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Chapter IV:
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Abelian categories
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Presheaves on a topological space

Definition

Let X be a topological space. A presheaf F on X consists of the data:

(i) for every open subset U of X , a set F(U) and

(ii) for every inclusion V ⊆ U of open subsets of X , a function ρU,V : F(U)→ F(V )
subject to the conditions

� ρU,U is the identity map F(U)→ F(U) and
� if W ⊆ V ⊆ U are three open subsets, then ρU,W = ρV ,W ◦ ρU,V .

The maps ρU,V are called restriction maps, and we sometimes write s |V instead of
ρU,V (s), if s ∈ F(U).
A morphism of presheaves F → G on a topological space X is a collection of maps
F(U)→ G(U) which is compatible with respect to restriction maps.

Remark

Categorically, a presheaf F on X is a functor F : O(X )op → Set, where O(X ) is the
poset category corresponding to the lattice of open sets of the topological space X (with
respect to the inclusion relation).
A morphism of presheaves is then just a natural transformation between the
corresponding functors.
So we have a category [O(X )op,Set] of presheaves on X .
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Sheaves on a topological space

Definition

A sheaf F on a topological space X is a presheaf on X satisfying the additional conditions

(i) if U is an open set, if {Vi | i ∈ I } is an open covering of U, and if s, t ∈ F(U) are
elements such that s |Vi = t |Vi for all i, then s = t;

(ii) if U is an open set, if {Vi | i ∈ I } is an open covering of U, and if we have elements
si ∈ F(Vi ) for each i , with the property that for each i , j ∈ I , si |Vi∩Vj = sj |Vi∩Vj , then
there is an element s ∈ F(U) (necessarily unique by (i)) such that s |Vi = si for each i .

A morphism of sheaves is defined as a morphism of the underlying presheaves.

Remark

Categorically, a sheaf is a functor O(X )op → Set which satisfies certain conditions
expressible in categorical language entirely in terms of the poset category O(X ) and of the
usual notion of covering on it. The category Sh(X ) of sheaves on a topological space X is
a full subcategory of the category [O(X )op,Set] of presheaves on X .

This paves the way for a significant categorical generalization of the notion of sheaf,
leading to the notion of Grothendieck topos.
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Categorical reformulations

� The sheaf condition for a presheaf F on a topological space X can be
categorically reformulated as the requirement that the canonical arrow

F(U)→∏
i∈I

F(Ui )

given by s → (s |Ui | i ∈ I ) should be the equalizer of the two arrows∏
i∈I

F(Ui )→ ∏
i,j∈I

F(Ui ∩ Uj)

given by (si → (si |Ui∩Uj )) and (si → (sj |Ui∩Uj )).

� For any covering family F = {Ui ⊆ U | i ∈ I }, giving a family of elements
si ∈ F(Ui ) such that for any i , j ∈ I si |Ui∩Uj = sj |Ui∩Uj is equivalent to giving
a family of elements {sW ∈ F(W ) | W ∈ SF } such that for any open set
W ′ ⊆W , sW |W ′ = sW ′ , where SF is the sieve generated by F .
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Examples of sheaves

Examples

� the sheaf of continuous real-valued functions on any topological space

� the sheaf of regular functions on a variety

� the sheaf of differentiable functions on a differentiable manifold

� the sheaf of holomorphic functions on a complex manifold

In each of the above examples, the restriction maps of the sheaf are the usual
set-theoretic restrictions of functions to a subset.

Remark

Sheaves arising in Mathematics are often equipped with more structure than the
mere set-theoretic one; for example, one may wish to consider sheaves of modules
(resp. rings, abelian groups, ...) on a topological space X .
The natural categorical way of looking at these notions is to consider them as
models of certain (geometric) theories in a category Sh(X ) of sheaves of sets.
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Sheaves of algebraic structures

A sheaf F of abelian groups on a topological space X is an R is a model of the
theory of abelian groups, that is, an abelian group object in the category Sh(X ).

This is equivalent to saying that F is a sheaf of sets such that, for each open set
U of X , F(U) is an abelian group and for each inclusion V ⊆ U of open sets,
ρU,V : F(U)→ F(V ) is an abelian group homomorphism.

Similarly, a sheaf of rings (resp. of R-modules, where R is a commutative ring
with unit) is a sheaf of sets F whose sets of sections are all rings (resp.
R-modules) and whose structure maps between them are ring (resp. R-module)
homomorphisms.

Remark

On the other hand, sheaves of more sophisticated structures which cannot be
axiomatized by only using equational axioms (such as local rings or fields) cannot
be characterized in this way. In general, a sheaf of models of a geometric theory T
on a topological space is a sheaf of sets whose stalks are all models of T.
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The sheaf of cross-sections of a bundle

Definition

� For any topological space X , a continuous map p : Y → X is called a bundle
over X. In fact, the category of bundles is the slice category Top/X .

� Given an open subset U of X , a cross-section over U of a bundle p : Y → X
is a continuous map s : U → Y such that the composite p ◦ s is the inclusion
i : U ↪→ X . Let

ΓpU = {s | s : U → Y and p ◦ s = i : U → X }

denote the set of all such cross-sections over U.

� If V ⊆ U, one has a restriction operation ΓpU → ΓpV . The functor
Γp : O(X )op → Set obtained in this way is a sheaf and is called the sheaf of
cross-sections of the bundle p.
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The bundle of germs of a presheaf

Definition

� Given any presheaf F : O(X )op → Set on a space X , a point x ∈ X , two open
neighbourhoods U and V of x , and two elements s ∈ F(U), t ∈ F(V ). We say that s
and t have the same germ at x when there is some open set W ⊆ U ∩ V with x ∈W
and s |W = t |W . This relation ‘to have the same germ at x’ is an equivalence relation,
and the equivalence class of any one such s is called the germ of s at x , in symbols
germx(s) or sx .

� Let
Fx = {germx(s) | s ∈ F(U), x ∈ U open in X }

be the stalk of F at x , that is the set of all germs of F at x .

� Let ΓF be the disjoint union of the Fx

ΛF = {〈x , r〉 | x ∈ X , r ∈ Fx }

topologized by taking as a base of open sets all the image sets s̃(U), where s̃ : U → ΛF
is the map induced by an element s ∈ F(U) by taking its germs at points in U.

� With respect to this topology, the natural projection map ΛF → X becomes a
continuous map, called the bundle of germs of the presheaf F .
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Sheaves as étale bundles I

Definition

� A bundle p : E → X is said to be étale (over X ) when p is a local
homeomorphism in the following sense: for each e ∈ E there is an open set
V , with e ∈ V , such that p(V ) is open in X and p|V is a homeomorphism
V → p(V ).

� The full subcategory of Top/X on the étale bundles is denoted by Etale(X ).

Theorem

� For any topological space X , there is a pair of adjoint functors

Γ : Top/X → [O(X )op,Set], Λ : [O(X )op,Set]→ Top/X ,

where Γ assigns to each bundle p : Y → X the sheaf of cross-sections of p,
while its left adjoint Λ assigns to each presheaf F the bundle of germs of F .

� This adjunction restricts to an equivalence of categories

Sh(X ) ' Etale(X ) .
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Sheaves as étale bundles II

This adjunction is naturally presented by speciying its unit and counit:

� The unit η : 1[O(X)op,Set] → Γ ◦Λ acts on a presheaf F by sending a section
s ∈ F(U) to the section ṡ ∈ ΓΛF (U);

� The counit ε : Λ ◦ Γ → 1Top/X acts on a bundle p : Y → X by sending any
element (x , germx(s)) of ΛΓp to the value s(x).

One then verifies that these natural transformations satisfy the triangular
identities:

Γ
1Γ

$$

Γη // Γ ◦Λ ◦ Γ

εΓ

��

and Λ
1Λ

$$

ηΛ // Λ ◦ Γ ◦Λ

Λε

��
Γ Λ

One further proves that if p is étale then εp is an isomorphism (and conversely),
while if F is a sheaf then ηF is an isomorphism (and conversely). It thus follows
from general abstract nonsense that the adjunction restricts to a duality between
the full subcategories on sheaves and on étale bundles.
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The associated sheaf functor

Theorem

Given a presheaf F , there is a sheaf a(F) and a morphism θ : F → a(F), with the
property that for any sheaf G, and any morphism φ : F → G, there is a unique
morphism ψ : a(F)→ G such that ψ ◦ θ = φ.

The sheaf a(F) is called the sheaf associated to the presheaf F .

Remark

Categorically, this means that the inclusion functor i : Sh(X )→ [O(X )op,Set] has a
left adjoint a : [O(X )op,Set]→ Sh(X ).

The left adjoint a : [O(X )op,Set]→ Sh(X ) is called the associated sheaf functor.

Theorem

The associated sheaf functor a is given by the composite Γ ◦Λ.

Concretely, a(F)(U) is the collection of functions s : U → ΛF which satisfy the
following properties:

� s(x) ∈ Fx for each x ∈ U;

� for each x ∈ U there exist an open set Zx ⊆ U containing x and a section
ξZx ∈ F(Zx) such that s(y) = (ξZx )y for each y ∈ Zx .
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Limits and colimits in Sh(X )

Theorem

(i) The category Sh(X ) is closed in [O(X )op,Set] under arbitrary (small) limits.

(ii) The associated sheaf functor a : [O(X )op,Set]→ Sh(X ) (having a right
adjoint) preserves all (small) colimits.

� Part (i) follows from the fact that limits commute with limits, in light of the
characterization of sheaves in terms of limits.

� From part (ii) it follows that Sh(X ) has all small colimits, which are
computed by applying the associated sheaf functor to the colimit of the
diagram considered with values in [O(X )op,Set].
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Adjunctions induced by points

Let x be a point of a topological space X .

Definition

Let A be a set. Then the skyscraper sheaf Skyx(A) of A at x is the sheaf on X
defined as

� Skyx(A)(U) = A if x ∈ U

� Skyx(A)(U) = 1 = {∗} if x /∈ U

and in the obvious way on arrows.

The assignment A→ Skyx(A) is clearly functorial.

Theorem

The stalk functor Stalkx : Sh(X )→ Set at x is left adjoint to the skyscraper
functor Skyx : Set→ Sh(X ).

In fact, as we shall see later in the course, points in topos theory are defined as
suitable kinds of functors (more precisely, colimit and finite-limit preserving ones).
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Open sets as subterminal objects

Since limits in a category Sh(X ) are computed as in the category of presheaves
[O(X )op,Set], a subobject of a sheaf F in Sh(X ) is just a subsheaf, that is a
subfunctor which is a sheaf.
Notice that a subfunctor S ⊆ F is a sheaf if and only if for every open covering
{Ui ⊆ U | i ∈ I } and every element x ∈ F (U), x ∈ S(U) if and only if x |Ui ∈ S(Ui ).

Definition

In a category with a terminal object, a subterminal object is an object whose
unique arrow to the terminal object is a monomorphism.

Theorem

Let X be a topological space. Then we have a frame isomorphism

SubSh(X)(1) ∼= O(X ) .

between the subterminal objects of Sh(X ) and the open sets of X .
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Direct and inverse images of sheaves

Definition

Let f : X → Y be a continuous function between topological spaces. The direct
image f∗(P) of a sheaf P on X and the inverse image f ∗(Q) of a sheaf Q on Y
are defined as follows:

� f∗(P)(V ) = P(f −1(V )) for any open set V of Y ; in other words f ∗(P) is the
sheaf on Y given by the composite P ◦ f −1.

� f ∗ acts on étale bundles over Y by sending an étale bundle p : E → Y to the
étale bundle over X obtained by pulling back p along f : X → Y .

Theorem

The operations P 7→ f∗(P) and Q 7→ f ∗(Q) define a pair of adjoint functors
f∗ : Sh(X )→ Sh(Y ) and f ∗ : Sh(Y )→ Sh(X ) (where f ∗ is the left adjoint and
f∗ is the right adjoint).
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Sieves

In order to ‘categorify’ the notion of sheaf of a topological space, the first step is to
introduce an abstract notion of covering (of an object by a family of arrows to it) in
a category.

Definition

� Given a category C and an object c ∈ Ob(C), a presieve P in C on c is a
collection of arrows in C with codomain c .

� Given a category C and an object c ∈ Ob(C), a sieve S in C on c is a collection
of arrows in C with codomain c such that

f ∈ S ⇒ f ◦ g ∈ S

whenever this composition makes sense.

� We say that a sieve S is generated by a presieve P on an object c if it is the
smallest sieve containing it, that is if it is the collection of arrows to c which
factor through an arrow in P.

If S is a sieve on c and h : d → c is any arrow to c , then

h∗(S) := {g | cod(g) = d , h ◦ g ∈ S}

is a sieve on d .
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Grothendieck topologies I

Definition

� A Grothendieck topology on a category C is a function J which assigns to
each object c of C a collection J(c) of sieves on c in such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c} is in J(c);
(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow f : d → c ;
(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such that

f ∗(R) ∈ J(d) for all f : d → c in S , then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are said to be
J-covering.

� A site is a pair (C, J) where C is a small category and J is a Grothendieck
topology on C.

Notice the following basic properties:

� If R,S ∈ J(c) then R ∩ S ∈ J(c);

� If R and R’ are sieves on an object c such that R ′ ⊇ R then R ∈ J(c)
implies R ′ ∈ J(c).
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Grothendieck topologies II

The notion of a Grothendieck topology can be put in the following alternative
(but equivalent) form:

Definition

A Grothendieck topology on a category C is an assignment J sending any object c
of C to a collection J(c) of sieves on c in such a way that

(a) the maximal sieve Mc belongs to J(c);

(b) for each pair of sieves S and T on c such that T ∈ J(c) and S ⊇ T ,
S ∈ J(c);

(c) if R ∈ J(c) then for any arrow g : d → c there exists a sieve S ∈ J(d) such
that for each arrow f in S , g ◦ f ∈ R;

(d) if the sieve S generated by a presieve {fi : ci → c | i ∈ I } belongs to J(c) and
for each i ∈ I we have a presieve {gij : dij → ci | j ∈ Ii } such that the sieve Ti

generated by it belongs to J(ci ), then the sieve R generated by the family of
composites { fi ◦ gij : dij → c | i ∈ I , j ∈ Ii } belongs to J(c).

The sieve R defined in (d) will be called the composite of the sieve S with the
sieves Ti for i ∈ I and denoted by S ∗ {Ti | i ∈ I }.
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Bases for a Grothendieck topology

Definition

A basis (for a Grothendieck topology) on a category C with pullbacks is a function
K assigning to each object c of C a collection K (c) of presieves on c in such a way
that the following properties hold:

(i) {1c : c → c} ∈ K (c)

(ii) if {fi : ci → c | i ∈ I } ∈ K (c) then for any arrow g : d → c in C, the family of
pullbacks {g∗(fi ) : ci ×c d → d | i ∈ I } lies in K (d).

(iii) if {fi : ci → c | i ∈ I } ∈ K (c) and for each i ∈ I we have a presieve
{gij : dij → ci | j ∈ Ii } ∈ K (ci ) then the family of composites
{ fi ◦ gij : dij → c | i ∈ I , j ∈ Ii } belongs to K (c).

N.B. If C does not have pullbacks then condition (ii) can be replaced by the
following requirement: if {fi : ci → c | i ∈ I } ∈ K (c) then for any arrow g : d → c in
C, there is a presieve {hj : dj → d | j ∈ J} ∈ K (d) such that for each j ∈ J, g ◦ hj
factors through some fi .

Every basis K generates a Grothendieck topology J given by:

R ∈ J(c) if and only if R ⊇ S for some S ∈ K (c)
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Grothendieck topology generated by a coverage

As we shall also see when we talk about sheaves, the axioms for Grothendieck
topologies do not have all the same status: the most important one is the stability
axiom. This motivates the following definition.

Definition

A (sifted) coverage on a category C is a collection of sieves which is stable under
pullback.

Fact

The Grothendieck topology generated by a coverage is the smallest collection of
sieves containing it which is closed under maximality and transitivity.

Theorem

Let C be a small category and D a coverage on D. Then the Grothendieck topology
GD generated by D is given by

GD(c) = {S sieve on c | for any arrow d
f→ c and sieve T on d ,

[(for any arrow e
g→ d and sieve Z on e

(Z ∈ D(e) and Z ⊆ g∗(T )) implies g ∈ T ) and
(f ∗(S) ⊆ T )] implies T = Md }

for any object c ∈ C.
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Examples of Grothendieck topologies I

� For any (small) category C, the trivial topology on C is the Grothendieck
topology in which the only sieve covering an object c is the maximal sieve Mc .

� The dense topology D on a category C is defined by: for a sieve S ,

S ∈ D(c) if and only if for any f : d → c there exists
g : e → d such that f ◦ g ∈ S .

If C satisfies the right Ore condition i.e. the property that any two arrows
f : d → c and g : e → c with a common codomain c can be completed to a
commutative square

• //

��

d

f

��
e

g // c

then the dense topology on C specializes to the atomic topology on C i.e. the
topology Jat defined by: for a sieve S ,

S ∈ Jat(c) if and only if S 6= ∅ .
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Examples of Grothendieck topologies II

� If X is a topological space, the usual notion of covering in Topology gives rise
to the following Grothendieck topology JO(X) on the poset category O(X ):
for a sieve S = {Ui ↪→ U | i ∈ I } on U ∈ Ob(O(X )),

S ∈ JO(X)(U) if and only if ∪
i∈I

Ui = U .

� More generally, given a frame (or complete Heyting algebra) H, we can define
a Grothendieck topology JH , called the canonical topology on H, by:

{ai | i ∈ I } ∈ JH(a) if and only if ∨
i∈I

ai = a .

� Given a small category of topological spaces which is closed under finite
limits and under taking open subspaces, one may define the open cover
topology on it by specifying as basis the collection of open embeddings

{Yi ↪→ X | i ∈ I } such that∪
i∈I

Yi = X .
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The Zariski site I

� Given a commutative ring with unit A, we can endow the collection Spec(A)
of its prime ideals with the Zariski topology, whose basis of open sets is given
by the subsets

Spec(A)f := {P ∈ Spec(A) | f /∈ P}

(for f ∈ A).

� One can prove that Spec(A) = Spec(A)f1 ∪ . . . ∪ Spec(A)fn if and only if
A = (f1, . . . , fn).

� We have a structure sheaf O on Spec(A) such that O(Spec(A)f ) = Af for
each f ∈ A. The fact that it is a sheaf results from the fact that if
A = (f1, . . . , fn) then the canonical map

A→ ∏
i∈{1,...n}

Afi

is the equalizer of the two canonical maps∏
i∈I

Afi → ∏
i,j∈{1,...,n}

Afi fj .

� The stalk OP of O at a prime ideal P is the localization AP = colimf /∈PAf .
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The Zariski site II

Notice that Spec(A)f identifies with Spec(Af ) under the embedding

Spec(Af ) ↪→ Spec(A)

induced by the canonical homomorphism A→ Af .
This motivates the following definition.

Definition

The Zariski site (over Z) is obtained by equipping the opposite of the category
Rngf.g. of finitely generated commutative rings with unit with the Grothendieck
topology Z given by: for any cosieve S in Rngf.g. on an object A, S ∈ Z (A) if and
only if S contains a finite family {ξi : A→ Afi | 1 ≤ i ≤ n} of canonical maps
ξi : A→ Afi in Rngf.g. where {f1, . . . , fn} is a set of elements of A which is not
contained in any proper ideal of A.

This definition can be generalized to an arbitrary (commutative) base ring k, by
considering the category of finitely presented (equivalently, finitely generated)
k-algebras and homomorphisms between them. Notice that pushouts exist in this
category (whence pullbacks exist in the opposite category) as they are given by
tensor products of k-algebras.
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Sheaves on a site I

Definition

� A presheaf on a (small) category C is a functor P : Cop → Set.

� Let P : Cop → Set be a presheaf on C and S be a sieve on an object c of C.

A matching family for S of elements of P is a function which assigns to each
arrow f : d → c in S an element xf ∈ P(d) in such a way that

P(g)(xf ) = xf ◦g for all g : e → d .

An amalgamation for such a family is a single element x ∈ P(c) such that

P(f )(x) = xf for all f in S .
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Sheaves on a site II

� Given a site (C, J), a presheaf on C is a J-sheaf if every matching family for
any J-covering sieve on any object of C has a unique amalgamation.

� The J-sheaf condition can be expressed as the requirement that for every
J-covering sieve S the canonical arrow

P(c)→∏
f∈S

P(dom(f ))

given by x → (P(f )(x) | f ∈ S) should be the equalizer of the two arrows∏
f∈S

P(dom(f ))→ ∏
f,g, f ∈ S

cod(g)=dom(f )

P(dom(g))

given by (xf → (xf ◦g )) and (xf → (P(g)(xf ))).
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The notion of Grothendieck topos

� The J-sheaf condition can also be expressed as the requirement that for every
J-covering sieve S (regarded as a subobject of HomC(−, c) in [Cop,Set]), every
natural transformation α : S → P admits a unique extension α̃ along the
embedding S � HomC(−, c):

S

��

α // P

HomC(−, c)

α̃

99

(notice that a matching family for R of elements of P is precisely a natural
transformation R → P)

� It can also be expressed as the condition

P(c) = lim←−
f :d→c∈S

P(d)

for each J-covering sieve S on an object c .

� The category Sh(C, J) of sheaves on the site (C, J) is the full subcategory of
[Cop,Set] on the presheaves which are J-sheaves.

� A Grothendieck topos is any category equivalent to the category of sheaves on
a site.
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Examples of toposes

The following examples show that toposes can be naturally attached to
mathematical notions as different as (small) categories, topological spaces, or
groups. In fact, as we shall see later in the course, toposes can also be naturally
attached to many other kinds of mathematical objects.

Examples

� For any (small) category C, [Cop,Set] is the category of sheaves Sh(C,T )
where T is the trivial topology on C.

� For any topological space X , Sh(O(X ), JO(X)) is equivalent to the usual
category Sh(X ) of sheaves on X .

� For any (topological) group G , the category BG = Cont(G ) of continuous
actions of G on discrete sets is a Grothendieck topos (equivalent, as we shall
see, to the category Sh(Contt(G ), Jat) of sheaves on the full subcategory
Contt(G ) on the non-empty transitive actions with respect to the atomic
topology).
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The sheaf condition for presieves

It is sometimes convenient to check the sheaf condition for the sieve generated by a
presieve directly in terms of the presieve.

Definition

A presheaf F : Cop → Set satisfies the sheaf condition with respect to a presieve
P = {fi : ci → c | i ∈ I } if for any family of elements {xi ∈ P(ci ) | i ∈ I } such that for
any arrows h and k with fi ◦ h = fj ◦ k, F (h)(xi ) = F (k)(xj) there exists a unique
element x ∈ P(c) such that F (fi )(x) = xi for all i .

Clearly, F satisfies the sheaf condition with respect to the presieve P if and only if it
satisfies it with respect to the sieve generated by P.

The sheaf condition for the presieve P can be expressed as the requirement that the
canonical diagram

F (c) //∏
i∈I

F (ci ) ////
∏

h : e → ci , k : e → cj
fi ◦ h = fj ◦ k

F (e)

is an equalizer.

N.B. If C has pullbacks then the product on the right-hand side can be simply indexed
by the pairs (i , j) (e = ci ×c cj and h and k being equal to the pullback projections).
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Some remarks

The following facts show that the notion of sheaf behaves very naturally with
respect to the notions of coverage and of Grothendieck topology:

(i) For any presheaf P, the collection LP of sieves R such that P satisfies the
sheaf axiom with respect to all the pullbacks sieves f ∗(R) is a Grothendieck
topology, and the largest one for which P is a sheaf.

(ii) By intersecting such topologies, we can deduce that for any given collection
of presheaves there is a largest Grothendieck topology for which all of them
are sheaves.

(iii) By (i), if a presheaf satisfies the sheaf condition with respect to a coverage
then it satisfies the sheaf condition with respect to the Grothendieck
topology generated by it.
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Subcanonical sites

Definition

A Grothendieck topology J on a (small) category C is said to be subcanonical if every
representable functor HomC(−, c) : Cop → Set is a J-sheaf.

Fact

For any locally small category C, there exists the largest Grothendieck topology J on C for
which all representables on C are J-sheaves. It is called the canonical topology on C.

Definition

� A sieve R on an object c of a locally small category C is said to be
effective-epimorphic if it forms a colimit cone under the (large!) diagram consisting
of the domains of all the morphisms in R, and all the morphisms over c between
them.

� It is said to be universally effective-epimorphic if its pullback along every arrow to c
is effective-epimorphic.

The covering sieves for the canonical topology on a locally small category are precisely
the universally effective-epimorphic ones. It follows that a Grothendieck topology is
subcanonical if and only if it is contained in the canonical topology, that is if and only if
all its covering sieves are effective-epimorphic.
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Basic properties of Grothendieck toposes

Grothendieck toposes satisfy all the categorical properties that one might hope for:

Theorem

Let (C, J) be a site. Then

� the inclusion Sh(C, J) ↪→ [Cop,Set] has a left adjoint a : [Cop,Set]→ Sh(C, J)
(called the associated sheaf functor), which preserves finite limits.

� The category Sh(C, J) has all (small) limits, which are preserved by the inclusion
functor Sh(C, J) ↪→ [Cop,Set]; in particular, limits are computed pointwise and
the terminal object 1Sh(C,J) of Sh(C, J) is the functor T : Cop → Set sending
each object c ∈ Ob(C) to the singleton {∗}.

� The associated sheaf functor a : [Cop,Set]→ Sh(C, J) preserves colimits; in
particular, Sh(C, J) has all (small) colimits.

� The category Sh(C, J) has exponentials, which are constructed as in the topos
[Cop,Set].
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The associated sheaf functor

Let us start by establishing the following fundamental theorem.

Theorem

For any site (C, J), the inclusion Sh(C, J) ↪→ [Cop,Set] has a left adjoint
a : [Cop,Set]→ Sh(C, J), called the associated sheaf functor, which preserves finite
limits.

Definition

Let P : Cop → Set be a presheaf and J a Grothendieck topology on C. Then

� We say that two elements x , y ∈ P(c) of P are locally equal if there exists a
J-covering sieve R on c such that P(f )(x) = P(f )(y) for each f ∈ R.

� Given a sieve S on an object c , a locally matching family for S of elements of
P is a function assigning to each arrow f : d → c in S an element xf ∈ P(d) in
such a way that, whenever g is composable with f , P(g)(xf ) and P(f ◦ g)(x)
are locally equal.

Then aJ(P)(c) consists of equivalence classes of locally matching families for
J-covering sieves on c of elements P modulo local equality on a common refinement.

34 / 71



The closure operation on subobjects I

The associated sheaf functor aJ : [Cop,Set]→ Sh(C, J) induces a closure
operation cJ(m) on subobjects m of [Cop,Set] (compatible with pullbacks of
subobjects), defined by taking the pullback of the image aJ(m) of m : A ′ � A
under aJ along the unit ηJ of the adjunction between iJ and aJ :

cJ(A
′) //

cJ(m)

��

aJ(A
′)

aJ(m)

��
A

ηJ(A) // aJ(A)

Concretely, we have

cJ(A
′)(c) = {x ∈ A(c) | {f : d → c | A(f )(x) ∈ A ′(d)} ∈ J(c)} .

Remarks

� If A is a J-sheaf then aJ(A
′) is isomorphic to cJ(A

′).

� m is cJ -dense (that is, cJ(m) = 1A) if and only if aJ(m) is an isomorphism.
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The closure operation on subobjects II

Proposition

Given a sieve S on an object c , regarded as a subobject mS : S � HomC(−, c) in
[Cop,Set], the following conditions are equivalent:

(a) aJ sends mS to an isomorphism;

(b) the collection of arrows aJ(yC(f )) for f ∈ S is jointly epimorphic;

(c) S is J-covering.

We have previously remarked that the sheaf condition for a presheaf P with respect
to a sieve S could be reformulated as the requirement that every morphism S → P
admits a unique extension along the canonical embedding S � HomC(−, c). In
fact, for any cJ -dense subobject A ′ � A in [Cop,Set], if P is a J-sheaf then every
morphism α : A ′ → P admits a unique extension α̃ : A→ P along the embedding
A ′ � A:

A ′

��

α // P

A

α̃

>>
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Monomorphisms and epimorphisms in Sh(C, J)

� Since limits in Sh(C, J) are computed as in [Cop,Set], and the latter are
computed pointwise, we have that a morphism α : P → Q in Sh(C, J) is a
monomorphism if and only if for every c ∈ C,

α(c) : P(c)→ Q(c)

is an injective function.

� Since the epimorphisms in Sh(C, J) are precisely the morphisms whose image
is an isomorphism, we have that a morphism α : P → Q in Sh(C, J) is an
epimorphism if and only if it is locally surjective in the sense that for every
c ∈ C and every x ∈ Q(c),

{f : d → c | Q(f )(x) ∈ Im(α(d))} ∈ J(c) .
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Exponentials in Sh(C, J)

� We preliminarily remark that if exponentials exist in Sh(C, J) then they are
computed as in [Cop,Set], by using the adjunction between aJ and iJ and the
fact that aJ preserves finite products.

� Next, we use the characterization of the J-sheaves on C as the presheaves P
such that for every cJ -dense subobject A ′ � A, every morphism A ′ → P
admits a unique extension A→ P along the embedding A ′ � A to conclude
that if F is a sheaf then FP is a sheaf for every presheaf P:

S

��

// FP S × P

��

// F

HomC(−, c)

99

HomC(−, c)× P

88
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Geometric morphisms

The natural, topologically motivated, notion of morphism of Grothendieck toposes
is that of geometric morphism. The natural notion of morphism of geometric
morphisms if that of geometric transformation.

Definition

(i) Let E and F be toposes. A geometric morphism f : E → F consists of a pair
of functors f∗ : E → F (the direct image of f ) and f ∗ : F → E (the inverse
image of f ) together with an adjunction f ∗ a f∗, such that f ∗ preserves finite
limits.

(ii) Let f and g : E → F be geometric morphisms. A geometric transformation
α : f → g is defined to be a natural transformation a : f ∗ → g∗.

� Grothendieck toposes and geometric morphisms between them form a
category, denoted by BTop.

� Given two toposes E and F , geometric morphisms from E to F and geometric
transformations between them form a category, denoted by Geom(E ,F).
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Examples of geometric morphisms

� A continuous function f : X → Y between topological spaces gives rise to a
geometric morphism Sh(f ) : Sh(X )→ Sh(Y ), whose direct image is the
functor f∗ : Sh(X )→ Sh(Y ) and whose inverse image is the functor
f ∗ : Sh(Y )→ Sh(X ).

� Every Grothendieck topos E has a unique geometric morphism E → Set. The
direct image is the global sections functor Γ : E → Set, sending an object
e ∈ E to the set HomE(1E , e), while the inverse image functor ∆ : Set→ E
sends a set S to the coproductt

s∈S
1E .

� For any site (C, J), the pair of functors formed by the inclusion
Sh(C, J) ↪→ [Cop,Set] and the associated sheaf functor
a : [Cop,Set]→ Sh(C, J) yields a geometric morphism
i : Sh(C, J)→ [Cop,Set].
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Slice toposes

The notion of Grothendieck topos is stable with respect to the slice construction:

Proposition

(i) For any Grothendieck topos E and any object P of E , the slice category E/P
is also a Grothendieck topos; more precisely, if E = Sh(C, J) then
E/P ' Sh(

∫
P, JP), where JP is the Grothendieck topology on

∫
P whose

covering sieves are precisely the sieves whose image under the canonical
projection functor πP :

∫
P → C is J-covering.

(ii) For any Grothendieck topos E and any morphism f : P → Q in E , the
pullback functor f ∗ : E/Q → E/P has both a left adjoint (namely, the
functor Σf given by composition with f ) and a right adjoint πf . It is
therefore the inverse image of a geometric morphism E/P → E/Q.

41 / 71



A general hom-tensor adjunction I

Theorem

Let C be a small category, E be a locally small cocomplete category and
A : C → E a functor. Then we have an adjunction

LA : [Cop,Set] // E : RA
oo

where the right adjoint RA : E → [Cop,Set] is defined for each e ∈ Ob(E) and
c ∈ Ob(C) by:

RA(e)(c) = HomE(A(c), e)

and the left adjoint LA : [Cop,Set]→ E is defined by

LA(P) = colim(A ◦ πP),

where πP is the canonical projection functor
∫
P → C from the category of

elements
∫
P of P to C.
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A general hom-tensor adjunction II

Remarks

� The functor LA can be considered as a generalized tensor product, since, by
the construction of colimits in terms of coproducts and coequalizers, we have
the following coequalizer diagram:∐

c∈C,p∈P(c)
u:c ′→c

A(c ′)
τ
//

θ //
∐

c∈C, p∈P(c)

A(c)
φ // LA(P),

where
θ(c , p, u, x) = (c ′,P(u)(p), x)

and
τ(c , p, u, x) = (c , p,A(u)(x)) .

For this reason, we shall also denote LA by

−⊗C A : [Cop,Set]→ E .
� We can rewrite the above coequalizer as follows:∐

c,c ′∈C
P(c)× HomC(c

′, c)× A(c ′)
τ
//

θ //
∐
c∈C

P(c)× A(c)
φ // P ⊗C A .

From this we see that this definition is symmetric in P and A, that is

P ⊗C A ∼= A⊗Cop P .

43 / 71



A couple of corollaries

Corollary

Every presheaf is a colimit of representables. More precisely, for any presheaf
P : Cop → Set, we have

P ∼= colim(yC ◦ πP),

where yC : C → [Cop,Set] is a Yoneda embedding and πP is the canonical
projection

∫
P → C.

Corollary

For any small category C, the topos [Cop,Set] is the free cocompletion of C (via
the Yoneda embedding yC); that is, any functor A : C → E to a cocomplete
category E extends, uniquely up to isomorphism, to a colimit-preserving functor
[Cop,Set]→ E along yC :

C

yC

��

A // E

[Cop,Set]

;;
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Geometric morphisms as flat functors I

Definition

� A functor A : C → E from a small category C to a locally small topos E with
small colimits is said to be flat if the functor −⊗C A : [Cop,Set]→ E preserves
finite limits.

� The full subcategory of [C, E ] on the flat functors will be denoted by Flat(C, E).

Proposition

� For any small category C, a functor P : C → Set is filtering if and only if its
category of elements

∫
P is a filtered category (equivalently, if it is a filtered

colimit of representables).

� For any small cartesian category C, a functor C → E is flat if and only if it
preserves finite limits.

Theorem

Let C be a small category and E be a Grothendieck topos. Then we have an
equivalence of categories

Geom(E , [Cop,Set]) ' Flat(C, E)

(natural in E), which sends

� a flat functor A : C → E to the geometric morphism E → [Cop,Set] determined
by the functors RA and −⊗C A, and

� a geometric morphism f : E → [Cop,Set] to the flat functor given by the
composite f ∗ ◦ yC of f ∗ : [Cop,Set]→ E with the Yoneda embedding
yC : C → [Cop,Set].
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Geometric morphisms as flat functors II

Definition

If (C, J) is a site, a functor F : C → E to a Grothendieck topos is said to be
J-continuous if it sends J-covering sieves to epimorphic families.

The full subcategory of Flat(C, E) on the J-continuous flat functors will be denoted
by FlatJ(C, E).

Theorem

For any site (C, J) and Grothendieck topos E , the above-mentioned equivalence
between geometric morphisms and flat functors restricts to an equivalence of
categories

Geom(E ,Sh(C, J)) ' FlatJ(C, E)

natural in E .

Sketch of proof.

Appeal to the previous theorem

� identifying the geometric morphisms E → Sh(C, J) with the geometric
morphisms E → [Cop,Set] which factor through the canonical geometric
inclusion Sh(C, J) ↪→ [Cop,Set], and

� using the characterization of such morphisms as the geometric morphisms
f : E → [Cop,Set] such that the composite f ∗ ◦ y of the inverse image functor
f ∗ of f with the Yoneda embedding y : C → [Cop,Set] sends J-covering sieves
to epimorphic families in E .
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Morphisms of sites

Definition

A morphism of sites (C, J)→ (C ′, J ′) is a functor F : C → C ′ such that, denoting by
l : C → Sh(C, J) and l ′ : C ′ → Sh(C ′, J ′), the canonical functors, there is a
geometric morphism u : Sh(C ′, J ′)→ Sh(C, J) making the following square
commutative:

C F //

l

��

C ′

l ′

��
Sh(C, J) u∗ // Sh(C ′, J ′) .

Proposition

(i) If (C, J) and (D,K ) are cartesian sites (that is, C and D are cartesian
categories) then a functor C → D is a morphism of sites if and only if it
preserves finite limits and sends J-covering sieves to K -covering sieves. [In the
general case, there is also an explicit, though more sophisticated,
characterization of morphisms of sites.]

(ii) The geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J) induced by a
morphism of sites F : (C, J)→ (D,K ) admits the following explicit description:
the direct image Sh(F )∗ is simply given by composition with F op, while the
inverse image Sh(F )∗ assigns to a J-sheaf P on C the K -sheafification of the
presheaf given by the following formula:

lim−→
F op

(P)(b) = lim−→
φ:b→Fa

P(a),

for any b ∈ D, where the colimit is taken over the opposite of the comma
category (b↓ f ).
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The basic setting for homological algebra

Abelian categories provide the basic setting for the development of homological
algebra. As we shall see, they notably comprise

� categories of modules over a commutative ring;

� categories of chain complexes of abelian groups;

� categories of sheaves of modules over a commutative ring.

The concept of abelian category is technically very well-behaved; notably, unlike
that of category of modules, it is self-dual, that is, the opposite of an abelian
category is abelian.

The notion of abelian category can be considered an axiomatization of the key
properties of the category of abelian groups. In fact, by a general metatheorem,
all the basic categorical techniques which apply to abelian groups, notably
including diagram chasing, extend to the setting of abelian categories.

To introduce abelian categories, it is convenient to first talk about additive
categories.
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Additive categories

We say that an object of a category is a zero object if it is both initial and
terminal; it is usually denoted by 0.

Definition

A category C is additive if

(a) Hom(A, B) is an abelian group for any A,B ∈ C (the neutral element of
Hom(a, b) will be denoted by 0AB);

(b) addition of morphisms distributes over composition on the left and on the
right: for any morphisms f , g : a→ b, ξ : x → a and χ : b → y ,

χ ◦ (f + g) = (χ ◦ f ) + (χ ◦ g)

and
(f + g) ◦ ξ = f ◦ ξ+ g ◦ ξ .

(c) C has a zero object.

(d) C has finite products and finite coproducts: for any objects A,B ∈ C, both
A× B and A

∐
B exist.
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Additive categories

Remark

An additive category can be seen as a category enriched over the category of
abelian groups which moreover has a zero object, binary products and binary
coproducts.

Examples

� the category R-mod of R-modules for a commutative ring R;

� the category of functors [C,Ab], where C is a small category and Ab is the
category of abelian groups;

� the category Sh(X ,Ab) of sheaves of abelian groups on a topological space
X .
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Finite biproducts

Lemma

(i) In an additive category C, for any object A of C the following conditions are
equivalent:

(a) A is terminal;
(b) A is initial;
(c) 1A = 0 : A→ A.

(ii) Given three objects A,B,C in an additive category C, the following conditions
are equivalent:

(a) there are arrows p1 : C → A and p2 : C → B making C a product of A
and B;

(b) there are arrows i1 : A→ C and i2 : B → C making C a coproduct of A
and B;

(c) there are arrows p1, p2, i1, i2 satisfying π1 ◦ i1 = 1A, π2 ◦ i2 = 1B ,
π1 ◦ i2 = 0BA, π2 ◦ i1 = 0AB and i1 ◦ π1 + i2 ◦ π2 = 1C .

From the lemma, it follows immediately that in any additive category, finite
products coincide with finite coproducts.

Definition

An object which is simultaneously a product and coproduct of A and B is called a
biproduct and denoted A⊕ B.
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Additive functors

Definition

A functor T : C → D between additive categories is said to be additive if for any
objects A,B ∈ C, the map

HomC(A,B)→ HomD(T (A),T (B))

given by f 7→ T (f ) is an abelian group homomorphism.

Remark

An additive functor C → D between additive categories C is precisely an
Ab-enriched functor (with respect to the canonical Ab-enriched structures on C
and D).

Examples

� The hom functor HomC(−,−) : Aop ×A→ Ab is additive (and in each of its
arguments separately);

� For any R-module N, the functor (−)⊗ N : R-mod→ R-mod is additive.
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Recovery of the additive structure from the
categorical one

In an additive category C, the structure of abelian group on the morphism sets
HomC(A,B) can be recovered from the categorical one given by finite biproducts,
as follows:

� The zero arrow 0AB : A→ B is the composite

A // 1 ∼= 0 // B .

� Given f , g ∈ HomC(A,B), f + g is equal to both composites

A
〈1A,1A〉// A× A

∼= // A
∐

A
[f ,g ] // B

and

A
〈f ,g〉 // B × B

∼= // B
∐

B
[1B ,1B ] // B

Notice that an arrow f :
∐

1≤j≤n Aj →∏1≤i≤m Bi in an additive category C can
be represented as a m × n matrix (fij), where fij = πi ◦ f ◦ ij .
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Additive functors

Lemma

Let T : C → D be a functor between additive categories C and D. Then the
following conditions are equivalent:

(i) T is additive;

(ii) T (0) = 0 and the canonical arrow T (A)⊕ T (B)→ T (A⊕ B) is an
isomorphism for any objects A,B ∈ C;

(iii) T (0) = 0 and the canonical arrow T (A⊕ B)→ T (A)⊕ T (B) is an
isomorphism for any objects A,B ∈ C.

Sketch of proof.

� The implications (i)⇒ (ii) and (i)⇒ (iii) follow from the equational
characterization of biproducts in an additive category.

� Conditions (ii) and (iii) are equivalent since the two arrows are inverse to
each other.

� Condition (i) follows from the fact that the additive structure can be
recovered from the categorical one in any additive category.
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Kernels and cokernels

Kernels and cokernels are the additive analogue of equalizers and coequalizers:

Definition

� Given an arrow f : A→ B in an additive category, the kernel ker(f ) of f is a
morphism i : K → A characterized by the following universal property:
u ◦ f = 0 and for every g : X → A with f ◦ g = 0, there exists a unique
θ : X → K with i ◦ θ = g :

X

θ

��

g

��

0

''
K

i // A
f // B

� Dually, the cokernel coker(f ) of f is an arrow q : B → C characterized by the
following universal property: q ◦ f = 0 and for every g : B → Y such that
g ◦ f = 0 there exists a unique arrow θ : Q → Y such that θ ◦ q = g :

A

0

''

f // B
g

��

q // Q

θ

��
Y

For example, in R-mod, ker(f ) = {x ∈ A | f (x) = 0}, while coker(f ) = B/im(f ).
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Monomorphisms and epimorphisms in additive
categories

Monomorphisms and epimorphisms in additive categories can be characterized in
terms of zero arrows:

Remark

An arrow f : A→ B in an additive category is a monomorphism (resp. an
epimorphism) if and only if f ◦ g = 0 (resp. g ◦ f = 0) implies g = 0.

Proposition

Let f : A→ B be a morphism in an additive category.

(i) If ker(f ) exists, then f is monic if and only if ker(f ) = 0;

(ii) Dually, if coker(f ) exists, then f is epimorphism if and only if coker(f ) = 0.

Recall that a subobject of an object A is an isomorphism class of monomorphisms
with codomain A. Dually, a quotient of an object A is an isomorphism class of
epimorphisms with domain A.
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Abelian categories

Definition

An abelian category is an additive category such that

(i) every morphism has a kernel and a cokernel;

(ii) every monomorphism is a kernel and every epimorphism is a cokernel.

Notice that every abelian category is balanced.

Examples

� Ab is abelian

� For any small category C and abelian category A, the category [C,A] is abelian
(all the structure is defined pointwise).

� For any ring R (not necessarily commutative), R-mod is abelian.

� If C is a small additive category and A is abelian, then the full subcategory
Add(C,A) of [C,A] on the additive functors is abelian (notice that, regarding
a ring R as an additive category, we have Add(R,A) ' R-mod).

Still, the most important class of abelian categories in the context of this course
will be that of categories of modules over a ring internal to a Grothendieck topos,
as they are used for defining (co)homology.

We shall say that a functor between abelian categories is exact (resp. left-exact,
right-exact) if it preserves finite limits and colimits (resp. finite limits, finite
colimits).
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Images and coimages

Definition

Let f : A→ B be a morphism in an abelian category.

� The image of f is
im(f ) := ker(coker(f ));

� Dually, the coimage of f is

coim(f ) := coker(ker(f )) .

Proposition

Let f : A→ B be a morphism in an abelian category A.

(i) For any morphism in A, im(f ) is the least subobject through which f factors.

(ii) The canonical morphism ker(coker(f ))→ coker(ker(f )) is an isomorphism.

(iii) The diagram

A
q

))

f // B

coker(ker(f )) ∼= ker(coker(f ))

i

55

provides the (unique up to commuting isomorphism) factorization of the arrow
f as an epimorphism followed by a monomorphism.
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Exact sequences

Thanks to the notion of kernel and cokernel, it is possible to define the notion of
exact sequence in the general setting of abelian categories:

Definition

A sequence

A
f // B

g // C

is said to be exact if we have an equality of subobjects

ker(g) = im(f ) .

Remark

Notice that the inclusion im(f ) ⊆ ker(g) is equivalent to the condition g ◦ f = 0.
If the above sequence merely satisfies this condition then we say that it (once
completed with zeros on the left and on the right) is a complex.
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Characterization of abelian categories

Definition

� A category C is said to be regular if it has finite limits and its morphisms
have images which are stable under pullback.

� A regular category C is said to be effective (or exact) if every equivalence
relation in C has a quotient and coincides with the kernel pair of it.

The following result shows that abelian categories are the result of marrying the
categorical structure of an exact category with the datum of an additive structure:

Theorem

A category is abelian if and only if it is exact and (semi-)additive.
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Working with abelian categories

There are several features of the concept of abelian category which make it very
convenient as a setting for developing homological algebra:

� Unlike the notion of a category enriched over abelian groups, which involves
the specification of an additional additive structure on morphism sets, the
property of a category to be abelian is a categorical invariant.

� The concept of abelian category is self-dual. This allows us to profitably
employ the duality principle and hence to obtain “two theorems at the cost of
one” provided that their statements and proofs can be lifted to the setting of
abelian categories.

� By the Freyd-Mitchell embedding theorem, every abelian category can be fully
embedded in a category of modules over a ring. This result, which is not fully
constructive, justifies reasoning with objects and arrows of an abelian category
by using “elements”, that is, as they were respectively modules and
homomorphisms between them. [A more intrisic, constructive justification for
this comes from the realisation of the fact that any abelian category is the
(effective-regular) syntactic category for its canonical regular theory, and hence
supports an internal language (cf. the paper Syntactic categories for Nori
motives).]
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Modules internal to a Grothendieck topos

Let (C, J) be a site. Recall that
(i) A group object [resp. ring object, resp. module object over a

ring object O] of Sh(C, J) is a sheaf of sets

U → G(U) [resp. O(U) , resp. M(U) ]

endowed with a structure of group [resp. ring, module over the ring O(U)]
on each

G(U) [resp. O(U) , resp. M(U) ]

such that all the maps

G(U)→ G(V ) [resp. O(U)→ O(V ) , resp. M(U)→M(V ) ]

correponding to arrows V → U in C are groups [resp. ring, resp. module]
morphisms.

(ii) A morphism of group objects [resp. ring objects, resp. module objects over
some ring object O] is a morphism of sheaves

G1 → G2 [resp. O1 → O2 , resp. M1 →M2 ]

such that all maps

G1(U)→ G2(U) [resp. O1(U)→ O2(U) , resp. M1(U)→M2(U) ]

are group [resp. ring, resp. module] morphisms.
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The abelian categories of Modules I

Definition

Let (C, J) be a site and O a ring object in the topos Sh(C, J).
Then module objects over O in Sh(C, J)
are called O-Modules, and their category is denoted

ModO(Sh(C, J)) (or simply) ModO .

Proposition

For any site (C, J) and ring object O in Sh(C, J),

ModO(Sh(C, J))

is an abelian category with arbitrary limits and colimits.
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The abelian categories of Modules II

In particular:

� Finite limits in ModO(Sh(C,J)) are computed as in Sh(C, J).
� The kernel ker(α) of a morphism α : F → G in ModO(Sh(C,J)) is given by

(ker(α))(c) = {x ∈ F (c) | α(c)(x) = 0},

for any c ∈ C.

� Finite products and finite coproducs coincide and are given by finite cartesian
products (computed pointwise).

� The image im(α) of a morphism α : F → G in Ab(Sh(C, J)) is given by

im(α)(c) = {y ∈ G (c) | {f : d → c | G (f )(y) ∈ im(α(d))} ∈ J(c)}

Indeed, it is the J-closure of the image of α calculated in [Cop,Set].
� Cokernels are obtained as the result of applying the associated sheaf functor

to them as calculated (pointwise) in the presheaf topos [Cop,Set] (endowed
with the natural induced module structure).
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Change of structure ring-sheaf

Proposition

Let (C, J) = site,
(O1 → O2) = morphism of sheaves of rings in Sh(C, J).

Then the forgetful functor
ModO2 → ModO1 ,
M → M ,

has a left adjoint denoted

ModO1 → ModO2 ,
M → O2 ⊗O1 M .

Remarks

(i) For any object M of ModO1 ,

O2 ⊗O1 M
is constructed as the sheafification of the presheaf

U → O2(U)⊗O1(U)M(U) .

(ii) The forgetful functor respects arbitrary limits and colimits while its left adjoint

M→ O2 ⊗O1 M
respects arbitrary colimits.
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Exponentials (or “inner Hom”) and tensor products

Definition

For any object c of a site (C, J), the sheaf l(c) (where l is the canonical functor
C → Sh(C, J)) induces a geometric morphism Sh(C, J)/l(c)→ Sh(C, J) whose
inverse image !l(c) is the cartesian product with l(c):

!l(c) : Sh(C, J) → Sh(C, J)/l(c) ,
F → F × l(c) .

Remarks

(i) Functors of the form !l(c) respect arbitrary limits and colimits. In particular,
they transform any ring object O of Sh(C, J) into ring objects Oc and induce
additive exact functors

ModO →ModOc .

(ii) For any J-sheaves F1 and F2 on C, the presheaf

c → Hom(!l(c)(F1), !l(c)(F2))

is a sheaf denoted F F1
2 or Hom(F1,F2). It is characterised by the property that,

for any J-sheaf G ,

Hom(G ,Hom(F1,F2)) identifies with Hom(G × F1,F2) .

(iii) In the same way, for any O-Modules M1,M2, the presheaf

c → HomOc (!l(c)(M1), !l(c)(M2))

is a J-sheaf denoted HomO(M1,M2).
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Proposition

Let N be an O-Module, for a ring O in a topos Sh(C, J).
Then the functor

ModO → ModO ,
L → HomO(N ,L)

has a left adjoint denoted

ModO → ModO ,
M → M⊗O N .

Furthermore, ⊗ extends as a double functor

ModO ×ModO → ModOX
,

(M,N ) → M⊗O N
such that the two triple functors

Modop
O ×Modop

O ×ModO → abelian groups ,
(M,N ,L) → HomO(M⊗O N ,L) ,
(M,N ,L) → HomO(M,HomO(N ,L))

are isomorphic.
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Remarks

(i) The tensor product M⊗O N is constructed
as the sheafification of the functor

U →M(U)⊗O(U) N (U) .

(ii) The two functors ModO ×ModO →ModO

(M,N ) → M⊗O N
and (M,N ) → N ⊗OM

are canonically isomorphic.

(iii) The double functor
(M,N )→M⊗O N

respects arbitrary colimits in M or N ,
while the double functor

(N ,L)→ HomO(N ,L)
respects arbitrarily limits in L
and transforms arbitrary colimits in N into limits.
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Push-forward and pull-back functors

Let f : F → E be a geometric morphism between Grothendieck toposes. Then
both functors f∗ and f ∗ are left-exact.

So they transform group objects into group objects, ring objects into ring objects
and, for any ring objects O in F and O ′ in E , define additive functors

f∗ :ModO → Modf∗O (which is right-exact) ,

f −1 :ModO ′ → Modf −1O ′ (which is exact) .

Definition

A morphism of ringed toposes (F ,O ′)→ (E ,O) is a pair consisting of a
geometric morphism f : F → E and a ring-object homomorphism O ′ → f∗O or,
equivalently, f −1O ′ → O.
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Corollary

For any morphism of ringed toposes (F ,O ′)→ (E ,O):
(i) The composition of the functor

f∗ :ModO →Modf∗O

and of the forgetful functor defines a functor

f∗ :ModO →ModO ′ .

(ii) This functor f∗ :ModO →ModO ′ has a left adjoint functor

f ∗ :ModO ′ →ModO

constructed as the composition of the functors

f −1 :ModO ′ →Modf −1O ′
and

Modf −1O ′ → ModO ,
M → O ⊗f −1O ′ f

−1M .

Remarks

f∗ :ModOX
→ModOY

respects limits,

f ∗ :ModOY
→ModOX

respects colimits.
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For further reading

S. Mac Lane and I. Moerdijk.
Sheaves in geometry and logic: a first introduction to topos theory
Springer-Verlag, 1992.

J. Rotman.
Introduction to homological algebra
Universitext, Springer, 2008.
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