modo,) to D* (Modo,, )]

4
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Proof: This is a consequence of adjointness.
(i) For any object M of Modp,, the identity morphism
ffM— f*M
corresponds to a morphism
M —f,of*M
which yields
pM — p,of,of* M =s,0p.of*M
which corresponds to a morphism
s*op, M — plof*M.

(ii) For any object M of D~ (Modp, ) [resp. D' (Modo, )], the identity
morphism LF*M — Lf* M
corresponds by adjointness to a morphism

M — Rf, oLF* M
which yields

Rp.M — Rp, oRf, o Lf* M =Rs, oRp, o Lf* M

and again by adjointness
Ls* oRp,M — Rp. o Lf* M.
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Compatibility with base change

Definition:
Let G = geometric subcategory of Sp.

i) A morphism of G
0 P (X,0x) 2 (S, 0s)

is called “cohomologically proper” (of dimension < d) if

e it is squarable,
o for any cartesian square of G

(X', Ox/) ——= (X, 0x)
N
(S8',0s1) —— (8, 05)
p. has finite cohomological dimension (< d) and the morphisms

§* 0 pu(M) — pi o (M)
[resp.
Ls™ o Rp.(M) — Rp; o Lf* (M) ]

are isomorphisms for any object M of Modo, [resp. D~ (Modo, )].

4
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(i) A morphism of G
(Y,0v) = (S, 0s)

is called “cohomologically smooth” (of dimension < d) if

e itis squarable,
o for any cartesian square of G

(X', 0x/) ——= (X, 0x)
I
(Y,0y) —— (S, 05)
f* has finite cohomological dimension (< d) and the morphisms
§* 0 pu(M) — pi o F (M)

[resp.
Ls* oRp.(M) — Rp, o Lf*(M) ]

are isomorphisms for any object M of Modo, [resp. DT (Modo, )]
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Remarks:

(i) For squarable morphisms of G,
the property to be “cohomologically proper of dimension < d”
is universal and local on the base.

(if) For squarable morphisms of G,
the property to be “cohomologically smooth of dimension < @”
is universal and local on the source.
(iif) We are going to prove that
in the category Top
embedded in Sp by the choice of a coefficient ring R:

e any proper continuous map
X— S

whose fibers have cohomological dimension < d
is cohomologically proper of dimension < d,
e any continuous map
Y — S

which is “smooth” of relative dimension d
is cohomologically smooth of dimension < d.
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Cohomological properness for proper maps of

topological spaces

Lemma:
Let X 25 S
= continuous map between topological spaces which is proper.
Then, for any point s of S, the fiber Xs = p~'(s) is Hausdorff and compact.

Proof:

e The diagonal embedding X — X x s X is closed, so each Xs — X;s x Xs is closed,
which means that Xs is Hausdorff.

e Let s € S and consider an open cover Xs = ,LEJI U; of Xs. Let P(/) be endowed with
1

the topology for which a subset P C P(/) is open if, for any element J € P there
exists a finite subset {i,...,ik} = Jo C Jsuchthat J' O Jy = J' € P. The
projection Xs x P(I) — P(I) is closed and its fiber over the element | € P(/) is
covered by the family of open subsets U; x {J € P(/) | i € J}. So there exists a
finite subset {i, ..., ik} = Jo of I such that, for any x € Xs,

JObh=3Tiel,xel and J>i.
Taking J = b, it means Xs = U, U --- U U, as wanted.

4
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Theorem:
Let R = coefficient (commutative) ring,
Top = category of topological spaces X
endowed with the constant structure sheaf Ry,

(X 25 8) = proper morphism of Top.

Then:
(i) For any cartesian square of Top
X —Lsx
JI
S —=-8

and any object M of Modpg, [resp. D*(Modg, )], the canonical morphism
s*op. (M) — piof (M)
[resp. S*oRp (M) — Rplof*(M)]
is an isomorphism.

(ii) If the fibers Xs of X — S all have cohomological dimension < d, p. and
the p; all have cohomological dimension < d, p is cohomologically proper
of dimension < d and (i) even holds for any object M of D(Modp, ).

<

Remark: All morphisms s* = s~' and f* = f~' are exact.
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Proof:
(i) Itis enough to prove the assertions when S’ = {e}
so that sis a point of Sand X’ = p~'(s) = Xe.
If M is an object of Modg,, denote M its pull-back on Xs. Then
s* Op*M = (P*M)s = I'lg F(Pq(v),M)

Vs

ps o f*M =T(Xs, Ms) .

while

o Injectivity of lim Tp~'(V), M) — I'(Xs, Ms):
Vos
Let V = open neighborhood of siin S,
m = section of M on p~' (V) whose image in T'(Xs, Ms) = 0.
For any x € Xs, there exists an open neighborhood Uy C p~'(V) of x in X
such that m =0 on Uy.
Then mis 0 on the open subset U = XU Uy which covers the fiber Xs.

€Xs
As X 25 Siis closed, there exists an open neighborhood V' c V of sin S
such that p~' (V') c U and the image of min

i< 0. Fp " (V),M)
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o Surjectivity of lim Tp~ ' (V), M) = I'(Xs, Ms):
Vos
Let m be a section of Ms on Xs.

For any x € Xs, there is an open subset Uy > x of X such that
m € T'(Xs N Uyx, M) lifts to some my € T'(Ux, M). As X — S is separated, there
are for any y € Xs — (Xs N Ux) open subsets Vj > x, V' 5 y of X such that
V, N V)’ = 0. The compact set Xs — (Xs N Ux) can be covered by finitely many V,’
and so one can find an open subset

Vo> x suchthat VenXscC UcNXs.
The compact fiber Xs can be covered by finitely many open subsets Vy,, 1 <i<k.
For any i, Vi, — (Vx N Uy) is a closed subset of X whose intersection with X; is (.

As X P, Sis closed, there is an open subset U > s of S such that
Vinp '(U)cUsnp '(U),1<i<kandalsop '(U) C U V.

1<i<k
For any i # j, the support of the section
my, —my € T(p™' (U) N Vi, 1 Vg, M)
is a closed subset of p~'(U) whose intersection with Xs is 0.
So there is an open subset U’ > s of U C S such that, for any i # j, mx, and mj
coincide on p~ ' (U’') NV, N V.
They define an element of I'(p~" (U’), M) which lifts m.
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¢ Restrictions of flabby sheaves to fibers are soft:
Let’s prove that if M is flabby, M is soft.

It is enough to prove that any section m € I'(K, M) on a compact subset K of X;
lifts to I'(U, M) for some open subset U of X containing K.

For any x € K, there is an open subset Uy > x of X such that m € T(K N Ux, Ms)
lifts to some my € I'(Ux, M).
Then, for any such x, one can find an open subset
Vi3 x suchthat VinXscC UcNXs.
The compact set K can be covered by finitely many open subsets V,,, 1 <i<k.
As X 2, Sis closed, there is an open subset V > s of S such that
Vinp (V) CcUsnp '(V),1<i<k
For any i # j, the support Z;; of the section
My, — my € T(p~" (V) N Vi N Vi, M)
is a closed subset of p~'(V) whose intersection with K is .
ThenU=p (V)N (U Vy)— U Z;is an open subset of X which contains K
1<i<k i#
and the section m € T'(K, M) lifts to T'(U, M).
So, if M is flabby, M; is acyclic relatively to the functor RI'( Xs, e).
It is enough for proving that s* o Rp, — R’p. o f* is an isomorphism.

ii) follows from (i).
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Sheaf cohomology of the interval [0, 1]

Proposition:

Let p: [0,1] — {e} be the projection,
R = coefficient (commutative) ring,
M = p~"R-Module on [0, 1].
Then:

(i) We always have Rip, M =0,V > 1.

(ii) If p.M — M, is surjective at any point t € [0, 1], we even have

Rp.M=0, Vj>1.
(iii) If M is an R-module, the natural morphism
M— Rp,.op 'M

is an isomorphism.

0. Caramello & L. Lafforgue Cohomology of toposes

Como, Autumn 2019

121/161




Corollary:
Let (Y, Oy) = (commutative) ringed space,
X =Y x[0,1]9 for some d > 1
endowed with p: Y x [0,1]9 — Y
and Ox = p~10y.
Then:
(i) The functor p, : Modp, — Modp, has cohomological dimension < d.

(ii) For any object of D(Modo, ), the canonical morphism
M —Rp,op 'M

is an isomorphism.

Proof of the corollary:

It is enough to consider the case when d = 1.

As p:Y x [0,1] — Y is proper, we are reduced to the case when Y is a point
{e} endowed with a commutative coefficient ring R = Oy.

So we are reduced to the proposition.
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Proof of the proposition:
(i), (i) Consider j > 1.
Forany 0 <t < t’' <1, consider the embedding

it,t’ : [t’ tq — [0)1]
and the induced map

if e 2 H([0,1], M) — H([0, 1], (ir,tr) . M) = HI([t,

For m e HI([0,1], M), let

o First, we have 0 € J,.
e Secondly, we have for t < 1

lim H/(10, '], M).
/>

H([0, f], M)

~
~

This implies that if < 1 belongs to Jp,
there exists t’ > t belonging to Jp,.

t'yM).

v
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e For 0 <t <t' <1, the short exact sequence of sheaves on [0, 1]
0 — (lo,tr)lg,r M — (lo,t) «lo, e M © (it )ulf M — (itt) e Mt — 0

induces a long exact sequence of cohomology which yields isomorphisms
H ([0, t'], M) — H/([0, 1L, M) & HI(It, t'], M)
for any j > 2 and even for j = 1 if
H°([0,1], M) — M, is surjective.
As lim Hi([t, t'], M) = 0, we get that
=<t supJ, belongsto Jp.
e We conclude that Jn = [0, 1] which means that m = 0 and, as m is

arbitrary, H'([0, 1], M) = 0.

(iii) It only remains to prove that
M—p,op'M

is an isomorphism.
It is injective as [0, 1] - {e} has sections.
Lastly, for any m € T'([0, 1], p~'M), the support of m is both closed and open.
So mis 0 if its image in any fiber (p~'M); = M is 0.
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Homotopy invariance of sheaf cohomology

Theorem:
Let (S, Os) = base (commutative) ringed space,
(Xi,p1: X4 = 8), (Xoyp2: Xo — S)
= two topological spaces endowed with continuous maps to S
and the induced structure sheaves p; ' Og, p, ' Os.
Suppose we are given two continuous maps

f,9: X = X

which are compatible with the projections to S and homotopic (relatively to S)
in the sense that there exists a xommutative triangle of Top

Xi x [0,1] —= X,

L,

X, —" .5

with f = h(e,0), g = h(e, 1).

Then, for any object M of D (Modp,), the morphisms induced by f and g
f*,g" :Rpa, 0 p ' M = Rpy . 0 p; ' M

are equal.
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Proof:
By functoriality, it is enough to consider the case when

Xg = X1 X [0, ﬂ
and his idy,.
We can also suppose that S = X, p1 =idy, and p» is

p:X1 X [0,1] —>X1.
The conclusion follows from the fact that, for any object

M of D' (Modo,, ),

the canonical morphism
M —Rp,op "M

is an isomorphism whose inverse is the morphism

Rp,op "M — M

defined by the section
X1 — X1 X [0, 1]

associated with the choice of any element t € [0, 1].

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 126/ 161



Cohomological smoothness for smooth maps of

topological spaces

Theorem:
Let R = coefficient (commutative) ring,
Top = category of topological spaces X
endowed with the constant structure sheaf Ry,
(Y =5 S) = smooth morphism of Top.
Then:

(i) For any cartesian square of Top
f
Xy — X

|k
y—‘°*-8
and any object M of Modg, [resp. D" (Modg, )], the canonical morphism

s* 0 pu(M) —  plof (M)
[resp. s* oRpu (M) — Rp.of (M)]

is an isomorphism. In other words, s is cohomologically smooth.

(ii) If p. and p; have finite cohomological dimension, (i) even holds for any object M
of D(Modk, ).
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Proof:
As the asssertion is local on Y, it is enough to consider the case when

Y=SxR’ andso Xy=XxR%.
(i) For an object M of Modg, and a degree k > 0, let’s prove that the sheaf
morphism
s 'Rfp.M — RFpLF' M
is an isomorphism.
Let’s consider fibers at a point (¢, u) € S x RY. The fiber of s7'R¥p. M is
im H*(p~(V), M)

=
Vs

while the fiber of R¥p.f~—' M is
lim H(p ' (V) x U, " M).

Vst,Usu

But u has a basis of open neighborhoods U in R? which are contractible, implying

H(p ' (V) x U, f'M) = H(p" " (V),M).
So
s ' oRp.M —RpLof 'M

is an isomorphism for any object M of Modo, .

This result extends to any object of D* (Modp, ) and even of D(Modx) if p. and

p. both have finite cohomological dimension.
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Cohomology with compact support

Lemma:

Let Top,, = full subcategory of Top

on spaces X which are Hausdorff and locally compact.
Then:

(i) Any object X of Top,. can be written as an open subspace
X=X

of a topological space X which is Hausdorff and compact.

(ii) Any morphism X — Y of Top,, factorises as a composition

X o x .oy

of an open immersion X < X1 into an object X; of Top,,
and a proper continuous map X; - Y.
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(iii) For any two such factorisations
X x Py,

X(L)@Ly

of a morphism X — Y of Top,., there exists a commutative diagram

such that i3 is an open immersion just as i, i,
Ps, Qi, Qo are proper continuous maps just as pi, po
and i3(X) = q; (i (X)), i3(X) = g5 " (i2(X)).
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Proof:

(i) Let X = X U{oo} be endowed with the topology such that

e its restriction to X is the topology of X,
e a subset of X which contains oo is open
if and only if its complement is a (closed) compact subset of X.

Then X — X is an open embedding and X is Hausdorff and compact.
(ii) Let X <4 X be an open embedding as in (i).

Let X; be the closure in X x Y of the graph XA Xy off X5 .
Then X; is an object of Top,,, the projection X; — Y is proper
and X < Xj is an open immersion.

(iii) Let X5 be the closure in X; xy X, of the image of X “"2L X, xy X, .
Then X; is an object of Top,,
its projections on Xi, Xo and Y are proper continuous maps,
the embedding i3 : X — X3 is an open immersion
whose image i3(X) is the pull-back of i; (X) or ix(X).
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Theorem:

Let Top,. = category of (Hausdorff) locally compact spaces,
R = (commutative) coefficient ring.
Then:

(i) For any morphism X L5 ¥of Top,. factorised as
X 'ox, Loy
the composed functor
Rfi =Rp, o iy : D" (Modk,) — D*(ModRX1) — D" (Mody)

doesn’t depend, up to canonical isomorphism,
of the choice of the factorisation X '~ Xi P oy off.
(if) For any morphisms of Top,,

Xy 9,z

the composed functor R(g o f), is canonically isomorphic to Rg; o Rf,.

4
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(iii) For any cartesian square of Top,,

X XS X

1

y Yoy

the canonical morphism of functors
y* oRfy — Rf{ o x*

from D" (Modk,) to Dt (Modk,, )

is an isomorphism.
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Remarks:
(i) The functor Rf; is called the functor of “cohomology with compact support” of X
over Y. It can be proven that it is a derived functor of the functor

fi : Mok, — Modk,,
M — HM
where, for any open subset V of Y,

fFM(V) ={me M(f (V) | supp(m) is proper over V}.

(ii) Let
Top;. = full subcategory of Top,,
on spaces X which can be written as
open subsets X — X
of (Hausdorff) compact spaces
Then: which have finite cohomological dimension.

e any morphism f: X — Y of Topy, defines a functor
Rfy : D(Modk, ) — D(Moak, )
isomorphic to the composition Rp. o i, for any factorisation X (G Xi LN Y
of fin an open immersion i
and a proper continuous map p of finite cohomological dimension,
e each R(g o f), is canonically isomorphic to Rg, o Rf},
e the functors Rfy commute with base change.
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Proof of the theorem:
(i) Itis enough to consider two factorisations of f
X % Xi _ Y,
X ., Xo e Y

related by a proper morphism
y a prop p g: X — X
suchthat oo = i, p1 o g = po and g ' (i1 (X)) = ia(X).
As Rp, . identifies with Rps,. o Rq., we are reduced to proving that

Rg. o (i) identifies with (/1) .
For any object M of D (Modk, ), the canonical morphism
M — Iék o (Ig)i,/\/l = /1* ORq* ° (IZ)VM

corresponds to a morphism
(i1)[/\/l — Rq* [e} (IQ)IM
which reduces to

M M
over the open subset /s (X) of Xj.
As Rgq. is compatible with base change, its fiber at any point of X; — i1 (X) is
0—0.
So, (i1)1M — Rq. o (k)M is an isomorphism.
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(ii) Consider two factorisations

fooX X Py,
g : YLy, 22

of f, g and a factorisation of j; o p

X, 2 X,

N

YCL> Y1

yielding a commutative diagram

X1($- Y Xy, XQCLXQ

R

yc% Y,

With i = jp o i.
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We already know that the functors Rpy .. and Rp. o i; identify.
We are reduced to proving that the functors

Rp2 . o (j2):r and (j1): o Rp, identify.

For any object M of Dt (ModRX2 ), the canonical morphism

Rp.M —%5 Rp.M =Rp, 0 j5 0 (p):M = ji 0Rpa,s 0 (jo): M
corresponds to a morphism

(1)1 oRDM — Rpz 0 ()1 M

whose restriction to Y<i> Y; is an isomorphism and whose fiber at
any point of Yy — j1(Y)is 0 — 0.

So it is an isomorphism.
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The Kiunneth formula

Proposition:
Let R = commutative coefficient ring
such that the functor ®r has finite cohomological dimension.
Then:
(i) For any morphism f: X — Y of Top,,
and objects M of D" (Mocdk, ), N of D" (Modk, ),

RAM @A) and RAM) N
are canonically isomorphic.
(ii) For any cartesian square of Top,,

7

XxsY—sX

y q

withr=qop’ =pogq’,
and objects M of D (Mocdk, ), N of D" (Modk, ),

Rn(g'M QL@ p'N) and RpM QL@ RN
are canonically isomorphic.
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Proof:

(i) is obvious if f is an open immersion.
So we can suppose that f is proper and Rp, = Rp..
For any objects M of Modk, and N of Modk,,
there is a canonical morphism

MR, N — f(MRg, FN).

Furthermore, f~ "\ is flat if A/ is flat.
This yields a canonical morphism

REM SN — RE(M & F'\)

for any objects M of Dt (Modk, ), N of DT (Modk, ).

We have to prove this is an isomorphism.

As Rf, commutes with base change, we can suppose that Y is a point.
If AV is a flat R-module, we have for any R x-Module M

(M TN (U) = M(U)@r N for any open subset U of X

and M ® f~'Nis f,-acyclic if M is f,-acyclic. The conclusion follows.
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(ii) According to (i), we have canonical isomorphisms

RPRG! (g "M & p'~'\)
Rp(M & Rg{p'~'\)

Rpi (M & p 'RqN)

Rp M @% RN .

RA(g"TM & p'')

12

I12

l12

ll2

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 140/ 161



The exceptionnal inverse image functor

Theorem:

Let R = (commutative) coefficient ring,
f:X=Y
= morphism of Top,,.

Then the functor

Rf,: D" (Modk,) — D" (Modk,)
has a right adjoint

f': D" (Modk,) — D* (Modk,)
and the two functors
D*(Modk, )™ x D" (Modk,) — D' (Ab),
(M,N) +— RHom(M,FN),
are canonically isomorphic. (M,N)  +—  RHom(RAM, N)

Remark:
e If i: X < Xj is an open immersion,
i : DY (Modk, ) — D+(ModRX1)
iiE: D*(ModR)q) — D" (Modk,)
so that we can take in that case /' = i*.
e So it is enough to prove the theorem when f: X — Y is proper and Rf; = Rf..

0. Caramello & L. Lafforgue Cohomology of toposes Como, Autumn 2019 141 /161

is left adjoint to




Principle of the construction

e We can suppose that f : X — Y is proper and Rf, = Rf, has dimension < d.
e For any open embedding i : U — X and any Rx-Module M on X, we shall denote

My =ii"M.
e For any object N of D" (Modk, ), we should have
RI(U, fN) RHom(Ry, f'N)

= RHom(RfRy,N).
We shall prove there exists a finite resolution
0—Zx—8 —8 —...—8"——0

of Zx by objects & of the full additive subcategory Sx of Mody, on Zx-Modules

S which are flat and such that Sy is f.-acyclic for any open subset U of X.

Then we shall prove that for any object S of Sx and any injective Ry-Module /,
U — Homg, (f.(Ry ®z, S), /)

is an injective Rx-Module (in particular a sheaf) denoted f5(/).
Choosing an injective resolution A" — I of N by I = (/¥), we shall define f' A as

the complex
( P féj(/k))

k—j=n nez
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Proof of the theorem

Step 1:
Lemma:
Let S = object of Sx. Then:
(i) For any object M of Mody,, the object M ®z, S of Mz, is f.-acyclic.

(if) The functor
ModZX — MOdZy y
is exact. M — (Mg, S)

Proof:
(i) The object M has a resolution

e — Mo — My — My — M —0

where each M; is a direct sum of sheaves Z,,.
So M ®z, S has a resolution by the sheaves M; ®z, S which are direct
sums of sheaves Sy and so are f.-acyclic.
As f, has cohomological dimension < @,
it implies that M ®z, Sis f.-acyclic.
(ii) follows from (i).
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Corollary:
Let S = object of Sy,
| = object of Modk, .
Then the presheaf on X
U+ f§l(U) = Homg, (f.(Ry ®z, S), /)

is a sheaf and an object of Modk, .

Proof:
Any open covering of an open subset U of X

u=Ju
iel
yields an exact sequence of Zx-Modules
@RUIHLI]. — @RU,- — RU — 0.

ij i

Its transform by the functor f.(e ®z, S) is an exact sequence of Ry-Modules
and, applying the functor Homg, (e, /), we get an exact sequence

0 — fl(U) — [ [fsl(U) — [T fsiUin 4.

iy
It means that f/ is a sheaf.
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Step 2:

Lemma:
Let S = object of Sy,

| = object of Modkg, .
Then:

(i) For any object M of Modk,,

Homg, (M, fé/)
identifies with

Homg, (f.(M ®z, S), /).
(ii) If /is injective, the Rx-Module £/ is injective.

Proof:
(ii) follows from (i) as the functor

IS exact.

(i) Any morphism f, (M ®z, S) — [ and any element m € M(U) seen as a
morphism Ry — M define a morphism £.(Ry ®z, S) — [ or, equivalently,
an element of féI(U). This defines a morphism

HomRY(f*(M ®ZX S)) I) — HomRX(M) f‘lsl) o
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This morphism is an isomorphism
when M is a direct sum of sheaves Ry.

The conclusion for an arbitrary M follows from
the fact that it has a resolution

M_4—Myg—M—0

by Rx-Modules My, M_4 which are direct sums of sheaves Ry
and that the two functors

(MOO’RX)OP — Ab,
M — HOII]RV(f*(M ®ZX S)) I) )
M +— Homg, (M, fél)

are left-exact.
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Step 3:

Lemma:
The sheaf Zx on X has a resolution
0—Zx—8 —8 —...— 8 —0

where each Zx-Module S belongs to the subcategory Sx.

Proof:
o Let S° be the sheaf U — [] Z, and, denoting
ct = )(égker(Zx—)SO),
C = Coker(§'—8) for 1<j<d—1,
St U —s nucﬁ for 1<j<d—2 8§9=c%".
Xe

e For any U, there is an exact sequence
0—>ZU—>S?,—>SZ,—>---—>Sﬂ—>O
and each S{,, 0 <j < d-—1,isflabby and a fortiori f.-acyclic.
As f. has cohomological dimension < d, S is also f.-acyclic.
e For 1 <j < d, the fiber of C/ at x is
im T /.

UsX x'eu
x! #£x

So we get by induction on j that each & and C is flat.
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Step 4: conclusion of the construction

Definition:
Let Znjr, = full additive subcategory of Modk, on injective objects,
and (0 — S8 —8" — ... —8_—0)

= resolution of Zx by objects of Sx.

Then the functor
f': D" (Modk,) — DT (Mock,)

is defined by its restriction to the equivalent subcategory

D™ (Inj,) = K™ (Znjr, )

as
K*(Injk,) — K*(Modk,) — D*(Modk,),
_([|k y !k
I=(Fkez +— f/_(quznf&./)nez.
Remark:

There is an equality Dt (Znjr, ) = K™ (Znjr, )
as any quasi-isomorphism /i — L in C™(Znj, )
is invertible in K™ (Znj, ).
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Lemma:
With this definition, we have for any object / of K™ (Znj, )
and any object M of Dt (Modk, ) identifications

RHom(M, f'/) = RHom(Rf,. M, /),
Hom(M, f'l) = Hom(Rf,.M,I).

Proof:
For any M, the complex associated to the double complex

0 — fM®z, S°) — M@z, S") — - — £, (Mg, S9) —0
represents the image
Rf. M in D*(Modk,) .

So the first identification follows from the lemma of Step 2.
The second identification follows from the first one by applying the functor

HC : D(Ab) — Ab.
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Corollary:

(i) For any morphism f: X — Y of Top,. and any object N of D* (Modk, ),

the square Rom(e,f A7)
m(e,r"
D* (Modk, )
D+(,/\/l0dRy) RHom(e,N')

is commutative up to canonical isomorphism.
(ii) For any morphisms of Topy, ; v
X—Y =2,
(g o f)' is canonically isomorphic to f' o g'.
(iii) For any cartesian square of Topy,
X X=X

1)

y Loy

there is a canonical isomorphism of functors

D(Modk,,)

f oRy., =Rx. o f"

from D" (Modk,,, ) to D* (Mock,).
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Remarks:

(i) For any morphism f: X — Y of Top,
and any object M of D" (Modk, ), the canonical morphism

Rfio M — M associatedto M —<5 f M

is often denoted Tr and called the “trace” morphism.

It is a sheaf theoretic version of integration.
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(if) For any commutative triangle in the category Topg,

X f Xo
S

and any object M of D" (Modk,),
the transform by Rp,,: of the morphism

Tr: Rfy o f' 0 pbM — phM
is a morphsim of Dt (Modk,)
Rp1,1 0 pjM — Rpa 0 ppM
and induces morphisms of Modk,
R¥py 1 (pj M) — R¥pa i (p3 M), k€ Z.

In other words, cohomology with compact support of coefficients defined
by the exceptional inverse image functors is covariant.
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Concrete expressions of the exceptional inverse

image functors

If U~ X is an open immersion of Topy,, /' is i* = i~".
In the case of closed immersions, we have:

Proposition:

Letj: Z — X be a closed immersion of Topy,.
Then the functor j* : D (Modk, ) — DT (Modk,)
identifies with the composite j~' o Rz where

Rl : D+ (MOdRX) — D+(MOdRX)
is the derived functor of the left-exact functor

I MOdRX — MOdRX)
M — Tz(M)=Mz

where, for any open subset U of X,

Mz(U) ={m e M(U) | supp(m) C Zn U}.

v
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Proof:

For objects M of DT (Modk, ), N of D*(Modk,), we have
Hom(f*N)M) = Hom(j*N) er(./\/l))
= Hom(j " o LN,j~" o RIZ(M))
= Hom(N,j ' oRIZ(M)).

This means that j~' o RT’ is right adjoint to j, = j.

Remark:

Ifi: U— Xisthe open embedding of U =X —Z,
any object M of D" (Modk, ) yields a distinguished triangle in D (Modk, )

RIz(M) — M — Ri,i* M — RIZz(M)[1].

Indeed, if M is a complex of injective Rx-Modules,
it yields a short exact sequence

0——TIy M) — M — i,i*tM — 0.

v
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Theorem:

Let R = (commutative) coefficient ring,
Y = topological space,
X = Y x RY endowed with the projection p: Y x R — Y
and the 0 section: j: Y < Y x R,

Then:
(i) The composite functor

Dt (Modk,) — D*(Modk,),
M — jToRlyop!

identifies with M — M[—d].
(ii) The composite functor
Dt (Modk,) — D*(Modk,),
M — Rpop "M
identifies with M +— M[—d].
(i) If Y is an object of Top,., the functor

p': D" (Modk,) — D (Modk,)

identifies with M — =" M(d.
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Proof: We can suppose that d = 1.
(ii) As R is diffeomorphic to ]0, 1[, let's consider the projection

g:Yx[0,1] —Y

with its 0 and 1 sections jp,ji : Y — Y x [0,1]
and the open embedding i: Yx]0,1[< Y x [0,1].
We already know that, for any object M of Dt (Modk, ),

Rg.oq "M =Rqg 0q "M identifies with M .
For any object M of C*(Modk, ), the short sequence of complexes on
Y x [0,1]

0—ioitog'M—qg'M— jo . MIji.M-—0

is exact. Its transform by Rq,. = Rq; is a distinguished triangle
R(qoi)io(qoi)™" M — M — Mae&M — R(qgoi)o(qgoi)~'M[1]
I |
Rp o p ' M Rp; o p~ ' M[1]
and Rp, o p~ " M[1] is canonically isomorphic to (M & M)/ M = M.
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(i) There is a canonical morphism of functors
j'oRIyop ' — Rpop!
from D* (Modk, ) to D* (Modk, ).
We have to show that it is an isomorphism.

As both Rp, and R’y commute with base changes Y’ — Y, we can suppose that
Y = {e} is the point space and p is

R — {0}
with the 0 section j : {0} — R.

We have to show that for any R-module M,

Hioy (R, p~' M) — HZ(R,p~'M)
is an isomorphism for any k > 0.
For any a > 0, the morphism of long exact sequences

= HOUR—{0hp M) = HG (R, pTTM) S HESR,pTIM) = HYR—{0},p M) -
L 1 I K

S HU R — [—a, 8, p M) o HE ([—a, al, p M) = HA (R, p M) - HE (R — [—a,al,p " M) — - -

shows that _ _

Hioy(R,p~' M) — H*([-a,al,p"'M)

is an isomorphism for any k > 0. The conclusion follows from the isomorphisms
lim H*([~a,a,p~" M) — HZ(R,p"'M), Vk>0.

a>0
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(iii) For any object M of Modk,
and open subsets U =]a, b[ C R,
Ve,

we have canonical isomorphisms

RINU x V,p'M) RHom(Ryx v, p'M)
RHom(RpRyx v, M)
RHom(Ry[—1], M)

RI(V, M[1]).

This proves that the complex p' M is concentrated in degree —1
where it identifies with p~' M.

For an arbitrary object M of D" (Modk, ),

it follows that the canonical morphism

[l 1121 112

L
P'Zy Rz, p' M — p'M

corresponding to the morphism

L L
Rp(p'Zy @z p'M) =Rp, 0 p'Zy @z, M — M

is an isomorphism in D (Modg, ).
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Corollary:
Let R = commutative coefficient ring.

(i) For any morphism X Ly of Top,. which is smooth of dimension d,
i.e. locally homeomorphic to Y x RY — RY, the functor

f': D" (Modk,) — D* (Modk, )

is canonically isomorphic to the functor

M — (FZy) Gny, ' M

where f'Zy is concentrated in degree —d
and of the form
ory,y[d]

for a Z4-Module ory/y
which is locally isomorphic to Zx
and called the “orientation” sheaf.
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(if) For any commutative triangle of Top,,

Z (% X
S
suchthat Z <& X is a “regular” closed immersion of codimension d,

i.e. is locally homeomorphic to Z < Z x RY,
then for any object M of D* (Modk,),

jlopT'M

identifies with
Al L —
('Zx) @z, "M

where j'Zy is concentrated in degree d
and of the form

OI'Z/X[—d]
for a Zx-Module orz,x = j~' o RT7Zx
which is locally isomorphic to Z,
and called the “orientation” sheaf.
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Remarks:

(i) In the situation of (i) we get that
for any object M of D (Modk, ),
Rf*RHom(M, Rx ® OI'X/y[d])
identifies with RHom(Rp, M, Ry).

In particular, if Y is a point {e} and R is a field, each
HY=%(RHom(M,Rx ® orz,x))

is the dual of
H,ff(M) .

(if) In the situation of (ii) we get that
for any object M of DT (Modk, ),

J«RHom(M,Rx ® orz,x[—d])

identifies with
R'HOITI(]*M, RX) .
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