Cohomology of toposes

Olivia CARAMELLO* and Laurent LAFFORGUE**

*Università degli studi dell'Insubria **Institut des Hautes Études Scientifiques

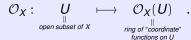
Chapter III:

De Rham cohomology and its key properties: De Rham's theorem, Poincaré duality, Lefschetz fixed points formula

The function-theoretic definition of manifolds

Definition:

(i) A ringed space is a topological space X endowed with a sheaf of rings



(ii) A morphism of ringed space

$$(X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$$

consists in a continuous map

$$f: X \longrightarrow Y$$

and a morphism of sheaves of rings

$$\begin{array}{rccc} \mathcal{O}_{Y} & \longrightarrow & f_{*}\mathcal{O}_{X}, \\ (\phi \in \mathcal{O}_{Y}(V)) & \longmapsto & (f_{*}\phi \in \mathcal{O}_{X}(f^{-1}(V))) \\ & & \parallel & & \parallel \\ & \text{coordinate function on} & & pull \text{-back of } \phi \\ & \text{an open subset } V \subset Y & & \text{on } f^{-1}(V) \\ \end{array}$$
or, equivalently,

O. Caramello & L. Lafforgue

 $f^*\mathcal{O}_Y\longrightarrow \mathcal{O}_X$.

Remarks:

- (i) Ringed spaces make up a category.
- (ii) If (X, O_X) is a ringed space,
 an O_X-Module is a sheaf of abelian groups M endowed with a sheaf morphism

$$\mathcal{O}_X imes \mathcal{M} \longrightarrow \mathcal{M}$$

such that

- for any open subset $U \subset X$, $\mathcal{M}(U)$ is a module on the ring $\mathcal{O}_X(U)$,
- for any open subsets U₁ ⊂ U₂ ⊂ X, the restriction map M(U₂) → M(U₁) is a morphism of O_X(U₂)-modules via the restriction map O_X(U₂) → O_X(U₁).

 \mathcal{O}_X -modules on a ringed space (X, \mathcal{O}_X) make up a (linear) category.

(i) A differential [resp. analytic] manifold is a ringed space (X, \mathcal{O}_X) such that any point $x \in X$ has a open neighborhood

 $(U, \mathcal{O}_U = \text{restriction of } \mathcal{O}_X \text{ to } U)$

which is isomorphic to an open subset

U' of some \mathbb{R}^n [resp. \mathbb{C}^n]

endowed with the sheaf

$$\mathcal{O}_{U'}: (V' \subset U') \longmapsto \mathcal{O}_{U'}(V')$$

ring of C^{∞} [resp. holomorphic] functions $V' \to \mathbb{R}$ [resp. $V' \to \mathbb{C}$] .

(ii) A morphism of differential [resp. analytic] manifolds

 $(X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$

is a morphism of ringed spaces

$$(X \xrightarrow{f} Y, \mathcal{O}_Y \longrightarrow f_*\mathcal{O}_X)$$

such that, locally on X and Y,

- $\begin{cases} \bullet \quad f \text{ identifies with a } C^{\infty} \text{ [resp. analytic] map from an open subset } U' \\ \bullet \quad \text{of some } \mathbb{R}^n \text{ [resp. } \mathbb{C}^n \text{] to an open subset } V' \text{ of some } \mathbb{R}^m \text{ [resp. } \mathbb{C}^m \text{],} \\ \bullet \quad \mathcal{O}_Y \to f_* \mathcal{O}_X \text{ is defined by composition with } f. \end{cases}$

Remarks:

(i) Differential [resp. analytic] manifolds make up a category. This category has arbitrary sums and finite products. The contravariant functor

 $(X, \mathcal{O}_X) \longmapsto \mathcal{O}_X(X)$

is representable in this category by the object

 \mathbb{R} [resp. \mathbb{C}].

(ii) The category of schemes is defined in the same way:

- A scheme is a ringed space (X, O_X) such that any point x ∈ X has an open neighborhood (U, O_U) which is isomorphic to an "affine scheme".
- A morphism of schemes $(X, \mathcal{O}_X) \rightarrow (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces

$$(X \xrightarrow{f} Y, \mathcal{O}_Y \longrightarrow f_*\mathcal{O}_X)$$

which locally identifies with a "morphism of affine schemes".

The dual functorial definition of manifolds

Proposition:

Let $\mathcal{V} =$ category of differential [resp. analytic] manifolds,

- C = full subcategory of open subsets of the \mathbb{R}^{n} 's [resp. \mathbb{C}^{n} 's] and C^{∞} [resp. holomorphic] maps,
- J = topology on \mathcal{V} or \mathcal{C} .

Then the functor

$$\begin{array}{cccc} \mathcal{V} & \longrightarrow & [\mathcal{C}^{\mathrm{op}}, \mathrm{Set}] = \widehat{\mathcal{C}} \\ \mathcal{X} & \longmapsto & \mathrm{Hom}(\bullet, \mathcal{X}) = [\mathcal{U} \mapsto \mathrm{Hom}(\mathcal{U}, \mathcal{X})] \\ & \stackrel{\|}{\underset{U \to \mathcal{X} \text{ of } \mathcal{X} \text{ by } U}{\overset{\|}{\underset{U \to \mathcal{X} \text{ of } \mathcal{X} \text{ by } U}}} \end{array}$$

factorises through the full subcategory

 $\widehat{\mathcal{C}}_J$

of J-sheaves on C and is fully faithful.

It is an equivalence to the full subcategory of $\widehat{\mathcal{C}}_J$ on *J*-sheaves $F : \mathcal{C}^{op} \to \text{Set}$ such that there exists a globally epimorphic family of morphisms

$$\operatorname{Hom}(\bullet, U_i) \longrightarrow F, \qquad i \in I,$$

(corresponding to elements of the $F(U_i)$'s) which are "open" in the sense that, for any object U of C and any morphism

 $\operatorname{Hom}(\bullet, U) \longrightarrow F,$

the fiber products in $\widehat{\mathcal{C}}_J$

 $\operatorname{Hom}(\bullet, U_i) \times_F \operatorname{Hom}(\bullet, U)$

are representable by open subsets of the U_i 's.

Remarks:

(i) The same proposition can be written if

 $\mathcal{V} = category of schemes,$

 $\mathcal{C} = full$ subcategory of affine schemes.

(ii) The sets

 $\operatorname{Hom}(U,X)$

can also be denoted X(U).

Their elements can be called

the points of X defined on U, or the points of X with values in U, or the U-points of X.

Vector bundles

Definition: Let (X, \mathcal{O}_X) = ringed space. An \mathcal{O}_X -Module \mathcal{M} is called locally free (of some rank *r*) if it is locally isomorphic to the \mathcal{O}_X -Module \mathcal{O}_X^r .

Remarks:

- (i) Locally free \mathcal{O}_X -Modules make up a full subcategory which has arbitrary finite products.
- (ii) If \mathcal{O}_X is a sheaf of commutative rings, this category also has
 - tensor products $\mathcal{M}_1 \otimes_{\mathcal{O}_X} \mathcal{M}_2$ which represent the functors $\mathcal{M} \mapsto$ set of bilinear sheaf morphisms $\mathcal{M}_1 \times \mathcal{M}_2 \to \mathcal{M}$ and are constructed as the sheafifications of the presheaves

$$U \longmapsto \mathcal{M}_1(U) \otimes_{\mathcal{O}_X(U)} \mathcal{M}_2(U)$$
,

• alternate powers $\Lambda^k \mathcal{M}$ which represent the functors

 $\mathcal{N} \mapsto$ set of *k*-linear maps $\mathcal{M} \times \cdots \times \mathcal{M} \to \mathcal{N}$ which are 0 on the diagonals, and are constructed as the sheafifications of the presheaves

$$U \longmapsto \Lambda^k \mathcal{M}(U)$$
,

• "exponentials" or "inner hom" $\mathcal{H}om(\mathcal{M}_1, \mathcal{M}_2)$ which represent the functors

 $\mathcal{M}\longmapsto \operatorname{Hom}(\mathcal{M}\otimes_{\mathcal{O}_X}\mathcal{M}_1,\mathcal{M}_2)$

and are constructed as the sheaves

 $U\longmapsto \operatorname{Hom}(\mathcal{M}_{1|U},\mathcal{M}_{2|U})\,,$

• in particular, a contravariant duality functor

$$\mathcal{M} \longmapsto \mathcal{M}^{\vee} = \mathcal{H}om(\mathcal{M}, \mathcal{O}_X)$$

which is an involution in the sense that $\mathcal{M}^{\vee\vee}$ identifies with \mathcal{M} for any \mathcal{M} .

If ${\mathcal M}$ is locally free of rank 1, it is called "invertible" as

 $\mathcal{M} \otimes \mathcal{M}^{\vee}$ identifies with \mathcal{O}_X .

Lemma:

Let X = differential [resp. analytic] manifold. Any locally free \mathcal{O}_X -Module \mathcal{M} is representable by a (unique up to unique isomorphism) manifold M endowed with a morphism $p: M \to X$ in the sense that, for any morphism $i: U \to X$,

$$\{U \xrightarrow{s} M \mid p \circ s = i\}$$

identifies with

 $(i^*\mathcal{M}\otimes_{i^*\mathcal{O}_X}\mathcal{O}_U)(U)$.

Remark:

The same lemma would apply in any subcategory $\ensuremath{\mathcal{C}}$ of the category of ringed spaces such that

- C has finite products,
- the contravariant functor $(X, \mathcal{O}_X) \mapsto \mathcal{O}_X(X)$ is representable in \mathcal{C} ,
- any ringed space which is locally isomorphic to objects of ${\mathcal C}$ is an object of ${\mathcal C},$
- any morphism of ringed spaces which locally identifies with morphisms of ${\cal C}$ is a morphism of ${\cal C}.$

A vector bundle (of some rank *r*) on a differential [resp. analytic] manifold *X* is a manifold *M* endowed with a morphism $M \to X$ which represents a (rank *r*) locally free \mathcal{O}_X -Module \mathcal{M} .

A morphism of vector bundles is a morphism of the associated locally free \mathcal{O}_X -Modules.

Remarks:

So, the category of vector bundles on some differential [resp. analytic] manifold X has

- finite products $M_1 \times \cdots \times M_n$,
- tensor products $M_1 \otimes M_2$,
- alternate powers $\Lambda^k M$,
- "inner hom" *Hom*(*M*₁, *M*₂),
- in particular, a duality contravariant functor $M \to M^{\vee}$,
- a notion of "invertible" vector bundle, which means vector bundle of rank 1.

Cotangent modules and tangent bundles

Definition: Let $A \rightarrow B =$ morphism of commutative rings. A derivation of *B*, relatively to *A*, with values in a *B*-module *M*, is a map

$$B \stackrel{\mathrm{d}}{\longrightarrow} M$$

such that

• it is compatible with addition

$$\mathrm{d}(b_1+b_2)=\mathrm{d}b_1+\mathrm{d}b_2\,,\qquad\forall\,b_1,b_2\in B\,,$$

• it verifies the Leibnitz rule

$$\mathbf{d}(b_1 \cdot b_2) = b_1 \cdot \mathbf{d}b_2 + b_2 \cdot \mathbf{d}b_1,$$

the composite

$$A \longrightarrow B \stackrel{\mathrm{d}}{\longrightarrow} M$$
 is 0.

Remark:

Derivations of B, relatively to A, with values in M make up a B-module

 $\operatorname{Der}_{B/A}(M)$.

Proposition: Let $A \rightarrow B =$ morphism of commutative rings. Then the covariant functor

 $egin{array}{ccc} {\it Mod}_{\it B} & \longrightarrow & {\it Mod}_{\it B}\,, \ {\it M} & \longmapsto & {\rm Der}_{{\it B} / {\it A}}({\it M}) \end{array}$

is representable by a *B*-module $\Omega_{B/A}$ endowed with a canonical derivation

$$d: \boldsymbol{B} \longrightarrow \Omega_{\boldsymbol{B}/\boldsymbol{A}}$$

called the "module of differentials" of B.

Sketch of proof: First consider the free *B*-module

$$\bigoplus_{b\in B} B \cdot \mathrm{d}b$$

generated by basis elements denoted db, $b \in B$.

Then define $\Omega_{B/A}$ as the quotient of this free module by the submodule generated by the elements

$$\begin{array}{ll} {\rm d}(b_1+b_2)-{\rm d}b_1-{\rm d}b_2\,, & b_1,b_1\in B\,,\\ {\rm d}a\,, & a\in A\,,\\ {\rm d}(b_1b_2)-b_1\cdot {\rm d}b_2-b_2\cdot {\rm d}b_1\,, & b_1,b_1\in B\,. \end{array}$$

For any $k \ge 1$, the *B*-module of degree *k* differentials is defined as the *k*-th exterior power

$$\Omega_{B/A}^k = \Lambda^k \Omega_{B/A}.$$

Remark:

Any element of $\Omega^k_{B/A}$ is a sum of elements of the form

 $b \cdot db_1 \wedge \cdots \wedge db_k$ with $b, b_1, \dots, b_k \in B$.

Lemma: For any $k \ge 1$, there is a well-defined A-linear map

$$\begin{array}{ccccc} \mathrm{d}: & \Omega^k_{B/A} & \longrightarrow & \Omega^{k+1}_{B/A}, \\ & (b \cdot \mathrm{d} b_1 \wedge \cdots \wedge \mathrm{d} b_k) & \longmapsto & \mathrm{d} b \wedge \mathrm{d} b_1 \wedge \cdots \wedge \mathrm{d} b_k \,. \end{array}$$

Proof: First, there is a well-defined A-linear map

$$\begin{array}{rcl} \Omega_{B/A} \otimes_B \cdots \otimes_B \Omega_{B/A} & \longrightarrow & \Omega_{B/A}^{k+1}, \\ (b \cdot \mathrm{d} b_1 \otimes \cdots \otimes \mathrm{d} b_k) & \longmapsto & \mathrm{d} b \wedge \mathrm{d} b_1 \wedge \cdots \wedge \mathrm{d} b_k \,. \end{array}$$

Indeed, elements of the form

$$b \cdot \mathrm{d} b_1 \otimes \cdots \otimes \mathrm{d} b_{i-1} \otimes (\mathrm{d} (b_i b_i') - b_i \mathrm{d} b_i' - b_i' \mathrm{d} b_i) \otimes \mathrm{d} b_{i+1} \otimes \cdots \otimes \mathrm{d} b_k$$

are sent to 0 as

$$\begin{array}{rcl} \mathrm{d}(bb_i) \wedge \mathrm{d}b'_i + \mathrm{d}(bb'_i) \wedge \mathrm{d}b_i \\ = & b_i \cdot \mathrm{d}b \wedge \mathrm{d}b'_i + b \cdot \mathrm{d}b_i \wedge \mathrm{d}b'_i + b \cdot \mathrm{d}b'_i \wedge \mathrm{d}b_i + b'_i \cdot \mathrm{d}b \wedge \mathrm{d}b_i \\ = & b_i \cdot \mathrm{d}b \wedge \mathrm{d}b'_i + b'_i \cdot \mathrm{d}b \wedge \mathrm{d}b_i \\ = & \mathrm{d}b \wedge \mathrm{d}(b_ib'_i) \,. \end{array}$$

This map is alternate. So it factorises as

$$\Omega^k_{B/A} \longrightarrow \Omega^{k+1}_{B/A}.$$

The (algebraic) De Rham complex is defined as

$$B \xrightarrow{d} \Omega_{B/A} \xrightarrow{d} \Omega^2_{B/A} \longrightarrow \cdots \longrightarrow \Omega^k_{B/A} \xrightarrow{d} \Omega^{k+1}_{B/A} \longrightarrow \cdots$$

Remark:

The relation $d \circ d = 0$

comes from the fact that, by definition,

$$\begin{aligned} & d(db_1 \wedge \cdots \wedge db_k) \\ &= d(1 \cdot db_1 \wedge \cdots \wedge db_k) \\ &= d1 \wedge db_1 \wedge \cdots \wedge db_k \\ &= 0. \end{aligned}$$

Theorem:

(i) If $B = A[X_1, ..., X_n]$, then $\Omega_{B/A}$ is the free *B*-module on the basis elements endowed with the derivative $dX_1, ..., dX_n$

$$B = A[X_1, \ldots, X_n] \longrightarrow \bigoplus_{\substack{1 \le i \le n \\ n \ ext{ } i = 1}} B \cdot dX_i,$$

$$P(X_1, \ldots, X_n) \longmapsto \sum_{\substack{i = 1 \\ i = 1}}^n \frac{\partial P}{\partial X_i}(X_1, \ldots, X_n) \cdot dX_i.$$

(ii) If $A = \mathbb{R}$ [resp. \mathbb{C}],

B = algebra of C^{∞} [resp. holomorphic] functions on an open convex subset U of \mathbb{R}^n [resp. \mathbb{C}^n], m_x = maximal ideal of B consisting of functions which vanish at a point $x \in U$.

Then

$$\operatorname{Im}\left[\Omega_{B/A}\longrightarrow\prod_{x\in U}\lim_{n\in\mathbb{N}}(B/m_x^N)\otimes_B\Omega_{B/A}\right]$$

is the free *B*-module on the basis elements

$$\begin{array}{cccc} B & \longmapsto & \bigoplus_{1 \leq i \leq n} B \cdot \mathrm{d} x_i \\ f(x_1, \ldots, x_n) & \longmapsto & \sum_{1 \leq i \leq n} \frac{\partial f}{\partial x_i}(x_1, \ldots, x_n) \cdot \mathrm{d} x_i \end{array}$$

 dx_1, \ldots, dx_n

O. Caramello & L. Lafforgue

Proof of the theorem:

(i) Any derivation

$$d: B \longrightarrow M$$

is entirely determined by the images of X_1, \ldots, X_n . Conversely, the map

$$B = A[X_1, \dots, X_n] \longrightarrow B^n,$$

$$P \longmapsto \left(\frac{\partial P}{\partial X_i}\right)_{1 \le i \le n}$$

is a derivation.

(ii) The map

$$\begin{array}{rccc} B & \longrightarrow & B^n, \\ f & \longmapsto & \left(\frac{\partial f}{\partial x_i}\right)_{1 \leq i \leq n} \end{array}$$

is a derivation.

The proof follows from the following lemma:

Lemma (Taylor's formula):

For $U = \text{convex open subset of } \mathbb{R}^n$ [resp. \mathbb{C}^n], $f = C^\infty$ [resp. holomorphic] function on U, $a = (a_1, \dots, a_n) = \text{point of } U$, $N = \text{integer} \ge 1$, we can write

$$f(x) - f(a) = P_N(x) + \sum_{k_1 + \dots + k_n = N+1} (x_1 - a_1)^{k_1} \cdots (x_n - a_n)^{k_n} \cdot f_{k_1, \dots, k_n}(x)$$

where P_N is a polynomial of degree $\leq N$ and the functions $f_{k_1,...,k_n}$ are C^{∞} [resp. holomorphic].

Sketch of proof: We take

$$P_{N}(x) = \sum_{k_{1}+\dots+k_{n} \leq N} \frac{\partial^{k_{1}+\dots+k_{n}} f}{\partial x_{1}^{k_{1}} \cdots \partial x_{n}^{k_{n}}} (a_{1},\dots,a_{n}) \cdot \frac{(x_{1}-a_{1})^{k_{1}}}{k_{1}!} \cdots \frac{(x_{n}-a_{n})^{k_{n}}}{k_{n}!}$$

and, for $k_1 + \cdots + k_n = N + 1$,

$$f_{k_1,...,k_n}(x) = \frac{N+1}{k_1!\cdots k_n!} \cdot \int_0^1 (1-t)^N \cdot \frac{\partial^{k_1+\cdots+k_n}f}{\partial x_1^{k_1}\cdots \partial x_n^{k_n}} (a+t(x-a)).$$

- (i) A local ring is a commutative ring A which has a (unique) maximal ideal m_A such that any element of A m is invertible.
- (ii) If A, B are two local rings, a ring homomorphism

 $A \longrightarrow B$

is called local if it sends m_A to m_B .

Remark:

Any element of $A - m_A$ is sent to an element of $B - m_B$.

Definition:

(i) A locally ringed space is a ringed space (*X*, *O*_{*X*}) such that, for any point *x* of *X*, the fiber

 $\mathcal{O}_{X,x} = \varinjlim_{U \ni x} \mathcal{O}_X(U)$ is a local ring (with maximal ideal m_x).

(ii) A morphism of locally ringed spaces is a morphism of ringed spaces $(X, \mathcal{O}_X) \xrightarrow{f} (Y, \mathcal{O}_Y)$

such that, for any point x of X, the induced morphism

$$\mathcal{O}_{Y,f(x)}\longrightarrow \mathcal{O}_{X,x}$$

is local. O. Caramello & L. Lafforque **Definition:** Let $(X, \mathcal{O}_X) \xrightarrow{f} (S, \mathcal{O}_S)$ = morphism of locally ringed spaces.

The sheaf of differentials on *X* relatively to *S* is the sheafification $\Omega_{X/S}$ of the presheaf on *X*

$$\bigcup_{\substack{\| \\ open subset of X}} \longmapsto \operatorname{Im} \left(\Omega_{\mathcal{O}_X(U)/f^*\mathcal{O}_S(U)} \to \prod_{x \in U} \varprojlim_N (\mathcal{O}_{X,x}/m_x^N) \otimes \Omega_{\mathcal{O}_X(U)/f^*\mathcal{O}_S(U)} \right)$$

It is endowed with a canonical derivation

$$d: \mathcal{O}_X \longrightarrow \Omega_{X/S}.$$

Remark:

Let's consider the category of \mathcal{O}_X -Modules \mathcal{M} such that, for any U, the morphism

$$\mathcal{M}(U) \longrightarrow \prod_{x \in U} \varprojlim_{N} (\mathcal{O}_{X,x}/m_{x}^{N}) \otimes \mathcal{M}(U)$$

is injective.

Then $\Omega_{X/S}$ belongs to this category and represents the contravariant functor

 $\mathcal{M} \longmapsto$ set of sheaf morphisms $\mathcal{O}_X \longrightarrow \mathcal{M}$

which

- are compatible with addition,
- verify the Leibnitz rule,
- are 0 on $f^*\mathcal{O}_S$.

Let $(X, \mathcal{O}_X) \xrightarrow{f} (S, \mathcal{O}_S)$

= morphism of locally ringed spaces.

For any *k*, the sheaf of degree *k* differentials on *X* relatively to *S* is the sheafification $\Omega_{X/S}^k$ of the presheaf on *X*

 $U \longmapsto \Lambda^k \Omega_{X/S}(U)$.

The De Rham complex of X relatively to S is the induced sequence

$$\mathcal{O}_X \xrightarrow{d} \Omega_{X/S} \xrightarrow{d} \Omega^2_{X/S} \longrightarrow \cdots \longrightarrow \Omega^k_{X/S} \xrightarrow{d} \Omega^{k+1}_{X/S} \longrightarrow \cdots$$

verifying in any degree

$$\mathbf{d} \circ \mathbf{d} = \mathbf{0}$$
.

The previous theorem implies:

Corollary:

Let X be an *n*-dimensional differential [resp. analytic] manifold, and S be the point manifold.

Then the sheaf $\Omega_X = \Omega_{X/S}$ is locally free of rank *n*, and the sheaves $\Omega_X^k = \Omega_{X/S}^k$ are locally free.

Remark:

More generally, the sheaves $\Omega_{X/S}$ and $\Omega_{X/S}^k$ are locally free if $X \to S$ is a morphism of differential [resp. analytic] manifolds which is locally isomorphic to the projection

$$\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m} \longrightarrow \mathbb{R}^m$$

resp.
$$\mathbb{C}^n = \mathbb{C}^m \times \mathbb{C}^{n-m} \longrightarrow \mathbb{C}^m$$
].

Let X = n-dimensional differential [resp. analytic] manifold.

Then its cotangent bundle is

 T_X^{\vee} = vector bundle of rank *n* associated to the locally free \mathcal{O}_X -Module Ω_X ,

and its tangent bundle is

 T_X = dual vector bundle of T_X^{\lor} .

Remark:

Any morphism of differential [resp. analytic] manifolds

$$f: X \longrightarrow Y$$

induces a morphism of \mathcal{O}_X -Modules

 $f^*\Omega_Y \longrightarrow \Omega_X$

which can be seen as a morphism of vector bundles

$$f^*T_Y^{\vee} = X \times_Y T_Y^{\vee} \longrightarrow T_X^{\vee}$$

or, equivalently,

$$T_X \longrightarrow f^* T_Y = X \times_Y T_Y$$

Remark:

For U = open subset of X,

$$\Gamma(U, T_X) = \{ \text{sections } s : U \to T_X \text{ of } p : T_X \to X \}$$

identifies with the set of sheaf morphisms

d :
$$\mathcal{O}_U \longrightarrow \mathcal{O}_U$$
 (where $\mathcal{O}_U = \mathcal{O}_{X|U}$)

such that

- d is compatible with addition,
- d verifies the Leibnitz rule,
- d is 0 on constant functions.

The $\mathcal{O}_X(U)$ -module structure of $\Gamma(U, T_X)$ is defined by

- addition of operators $\mathcal{O}_U \to \mathcal{O}_U$,
- multiplication of operators by sections in $\mathcal{O}_X(U)$.

Remark:

• In other words, $\Omega_X^{\vee} = \mathcal{H}om_{\mathcal{O}_X}(\Omega_X, \mathcal{O}_X)$ can be seen as a subsheaf of the sheaf

$$\mathcal{H}om_{+}(\mathcal{O}_{X},\mathcal{O}_{X}): U \longmapsto \begin{cases} \text{sheaf morphisms } \mathcal{O}_{U} \to \mathcal{O}_{U} \\ \text{which are compatible with} \\ \text{addition and multiplication by constants} \end{cases}$$

One denotes

 \mathcal{D}_X = "sheaf of linear partial differential operators"

- = smallest subsheaf of $\mathcal{H}om_+(\mathcal{O}_X, \mathcal{O}_X)$ which is stable by composition and addition and contains \mathcal{O}_X and Ω_X^{\vee}
- = sheaf of elements of $\mathcal{H}om_+(\mathcal{O}_X, \mathcal{O}_X)$ which are locally finite sums of compositions of elements of \mathcal{O}_X and Ω_X^{\vee} .
- Any system of linear PDE's can be seen as a D_X-Module M. The sheaf of its solutions is

$$\mathcal{H}om_{\mathcal{D}_X}(\mathcal{M},\mathcal{O}_X)$$
.

Let $(X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$

= morphism of locally ringed spaces.

The De Rham cohomology modules of X relatively to S are the cohomology modules

$$H^n_{dR}(X/S)$$

of the cochain complex of $\mathcal{O}_{\mathcal{S}}(\mathcal{S})$ -modules $\Omega^{\bullet}_{X/\mathcal{S}}(X)$:

$$0 \to \mathcal{O}_X(X) \xrightarrow{d} \Omega_{X/S}(X) \xrightarrow{d} \Omega_{X/S}^2(X) \to \cdots \to \Omega_{X/S}^k(X) \xrightarrow{d} \Omega_{X/S}^{k+1}(X) \to \cdots$$

Remark:

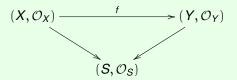
If
$$S = \{\bullet\}$$
 and $\mathcal{O}_S(S) = R$ the *R*-modules

$$H^n_{dR}(X) = H^n_{dR}(X/S)$$

are called the De Rham cohomology modules of X.

Remark:

Any commutative triangle of locally ringed spaces



induces a morphism of cochain complexes of $\mathcal{O}_{\mathcal{S}}(\mathcal{S})$ -modules

$$\Omega^{\bullet}_{Y/S}(Y) \longrightarrow \Omega^{\bullet}_{X/S}(X)$$

and so a sequence of natural morphisms

$$H^n_{dR}(Y/S) \longrightarrow H^n_{dR}(X/S)$$
.

- In other words, De Rham cohomology relatively to (S, O_S) makes up a sequence of contravariant functors from the category of locally ringed spaces over (S, O_S) to the category of O_S(S)-modules.
- In particular, isomorphic locally ringed spaces have isomorphic De Rham cohomology modules.

Lemma ("Poincaré lemma"):

The De Rham cohomology vector spaces of the differential manifolds

 \mathbb{R}^{d}

are

$$H^n_{dR}(\mathbb{R}^d) = \begin{cases} \mathbb{R} & \text{if} \quad n = 0, \\ 0 & \text{if} \quad n \ge 1. \end{cases}$$

Remark:

This lemma also applies to any differential manifold which is diffeomorphic to \mathbb{R}^d , in particular any open ball of \mathbb{R}^d .

Remark:

If X is an analytic manifold isomorphic to \mathbb{C}^d or an open ball of \mathbb{C}^d , we also have

$$\mathcal{H}^n_{dR}(X) = egin{cases} \mathbb{C} & ext{if} & n = 0 \ 0 & ext{if} & n \ge 1 \ . \end{cases}$$

Proof of the Poincaré lemma:

Any element of $\Omega^k(\mathbb{R}^d)$ has the form

$$\sum_{1\leq i_1<\cdots< i_k\leq d} f_{i_1,\ldots,i_k}(x_1,\ldots,x_n)\cdot \mathrm{d} x_{i_1}\wedge\cdots\wedge \mathrm{d} x_{i_k}$$

For any $k \ge 1$, let

$$\begin{array}{ll} h^{k} & : & \Omega^{k}(\mathbb{R}^{d}) \longrightarrow \Omega^{k-1}(\mathbb{R}^{d}) \\ & & \sum f_{i_{1},...,i_{k}}(x_{1},...,x_{n}) \cdot dx_{i_{1}} \wedge \cdots \wedge dx_{i_{k}} \\ & & \longmapsto \sum x_{i_{1}} \cdot \left(\int_{0}^{1} \mathrm{d}t \cdot f_{i_{1},...,i_{k}}(0,\ldots,0,tx_{i_{1}},x_{i_{1}+1},\ldots,x_{n}) \right) \cdot \mathrm{d}x_{i_{2}} \wedge \cdots \wedge \mathrm{d}x_{i_{k}} \,. \end{array}$$

Then we have for $\omega = f(x_1, \ldots, x_n) \cdot dx_{i_1} \wedge \cdots \wedge dx_{i_k}$

$$\begin{split} \mathrm{d} \circ h^{k}(\omega) &= \sum_{j \geq i_{1}} x_{i_{1}} \cdot \left(\int_{0}^{1} \mathrm{d}t \cdot \frac{\partial f}{\partial x_{j}}(0, \dots, 0, tx_{i}, x_{i_{1}+1}, \dots, x_{n}) \right) \cdot \mathrm{d}x_{j} \wedge \mathrm{d}x_{i_{2}} \wedge \dots \wedge \mathrm{d}x_{i_{k}} \\ &+ f_{i_{1},\dots,i_{k}}(0,\dots, 0, x_{i_{1}}, x_{i_{1}+1},\dots, x_{n}) \cdot \mathrm{d}x_{i_{1}} \wedge \dots \wedge \mathrm{d}x_{i_{k}} , \\ h^{k+1} \circ \mathrm{d}(\omega) &= \sum_{j \leq i_{1}} x_{j} \cdot \int_{0}^{1} \mathrm{d}t \cdot \frac{\partial f}{\partial x_{j}}(0,\dots, 0, tx_{j}, x_{j+1},\dots, x_{n}) \cdot \mathrm{d}x_{i_{1}} \wedge \dots \wedge \mathrm{d}x_{i_{n}} \\ &- \sum_{j \geq i_{1}} x_{i_{1}} \cdot \int_{0}^{1} \mathrm{d}t \cdot \frac{\partial f}{\partial x_{j}}(0,\dots, 0, tx_{i_{1}}, x_{i_{1}+1},\dots, x_{n}) \cdot \mathrm{d}x_{j} \wedge \mathrm{d}x_{i_{2}} \wedge \dots \wedge \mathrm{d}x_{i_{n}} . \end{split}$$

As a consequence

$$\begin{array}{ll} (\operatorname{d} \circ h^{k} + h^{k+1} \circ \operatorname{d})(\omega) \\ = & f_{i_{1},\ldots,i_{k}}(0,\ldots,0,x_{i_{1}},x_{i_{1}+1},\ldots,x_{n}) \cdot \operatorname{d} x_{i_{1}} \wedge \cdots \wedge \operatorname{d} x_{i_{k}} \\ + & \sum\limits_{j < i_{1}} (f(0,\ldots,0,x_{j},x_{j+1},\ldots,x_{n}) - f(0,\ldots,0,x_{j+1},\ldots,x_{n})) \cdot \operatorname{d} x_{i_{1}} \wedge \cdots \wedge \operatorname{d} x_{i_{k}} \\ = & f(x_{1},\ldots,x_{n}) \cdot \operatorname{d} x_{i_{1}} \wedge \cdots \wedge \operatorname{d} x_{i_{k}} = \omega \,. \end{array}$$

And, in degree 0, for $\omega = f(x_1, \ldots, x_n)$,

$$h^{1} \circ \mathbf{d}(\omega) = \sum_{j} x_{j} \cdot \int_{0}^{1} \mathrm{d}t \cdot \frac{\partial f}{\partial x_{j}}(0, \dots, 0, tx_{j}, x_{j+1}, \dots, x_{n})$$

= $f(x_{1}, \dots, x_{n}) - f(0, \dots, 0)$.

So, the subcomplex of constant functions

 \mathbb{R} (in degree 0)

is a homotopy retract of the complex

$$\Omega^{ullet}(\mathbb{R}^d)$$

The Poincaré lemma follows.

Partitions of unity

Proposition:

Let X = differential manifold, $(U_i)_{i \in I} =$ open covering of X. Then there exists a family of C^{∞} functions

$$\varphi_j: X \longrightarrow \mathbb{R}_+$$

such that

- the supports of the φ_j are compact and locally finite,
- the support of any φ_j is contained in some U_i ,
- the sum $\sum \varphi_j$ is equal to 1 everywhere.

Corollary: There exists a family of C^{∞} functions

$$\psi_i: X \longrightarrow \mathbb{R}_+$$

such that

- the support of any ψ_i is contained in U_i ,
- the sum $\sum \psi_i$ is locally finite and equal to 1 everywhere.

Proof of the proposition (in the case *X* **is countable at infinity):** Suppose *X* is countable at infinity.

It means X can be written as a union of open subsets

$$X_n$$
, $n \in \mathbb{N}$,

such that each \overline{X}_n is compact. We can suppose that

$$\overline{X}_n \subset X_{n+1}, \qquad \forall n \in \mathbb{N}.$$

For any $n \in \mathbb{N}$ and any $x \in \overline{X}_n - X_{n-1}$, there is a C^{∞} function

 $\varphi_{n,x}: X \longrightarrow \mathbb{R}_+$ with $\varphi_{n,x}(x) > 0$

and whose support

- is compact,
- $\{\bullet\}$ is contained in some U_i ,
 - has empty intersection with \overline{X}_{n-2} .

Then there is a finite family of points

$$x_{n,1},\ldots,x_{n,k_n}\in\overline{X}_n-X_{n-1}$$

such that

$$(\varphi_{n,x_{n,1}}+\cdots+\varphi_{n,x_n,k_n})(x)>0, \quad \forall x\in\overline{X}_n-X_{n-1}.$$

The sum

$$\varphi = \sum_{n} \sum_{1 \le i \le k_n} \varphi_{n, x_{n, i}}$$

is locally finite, C^{∞} and everywhere > 0.

O. Caramello & L. Lafforgue

Corollary:

Let X = differential manifold,

U, V = two open subsets which cover X. Then there is a short exact sequence of complexes

 $0 \longrightarrow \Omega^{\bullet}_{X}(X) \longrightarrow \Omega^{\bullet}_{U}(U) \oplus \Omega^{\bullet}_{V}(V) \longrightarrow \Omega^{\bullet}_{U \cap V}(U \cap V) \longrightarrow 0$

and, as a consequence, a long exact sequence of De Rham cohomology spaces:

$$0 \longrightarrow H^{\circ}_{dR}(X) \longrightarrow H^{\circ}_{dR}(U) \oplus H^{\circ}_{dR}(V) \longrightarrow H^{\circ}_{dR}(U \cap V) \longrightarrow H^{1}_{dR}(X) \longrightarrow \cdots$$

$$\cdots \longrightarrow H^n_{dR}(X) \longrightarrow H^n_{dR}(U) \oplus H^n_{dR}(V) \longrightarrow H^n_{dR}(U \cap V) \longrightarrow H^{n+1}_{dR}(X) \longrightarrow \cdots$$

Proof:

Let $\varphi_U, \varphi_V : X \to \mathbb{R}_+$ be C^{∞} functions such that

$$\operatorname{supp}(\varphi_U) \subset U, \ \operatorname{supp}(\varphi_V) \subset V, \ \varphi_U + \varphi_V = 1.$$

Then any $\omega \in \Omega^k_{U \cap V}(U \cap V)$ can be written as

$$\omega = \varphi_U \cdot \omega + \varphi_V \cdot \omega$$

where $\varphi_U \cdot \omega$ extended by 0 is in $\Omega_V^k(V)$ $\varphi_V \cdot \omega$ extended by 0 is in $\Omega_U^k(U)$. Corollary:

Let X = differential manifold which can be written as a finite union

$$X = U_1 \cup \cdots \cup U_n$$

of open subsets such that all the

 $U_{i_1} \cap \cdots \cap U_{i_k}$

are diffeomorphic to some \mathbb{R}^d (or open ball of \mathbb{R}^d).

Then the De Rham cohomology spaces

 $H^n_{dR}(X)$

are finite dimensional, and they are 0 if *n* is big enough.

Remark: It can be proven that any compact differential manifold has such finite open covers. So it verifies the conclusion of the corollary.

Integration on differential manifolds

If U = open subset of some \mathbb{R}^n , $(f: U \to \mathbb{R}) =$ continuous function K = compact subset of Usuch that $K - K^0$ has measure 0,

then we can consider the well-defined integral

$$\int_{\mathcal{K}} f(x_1,\ldots,x_n) \mathrm{d} x_1 \ldots \mathrm{d} x_n = \int_{\mathcal{K}} f(x_1,\ldots,x_n) \cdot \mathrm{d} x_1 \ldots \mathrm{d} x_n \, .$$

Furthermore, if

$$\varphi: V \xrightarrow{\sim} U$$

is a diffeomorphism to U from an open subset

$$V\subseteq\mathbb{R}^n$$
,

we have the formula:

Lemma:

For

$$\varphi = (\varphi_1,\ldots,\varphi_n): V \xrightarrow{\sim} U,$$

there is an equality

$$\int_{K} f(x_{1},...,x_{n}) dx_{1}...dx_{n}$$

$$= \int_{\varphi^{-1}(K)} (f \circ \varphi)(y_{1},...,y_{n}) \cdot \left| \det \left(\frac{\partial \varphi_{i}}{\partial y_{j}} \right)(y_{1},...,y_{n}) \right| \cdot dy_{1}...dy_{n}.$$

Remark:

If the tangent bundles of $V \subset \mathbb{R}^n$ and $U \subset \mathbb{R}^n$ are identified with

$$V imes \mathbb{R}^n$$
 and $U imes \mathbb{R}^n$,
 $\left(rac{\partial \varphi_i}{\partial y_j}
ight)_{1 \le i, j \le n}$

the matrix

defines the tangent linear map

$$\mathrm{d}\varphi:\mathbb{R}^n\longrightarrow\mathbb{R}^n$$

and its determinant is the induced scalar morphism

$$\Lambda^n \mathbb{R}^n \longrightarrow \Lambda^n \mathbb{R}^n$$
.

O. Caramello & L. Lafforgue

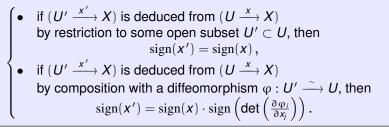
Definition:

An orientation on a differential manifold X is a way to associate to any chart

$$(U \xrightarrow{x} X)$$

where $U =$ connected open subset of \mathbb{R}^n
 $x =$ diffeomorphism to some open subset of X
a sign
 $sign(x) \in \{\pm 1\}$

such that



Remark:

If X has an orientation, charts $(U \xrightarrow{x} X)$ such that sign(x) = +1are called well oriented.

Remarks:

(i) For any differential manifold X, there is a sheaf

 $U \mapsto \operatorname{or}_X(U) = \{ \text{orientations of } U \}$

called the sheaf or_X of orientations of *X*. It is locally isomorphic to $\{\pm 1\}$.

(ii) This sheaf may or may not have global sections, i.e. orientations of X.

(iii) A differential manifold X is orientable if and only if there are charts

$$\left(U_i \xrightarrow{x_i} X\right)$$

whose images are an open cover of X and such that, for any indices *i*, *j*, the maps of change of coordinates

$$\varphi_{i,j} = x_i^{-1} \circ x_j : x_j^{-1}(x_i(U_i) \cap x_j(U_j)) \longrightarrow x_i^{-1}(x_i(U_i) \cap x_j(U_j))$$

verify the condition

 $sign(det(d\varphi_{i,j})) = +1$.

O. Caramello & L. Lafforgue

Proposition:

Let X = oriented differential manifold of dimension d. Then there is a unique way to define integrals

for K = compact subset of X such that $K - \overset{\circ}{K}$ has measure 0, $\Omega^d_X(U) \ni \omega = \text{a differential form of degree } d$ defined on an open subset U which contains K,

such that

• the integral doesn't change if U is replaced by a smaller $U' \supset K$,

ω

- the integral is linear in ω,
- if $K = K_1 \cup K_2$ and $K_1 \cap K_2$ has measure 0,

$$\int_{\mathcal{K}} \omega = \int_{\mathcal{K}_1} \omega + \int_{\mathcal{K}_2} \omega \,,$$

• if $\mathbb{R}^d \supset V \xrightarrow{\varphi} U \subset X$ is a well oriented chart and $\varphi^* \omega = f(x_1, \ldots, x_n) dx_1 \wedge \cdots \wedge dx_n$, then $\int_K \omega = \int_{\varphi^{-1}(K)} f(x_1, \ldots, x_n) dx_1 \ldots dx_n.$

O. Caramello & L. Lafforgue

Sketch of proof of the proposition: There is a finite family of well oriented charts

 $U_i \xrightarrow{x_i} X, \ 1 \leq i \leq n,$

whose images cover an open neighborhood of K. Then one can write

 $K = K_1 \cup \cdots \cup K_n$

where

- each K_i is compact and contained in $x_i(U_i)$,
- the boundaries $K_i \overset{\circ}{K}_i$ have measure 0,
- the intersections $K_i \cap K_j$ have measure 0.

We must have

$$\int_{\mathcal{K}} \omega = \int_{\mathcal{K}_1} \omega + \cdots + \int_{\mathcal{K}_n} \omega.$$

This reduces the verification of the proposition to the case when X is a (connected) open subset of \mathbb{R}^d .

Then the proposition follows from the usual properties of integration and from the lemma.

Stokes' formula

Definition:

Let X = differential manifold of dimension d,

K =closed subset of X.

We say *K* has a smooth boundary $\partial K = K - K$ if, for any point $x \in X$, there is a chart

\mathbb{R}^{d}	\supset	V	$\xrightarrow{\sim}$	$U \subset X$
		Ψ		Ψ
		0	\longmapsto	X

such that

- the pull-back of $K \cap U$ is $(] \infty, 0] \times \mathbb{R}^{d-1}) \cap V$,
- the pull-back of $(\partial K) \cap U$ is $(\{0\} \times \mathbb{R}^{d-1}) \cap V$.

Remarks:

- In this situation, ∂K has an induced structure of differential manifold of dimension d-1.
- If X is oriented, ∂K has an induced orientation. We decide that an induced chart

$$({\mathbf{0}} \times \mathbb{R}^{d-1}) \cap V \xrightarrow{\sim} (\partial K) \cap U$$

is well oriented if the starting chart

$$\mathbb{R}^d \supset V \xrightarrow{\sim} U \subset X$$

is well oriented.

Theorem (Stokes' formula):

Let X = oriented differential manifold of dimension d, K = compact closed subset with smooth boundary

$$\partial K = K - \overset{\circ}{K} \overset{i}{\hookrightarrow} X.$$

Then, for any differential form of degree d-1

 $\omega \in \Omega^{d-1}_X(U)$

defined on an open neighborhood of K, we have

$$\int_{\mathcal{K}} \mathrm{d}\omega = \int_{\partial \mathcal{K}} \omega \,.$$

Remark:

For $X = \mathbb{R}$ and K = [a, b], this formula is just

$$\int_{a}^{b} \mathrm{d}t \cdot f'(t) = f(b) - f(a)$$

for any C^{∞} function defined in an open neighborhood of [a, b].

Sketch of proof:

Using partitions of unity, we reduce to proving that if

$$\omega = \sum_{1 \leq i \leq n} f_i(x_1, \ldots, x_n) \cdot dx_1 \wedge \cdots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \cdots \wedge dx_n$$

is a differential form of degree n-1 on \mathbb{R}^n with compact support, then

$$\int_{]-\infty,0]\times\mathbb{R}^{n-1}}\mathrm{d}\omega=\int_{\{0\}\times\mathbb{R}^{n-1}}\omega\,.$$

Indeed, for $i \ge 2$,

$$\int_{-\infty}^{+\infty} \mathrm{d}x_i \cdot \frac{\partial f_i}{\partial x_i}(x_1,\ldots,x_n) = 0$$

while for i = 1

$$\int_{-\infty}^0 \mathrm{d} x_1 \cdot \frac{\partial f_1}{\partial x_1}(x_1,\ldots,x_n) = f_1(0,x_2,\ldots,x_n) \, .$$

Corollary:

Let X = differential manifold,

 $(\Delta_k \xrightarrow{x} X) = \text{smooth } k \text{-simplex of } X,$

 $\omega = differential form of degree k - 1$

defined on some open neighborhood of $x(\Delta_k)$ in X.

Then we have

$$\int_{\Delta_k} x^*(\mathrm{d}\omega) = \sum_{0 \le i \le k} (-1)^{i-1} \cdot \int_{\Delta_{k-1}} (x \circ \partial_i^k)^* \omega \,.$$

Remark:

A smooth *k*-simplex of *X* is a continuous map $\Delta_k \rightarrow X$ which is the restriction of a C^{∞} map

 $U \to X$

defined on some open neighborhood of Δ_k in \mathbb{R}^k .

Sketch of proof: Recall

$$\Delta_k = \{(t_1,\ldots,t_k) \in \mathbb{R}^k \mid 0 \le t_1 \le \cdots \le t_k \le 1\}.$$

For any *i*, $0 \le i \le k$, the affine map

$$\partial_i^k: \Delta_{k-1} \longrightarrow \Delta_k$$

is

$$(t_1,\ldots,t_{k-1})\longmapsto\begin{cases} (0,t_1,\ldots,t_{k-1}) & \text{if } i=0,\\ (t_1,\ldots,t_i,t_i,t_{i+1},\ldots,t_{k-1}) & \text{if } 1\leq i\leq k-1,\\ (t_1,\ldots,t_{k-1},1) & \text{if } i=k. \end{cases}$$

If *t* is a point of $\Delta_{k-1} = \{(t_1, \dots, t_{k-1}) \in \mathbb{R}^{k-1} \mid 0 < t_1 < \dots < t_{k-1} < 1\}$, the affine isomorphism

induces an isomorphism of an open neighborhood of

$$(0, t)$$
 in $]-\infty, 0] \times \mathbb{R}^{k-1}$

to an open neighborhood of

$$\partial_i^k(t)$$
 in Δ_k .

Furthermore, the associated linear isomorphism

is defined by the matrix

$$\mathbb{R} \times \mathbb{R}^{k-1} \xrightarrow{\sim} \mathbb{R}^{k}$$

$$\begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \quad \text{if} \quad i = 0,$$

$$i \text{ lines} \begin{cases} \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & 0 & \vdots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 1 & \vdots & & \vdots \\ 0 & \vdots & & \vdots & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \quad \text{if} \quad 1 \le i \le k-1,$$

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & 1 & \ddots & \vdots \\ 0 & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} \quad \text{if} \quad i = k \, .$$

Lastly, the determinant of this matrix is

$$(-1)^{i-1}$$
.

This corollary implies:

Proposition:

Let X = differential manifold,

 C_{\bullet}^{χ} = chain complex of \mathbb{R} -vector spaces whose basis elements are the continuous maps

$$x:\Delta_k\longrightarrow X$$
,

 $C_X^{\bullet} = \operatorname{Hom}(C_{\bullet}^X, \mathbb{R}) =$ dual cochain complex,

 $C^{X, sm}_{ullet} =$ subcomplex generated by the basis elements

$$x: \Delta_k \longrightarrow X$$

which are smooth,

 $C^{\bullet}_{X,\text{sm}} = \text{Hom}(C^{X,\text{sm}}_{\bullet}, \mathbb{R}) = \text{dual cochain complex which is a quotient of } C^{\bullet}_{X}, \Omega^{\bullet}_{X}$: De Rham complex of *X*.

Then the bilinear maps

$$egin{array}{rcl} \Omega^k_X(X) imes C^{X,\mathrm{sm}}_k & \longrightarrow & \mathbb{R}\,, \ \left(\omega, \Delta_k \xrightarrow{x} X
ight) & \longmapsto & (-1)^k \cdot \int_{\Delta_k} x^*(\omega) \end{array}$$

define a morphism of cochain complexes

$$\Omega^{\bullet}_X(X) \longrightarrow C^{\bullet}_{X,\mathrm{sm}}.$$

O. Caramello & L. Lafforgue

Proposition:

Let X = differential manifold.

Then the natural chain morphism

$$C^{X,\mathrm{sm}}_{ullet} \longrightarrow C^X_{ullet}$$

and its dual

$$C^{ullet}_X \longrightarrow C^{ullet}_{X,\mathrm{sm}}$$

are quasi-isomorphisms.

In other words, they identify the associated homology (or cohomology) spaces.

Corollary: So there are natural maps

$$H^k_{dR}(X) \longrightarrow H^k(X,\mathbb{R})$$

or, equivalently, bilinear pairings

$$\langle \bullet, \bullet \rangle : H^k_{dR}(X) \times H_k(X, \mathbb{R}) \longrightarrow \mathbb{R}.$$

Remark: If an element of $H_{dB}^k(X)$ is represented by

$$\omega \in \Omega^k_X(X)$$
 such that $d\omega = 0$

and an element of $H_k(X, \mathbb{R})$ is represented by

$$egin{aligned} & c = \sum_x c_x \cdot x & ext{such that} & ext{d} c = 0 \ \end{aligned}$$
 and furthermore, $c_x \in \mathbb{Z}, \, orall \left(\Delta_k \stackrel{x}{\longrightarrow} X
ight)$, then the associated numbe $\langle \omega, c
angle \in \mathbb{R} \end{aligned}$

is called a period of ω .

The linear map $\langle \omega, \bullet \rangle$ induces a morphism of abelian groups

$$H_k(X,\mathbb{Z}) \longrightarrow H_k(X,\mathbb{R}) \xrightarrow{\langle \omega, \bullet \rangle} \mathbb{R}$$

whose image is the subgroup of periods of ω .

Sketch of proof of the proposition:

As the functor

$$\operatorname{Hom}(\bullet,\mathbb{R}):\operatorname{Vect}_{\mathbb{R}}^{\operatorname{op}}\longrightarrow\operatorname{Vect}_{\mathbb{R}}$$

preserves exact sequences,

It is enough to prove that the chain complex morphism

$$C^{X,\mathrm{sm}}_{ullet} \longrightarrow C^X_{ullet}$$

is a quasi-isomorphism.

Denote $H_k^{sm}(X, \mathbb{R})$ the homology spaces of $C_{\bullet}^{X, sm}$.

The proof consists in the following steps:

• If $f: X \to Y$ is a C^{∞} map, show that the induced morphisms

 $H_k(X,\mathbb{R}) \longrightarrow H_k^{\mathrm{sm}}(Y,\mathbb{R})$

are invariant by C^{∞} -deformations of f.

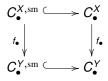
- Deduce that the proposition is true when *X* is C^{∞} -contractible.
- Reduce the verification to an open cover.
- Deduce that the proposition is true when X has a finite open cover whose intersections are C[∞]-contractible.
- Show the general case.

Step 1: invariance by smooth deformations

Let X, Y = differential manifolds.

Any C^{∞} map $X \xrightarrow{f} Y$

induces a commutative square of morphisms of chain complexes:



We say that two C^{∞} maps

$$X \stackrel{f}{\underset{g}{\Rightarrow}} Y$$

are C^{∞} -homotopic if there exists an open interval]a, b[\supset [0, 1] and a C^{∞} map

$$h:]a, b[\times X \longrightarrow Y$$

such that

$$h(0,\bullet)=f$$
 and $h(1,\bullet)=g$.

Lemma: If two C^{∞} maps $X \stackrel{t}{\underset{g}{\Rightarrow}} Y$ are C^{∞} -homotopic, the induced morphisms

of chain complexes

$$C^{X,\mathrm{sm}}_{\bullet} \xrightarrow{f_{\bullet}} C^{Y,\mathrm{sm}}_{\bullet}$$

are chain homotopic.

In particular, they induce the same morphisms

 $H_k^{\mathrm{sm}}(X,\mathbb{R}) \longrightarrow H_k^{\mathrm{sm}}(Y,\mathbb{R}), \quad \forall \, k \in \mathbb{N} \,.$

Proof: We already associated to *h* a chain homotopy

$$h_{\bullet} = \left(h_k: C_k^X \longrightarrow C_{k+1}^Y\right)$$

such that, for any k, the morphisms

$$C_k^X \xrightarrow{f_k} C_k^Y$$

verify

$$f_k - g_k = d \circ h_k + h_{k-1} \circ d$$
.

Furthermore, it is obvious on the construction that, as *h* is C^{∞} , any h_k sends $C_k^{X, \text{sm}} \hookrightarrow C_k^X$ to $C_{k+1}^{X, \text{sm}} \hookrightarrow C_{k+1}^X$. Step 2: the case of C^{∞} -contractible manifolds

A differential manifold X is called C^{∞} -contractible if there exists a point

$$\{\bullet\} \xrightarrow{x} X$$

such that the composed morphism

$$\mathbf{s} \circ \boldsymbol{\rho} : \boldsymbol{X} \xrightarrow{\boldsymbol{\rho}} \{\bullet\} \xrightarrow{\boldsymbol{x}} \boldsymbol{X}$$

is C^{∞} -homotopic to id_X .

It follows from Step 1 that the canonical morphisms

$$H_k^{\mathrm{sm}}(X,\mathbb{R})\longrightarrow H_k^{\mathrm{sm}}(\{\bullet\},\mathbb{R})$$

are isomorphisms, just as the morphisms

$$H_k(X,\mathbb{R})\longrightarrow H_k(\{\bullet\},\mathbb{R})$$
.

But we have

$$\mathcal{C}^{\{ullet\},\mathrm{sm}}_{ullet} = \mathcal{C}^{\{ullet\}}_{ullet}$$

and a fortiori

$$H_k^{\mathrm{sm}}(\{\bullet\},\mathbb{R}) = H_k(\{\bullet\},\mathbb{R}), \quad \forall k.$$

We conclude that, if X is C^{∞} -contractible, the morphisms

$$H_k^{\mathrm{sm}}(X,\mathbb{R})\longrightarrow H_k(X,\mathbb{R})$$

are isomorphisms.

Step 3: reduction to an open cover

Let $\mathcal{U} = (U_i)_{i \in I}$ be an open cover of *X*. Recall that we denoted

 $C^{X,\mathcal{U}}_{ullet} \hookrightarrow C^X_{ullet}$

the subcomplex of C^{X}_{\bullet} generated by the simplices of X

 $x: \Delta_k \longrightarrow X$

which factorise through at least one of the U_i 's. In the same way, we can denote

$$C^{X,\mathrm{sm},\mathcal{U}}_{ullet} \hookrightarrow C^{X,\mathrm{sm}}_{ullet}$$

the subcomplex generated by the smooth simplices of X

 $x: \Delta_k \longrightarrow X$

which factorise through at least one of the U_i 's. Using barycentric subdivisions, we constructed a morphism

$$r: C^X_{ullet} \longrightarrow C^{X,\mathcal{U}}_{ullet}$$

such that the composite

$$\mathcal{C}^{X,\mathcal{U}}_{ullet}\stackrel{i}{\hookrightarrow}\mathcal{C}^{X}_{ullet}\stackrel{r}{
ightarrow}\mathcal{C}^{X,\mathcal{U}}_{ullet}$$

is id, and a chain homotopy from the composite

$$C^X_{ullet} \stackrel{r}{
ightarrow} C^{X,\mathcal{U}}_{ullet} \stackrel{i}{
ightarrow} C^X_{ullet}$$

to id.

Lemma:

(i) The retraction

$$r: C^X_{ullet} \longrightarrow C^{X, \mathcal{U}}_{ullet}$$

sends $C^{\chi, \text{sm}}_{\bullet}$ to $C^{\chi, \text{sm}, \mathcal{U}}_{\bullet}$, and the chain homotopy

$$h = \left(C_k^X \longrightarrow C_{k+1}^X
ight)$$

sends each $C_k^{X,\text{sm}}$ to $C_{k+1}^{X,\text{sm}}$.

(ii) The morphism of chain complexes

$$\mathcal{C}^{X,\mathrm{sm},\mathcal{U}}_{ullet} \hookrightarrow \mathcal{C}^{X,\mathrm{sm}}_{ullet}$$

is a quasi-isomorphism, just as

$$C^{X,\mathcal{U}}_{ullet} \hookrightarrow C^X_{ullet}$$
.

Proof of the lemma:

It results from the fact that barycentric subdivisions of a smooth simplex

$$x:\Delta_k\longrightarrow X$$

are smooth simplices.

O. Caramello & L. Lafforgue

Corollary of the lemma: Suppose $X = U \cup V$ and we already know that the morphisms

$$\begin{array}{cccc} C^{U,\mathrm{sm}}_{\bullet} & \hookrightarrow & C^{U}_{\bullet}, \\ C^{V,\mathrm{sm}}_{\bullet} & \hookrightarrow & C^{V}_{\bullet}, \\ C^{U\cap V,\mathrm{sm}}_{\bullet} & \hookrightarrow & C^{U\cap V}_{\bullet} \end{array}$$

are quasi-isomorphisms.

Then we can conclude that the morphism

$$\mathcal{C}^{X,\mathrm{sm}}_{ullet} \hookrightarrow \mathcal{C}^{X}_{ullet}$$

is a quasi-isomorphism.

Proof:

Let \mathcal{U} be the open cover of X by U and V.

We have two short exact sequences of chain complexes

$$\begin{array}{ccc} 0 \longrightarrow C_U^{U \cap V, \mathrm{sm}} \longrightarrow C_{\bullet}^{U, \mathrm{sm}} \oplus C_{\bullet}^{V, \mathrm{sm}} \longrightarrow C_{\bullet}^{X, \mathcal{U}, \mathrm{sm}} \longrightarrow 0 \\ 0 \longrightarrow C_{\bullet}^{U \cap V} \longrightarrow C_{\bullet}^{U} \oplus C_{\bullet}^{V} \longrightarrow C_{\bullet}^{X, \mathcal{U}} \longrightarrow 0 , \end{array}$$

and associated long exact sequences of homology:

The "five lemma" allows to conclude.

Step 4: the case when *X* has a finite contractible open cover

This means *X* has a finite open cover

 $X = U_1 \cup \cdots \cup U_n$

such that the U_i 's are C^{∞} -contractible as well as all non empty intersections

 $U_{i_1}\cap\cdots\cap U_{i_m}$.

In that case, we can conclude that

$$\mathcal{C}^{X,\mathrm{sm}}_{ullet} \hookrightarrow \mathcal{C}^{X}_{ullet}$$

is a quasi-isomorphism.

The proof is by induction on *n*, using Step 2 and the corollary of Step 3.

Step 5: the general case

Let X = arbitrary differential manifold.

Let I = ordered set of open subsets

 $U \subset X$

such that

- *U* is relatively compact, meaning \overline{U} is compact, *U* has a finite C^{∞} -contractible open cover.

It can be proved that any compact subset

 $K \subset X$

is contained in an element U of L

It follows that

- the ordered set *I* is filtering, *X* is the union of the $U \in I$.

So we can write

$$C^{X}_{\bullet} = \varinjlim_{U \in I} C^{U}_{\bullet}$$

and

$$C^{X,\mathrm{sm}}_{\bullet} = \varinjlim_{U \in I} C^{U,\mathrm{sm}}_{\bullet}$$

As the functor

preserves exact sequences (as I is filtering), we have for any k

$$H_k(X,\mathbb{R})=\varinjlim_{U\in I}H_k(U,\mathbb{R})\,,$$

 $\lim_{t \to t}$

$$H_k^{\mathrm{sm}}(X,\mathbb{R}) = \varinjlim_{U\in I} H_k^{\mathrm{sm}}(U,\mathbb{R}).$$

The conclusion follows from Step 4.

De Rham's theorem

Theorem:

Let X = differential manifold which is countable at infinity.

(i) The chain complexes morphism

$$\Omega^{ullet}_X \longrightarrow C^{ullet}_{X,\mathrm{sm}}$$

is a quasi-isomorphism.

(ii) The De Rham cohomology spaces

 $H^k_{dR}(X)$

identify with singular cohomology spaces

 $H^k(X,\mathbb{R})$.

In other words, the period morphisms induce isomorphisms

 $H^k_{dR}(X) \longrightarrow \operatorname{Hom}(H_k(X,\mathbb{R}),\mathbb{R}).$

Proof that (ii) is equivalent to (i):

This follows from the previous proposition.

Sketch of proof of the theorem when X has a finite contractible open cover

Step 1: invariance by C^{∞} -deformations

Lemma:

If two C^{∞} maps $X \stackrel{r}{\underset{g}{\Rightarrow}} Y$ between differential manifolds are C^{∞} -homotopic, the induced morphisms of cochain complexes

$$\Omega^{\bullet}_{Y}(Y) \xrightarrow{f^*}{g^*} \Omega^{\bullet}_{X}(X)$$

are cochain homotopic.

In particular they induce the same morphisms

$$H^k_{dR}(Y) \longrightarrow H^k_{dR}(X), \qquad \forall \, k \in \mathbb{N} \,.$$

Proof of the lemma: It is enough to consider the case when

and f, g are $Y =]a, b[\times X \quad \text{with} \quad]a, b[\supset [0, 1]$ $X \quad \longrightarrow \quad]a, b[\times X = Y,$

$$f: x \mapsto (0, x),$$

 $g: x \mapsto (1, x).$

We consider the associated restriction maps

$$\Omega_Y^k(Y) \stackrel{f}{\rightrightarrows} \Omega_X^k(X) \,.$$

We want to define homomorphisms

$$h^k: \Omega^k_Y(Y) \longrightarrow \Omega^{k-1}_X(X)$$

such that

$$g-f=\mathrm{d}\circ h^k+h^{k+1}\circ\mathrm{d}$$

in any degree k.

Let's consider a covering of X by open subsets U_i which are diffeomorphic to some open subset of \mathbb{R}^d with coordinates x_1, \ldots, x_d . Let's define

$$h^k: \Omega^k_Y(]a, b[\times U_i) \longrightarrow \Omega^{k-1}_X(U_i)$$

by

$$w = \sum_{\underline{i}=(i_1 < \cdots < i_k)} f_{\underline{i}}(t, x_1, \dots, x_d) \cdot dx_{i_1} \wedge \cdots \wedge dx_{i_k} \\ + \sum_{\underline{j}=(j_1 < \cdots < j_{k-1})} f_{\underline{i}}(t, x_1, \dots, x_d) \cdot dt \wedge dx_{j_1} \wedge \cdots \wedge dx_{j_{k-1}} \\ \longmapsto \sum_{j} \left(\int_0^1 f_{\underline{j}}(t, x_1, \dots, x_d) \cdot dt \right) \cdot dx_{j_1} \wedge \cdots \wedge dx_{j_{k-1}} .$$

These definitions match on the intersections of the U_i 's and define global morphisms

$$h^k: \Omega^k_Y(Y) \longrightarrow \Omega^{k-1}_X(X).$$

Furthermore, we compute locally

$$\mathbf{d} \circ \boldsymbol{h}^{k}(\boldsymbol{\omega}) = \sum_{1 \leq j \leq d} \sum_{\underline{j}} \left(\int_{0}^{1} \frac{\partial f_{\underline{j}}}{\partial x_{\underline{j}}}(t, x_{1}, \dots, x_{d}) \cdot \mathbf{d}t \right) \cdot \mathbf{d}x_{j} \wedge \mathbf{d}x_{j_{1}} \wedge \dots \wedge \mathbf{d}x_{j_{k-1}}$$

and

$$\begin{aligned} h^{k+1} \circ \mathrm{d}(\omega) &= \sum_{\underline{i}} \left(\int_0^1 \frac{\partial f_{\underline{i}}}{\partial t} (t, x_1, \dots, x_d) \cdot \mathrm{d}t \right) \cdot \mathrm{d}x_{i_1} \wedge \dots \wedge \mathrm{d}x_{i_k} \\ &- \sum_{1 \leq \underline{j} \leq d} \sum_{\underline{i}} \left(\int_0^1 \frac{\partial f_{\underline{j}}}{\partial x_j} (t, x_1, \dots, x_d) \cdot \mathrm{d}t \right) \cdot \mathrm{d}x_j \wedge \mathrm{d}x_{j_1} \wedge \dots \wedge \mathrm{d}x_{j_{k-1}} \,. \end{aligned}$$

This concludes the proof of the lemma.

Step 2: the case when X is C^{∞} -contractible

If X is C^{∞} -contractible, the canonical morphism

$$\Omega^{\bullet}_{\{\bullet\}}(\{\bullet\}) \longrightarrow \Omega^{\bullet}_{X}(X)$$

is a quasi-isomorphism. As has already been proved,

$$C^{ullet}_{\{ullet\},\mathrm{sm}}\longrightarrow C^{ullet}_{X,\mathrm{sm}}$$

is a quasi-isomorphism as well.

So the verification of the theorem in the case when X is contractible is reduced to the case

$$X = \{\bullet\}.$$

In that case, $\Omega^{\bullet}_{\{\bullet\}}\{\bullet\}$ is equal to \mathbb{R} concentrated in degree 0 and

$$\Omega^{\bullet}_{\{\bullet\}}(\{\bullet\}) \longrightarrow C^{\bullet}_{\{\bullet\},\mathrm{sm}}$$

is a quasi-isomorphism.

Step 3: reduction to an open cover

It has already been proved that if

 $X = U \cup V$

is an open cover of a differential manifold X, the sequence

$$0 \longrightarrow \Omega^{\bullet}_{X}(X) \longrightarrow \Omega^{\bullet}_{X}(U) \oplus \Omega^{\bullet}_{X}(V) \longrightarrow \Omega^{\bullet}_{X}(U \cap V) \longrightarrow 0$$

is a short exact sequence.

Using the associated long exact sequence of cohomology

$$\cdots \longrightarrow H^k_{dR}(X) \longrightarrow H^k_{dR}(U) \oplus H^k_{dR}(V) \longrightarrow H^k_{dR}(U \cap V) \longrightarrow H^{k+1}_{dR}(X) \longrightarrow \cdots$$

and its natural morphism to the long exact sequence

$$\cdots \longrightarrow H^{k}(X,\mathbb{R}) \longrightarrow H^{k}(U,\mathbb{R}) \oplus H^{k}(V,\mathbb{R}) \longrightarrow H^{k}(U \cap V,\mathbb{R}) \longrightarrow H^{k+1}(X,\mathbb{R}) \longrightarrow \cdots$$

we can conclude according to the "five lemma":

Corollary:

Suppose $X = U \cup V$

and we already know that the morphisms of cochain complexes

$$\begin{array}{cccc} \Omega^{\bullet}_{X}(U) & \longrightarrow & \mathcal{C}^{\bullet}_{U,\mathrm{sm}} \,, \\ \Omega^{\bullet}_{X}(V) & \longrightarrow & \mathcal{C}^{\bullet}_{V,\mathrm{sm}} \,, \\ \Omega^{\bullet}_{X}(U \cap V) & \longrightarrow & \mathcal{C}^{\bullet}_{U \cap V,\mathrm{sm}} \end{array}$$

are quasi-isomorphisms.

Then we can conclude that the morphism

$$\Omega^{ullet}_X(X) \longrightarrow C^{ullet}_{X,\mathrm{sm}}$$

is also a quasi-isomorphism.

Step 4: the case when *X* has a finite contractible open cover

Recall it means *X* has a finite open cover

 $X = U_1 \cup \cdots \cup U_n$

such that the U_i 's are C^{∞} -contractible as well as all non empty intersections

 $U_{i_1}\cap\cdots\cap U_{i_m}$.

The proof of the theorem in that case is by induction on *n*, using Step 2 and the corollary of Step 3.

Remark:

One can prove that any compact differential manifold admits such a finite contractible open cover.

De Rham cohomology with compact support

Definition:

Let (X, \mathcal{O}_X) = ringed space, $\mathcal{M} = \mathcal{O}_X$ -Module on X.

- (i) The support of a section $m \in \mathcal{M}(X)$ is the smallest closed subset Z of X such that the restriction of m to the open subset X Z is 0.
- (ii) The submodule of

$$\mathcal{M}(\boldsymbol{X}) = \Gamma(\boldsymbol{X}, \mathcal{M})$$

consisting of sections m whose support is compact is denoted

 $\Gamma_{c}(X, \mathcal{M})$

and called the $\mathcal{O}_X(X)$ -module of sections of \mathcal{M} with compact support.

Remark: Of course, if *X* is compact, we always have

 $\Gamma_{c}(X, \mathcal{M}) = \Gamma(X, \mathcal{M})$.

Remarks:

(i) For any morphism of \mathcal{O}_X -Modules

the morphism

$$\mathcal{M}_1 \longrightarrow \mathcal{M}_2 \,,$$

$$\Gamma(X, \mathcal{M}_1) \longrightarrow \Gamma(X, \mathcal{M}_2)$$

restricts to a morphism

$$\Gamma_{c}(X, \mathcal{M}_{1}) \longrightarrow \Gamma_{c}(X, \mathcal{M}_{2})$$

as any closed subspace of a compact subspace is compact.

(ii) Suppose any compact subspace of X is closed (which is true in particular if X is Hausdorff).

Then for any \mathcal{O}_X -Module \mathcal{M} and any open subsets

 $U_1 \subset U_2 \subset X$,

there is a natural morphism of $\mathcal{O}_X(U_2)$ -modules

$$\Gamma_{c}(U_{1},\mathcal{M}) \longrightarrow \Gamma_{c}(U_{2},\mathcal{M}).$$

It associates to any section

 $m \in \Gamma_c(U_1, \mathcal{M})$ with compact support $Z \subset U_1$

the unique section of $\Gamma_c(U_2, \mathcal{M})$ whose restriction to U_1 is *m* and whose restriction to $U_2 - Z$ is 0.

Definition:

Let $(X, \mathcal{O}_X) \xrightarrow{f} (S, \mathcal{O}_S)$

= morphism of ringed spaces.

The De Rham cohomology with compact support of X over S is defined as the family of cohomology spaces

$$H^k_{dR,c}(X/S), \qquad k\in\mathbb{N}\,,$$

of the subcomplex

$$\Gamma_{c}(X, \Omega^{\bullet}_{X/S})$$

of the De Rham complex

$$\Gamma(X,\Omega^{\bullet}_{X/S}) = \Omega^{\bullet}_{X/S}(X).$$

Remarks:

(i) There are induced morphisms

$$H^k_{dR,c}(X/S) \longrightarrow H^k_{dR}(X/S), \quad k \in \mathbb{N}.$$

(ii) If X is Hausdorff, there is a natural morphism of complexes for any open subset U of X $\Gamma_c(U, \Omega^{\bullet}_{X/S}) \longrightarrow \Gamma_c(X, \Omega^{\bullet}_{X/S})$

and so induced morphisms

$$H^k_{dR,c}(U/S) \longrightarrow H^k_{dR,c}(X/S)$$

O. Caramello & L. Lafforgue

The ring structure of De Rham cohomology

Lemma:

Let $(X, \mathcal{O}_X) \xrightarrow{f} (S, \mathcal{O}_S)$ = morphism of ringed spaces. Then the operation

$$(\omega, \omega') \longmapsto \omega \wedge \omega'$$

defines morphisms of sheaves

$$\Omega^{k}_{X/S} imes \Omega^{k'}_{X/S} \longrightarrow \Omega^{k+k'}_{X/S}$$

which verify the following properties:

- they are bilinear with respect to $f^*\mathcal{O}_S$,
- they are associative,
- they verify the commutation rule

$$\omega' \wedge \omega = (-1)^{kk'} \cdot \omega \wedge \omega',$$

• they verify the rule of differentiation

$$\mathbf{d}(\boldsymbol{\omega} \wedge \boldsymbol{\omega}') = (\mathbf{d}\boldsymbol{\omega}) \wedge \boldsymbol{\omega}' + (-\mathbf{1})^{k} \boldsymbol{\omega} \wedge (\mathbf{d}\boldsymbol{\omega}'),$$

 the support of ω ∧ ω' is contained in the intersection of the supports of ω and ω'.

Corollary:

In the same context, there are natural bilinear morphisms

$$\begin{array}{cccc} (\omega, \omega') &\longmapsto & \omega \wedge \omega' \\ H^k_{dR}(X/S) \times H^{k'}_{dR}(X/S) & \longrightarrow & H^{k+k'}_{dR}(X/S) \,, \\ H^k_{dR,c}(X/S) \times H^{k'}_{dR}(X/S) & \longrightarrow & H^{k+k'}_{dR,c}(X/S) \,, \\ H^k_{dR}(X/S) \times H^{k'}_{dR,c}(X/S) & \longrightarrow & H^{k+k'}_{dR,c}(X/S) \,, \\ H^k_{dR,c}(X/S) \times H^{k'}_{dR,c}(X/S) & \longrightarrow & H^{k+k'}_{dR,c}(X/S) \,. \end{array}$$

They are associative and verify the commutation rule

$$\omega' \wedge \omega = (-1)^{kk'} \cdot \omega \wedge \omega'.$$

Remark:

This applies in particular to differential manifolds X

(considered over the point manifold $\{\bullet\}$).

We can associate to X its De Rham cohomology spaces with compact support

$$H^k_{dR,c}(X), \qquad k \in \mathbb{N}$$

together with the morphisms $H^k_{dR,c}(X) \to H^k_{dR}(X)$ and the product operations $(\omega, \omega') \mapsto \omega \wedge \omega'$ as above.

Proposition:

The De Rham cohomology with compact support of the differential variety \mathbb{R}^d is

$$\mathcal{H}^k_{dR,c}(\mathbb{R}^d) = egin{cases} \mathbb{R} & ext{if } k = d \,, \ 0 & ext{otherwise.} \end{cases}$$

Proof:

Let's consider the sphere of dimension d

$$X = S^{d} = \{(t_0, t_1, \dots, t_d) \in \mathbb{R}^{d+1} \mid t_0^2 + t_1^2 + \dots + t_d^2 = 1\}.$$

We already know that its De Rham cohomology is

$$H_{dR}^{k}(X) = H^{k}(X, \mathbb{R}) = \begin{cases} \mathbb{R} & \text{if } k = 0 \text{ or } k = d \\ 0 & \text{if } k \neq 0, d \end{cases}.$$

We observe that, if *P* is a point of $X = S^d$

 $U = X - \{P\}$ is diffeomorphic to \mathbb{R}^d .

Let's choose a sequence of open neighborhoods

 U_n of P in X, $n \in \mathbb{N}$,

such that

- for any $n, \overline{U_{n+1}} \subset U_n,$
- the intersection $\bigcap_{n\in\mathbb{N}} U_n$ is $\{P\}$,
- each U_n is diffeomorphic to a ball of \mathbb{R}^d .

Then we have a short exact sequence of complexes

$$0 \longrightarrow \Gamma_{c}(U, \Omega_{X}^{\bullet}) \longrightarrow \Gamma(X, \Omega_{X}^{\bullet}) \longrightarrow \varinjlim_{n} \Gamma(U_{n}, \Omega_{X}^{\bullet}) \longrightarrow 0.$$

Indeed, for any element ω of some $\Gamma(U_n, \Omega_X^k)$, there exists an element ω' of $\Gamma(X, \Omega_X^k)$ which coincides with ω on some $U_{n'}, n' > n$. As the functor \varinjlim_n respects exact sequences, the cohomology spaces of the complex $\varinjlim_n \Gamma(U_n, \Omega_X^{\bullet})$ are the colimits

$$\varinjlim_n H^k_{dR}(U_n) = \begin{cases} \mathbb{R} & \text{if } k = 0, \\ 0 & \text{if } k \neq 0. \end{cases}$$

Furthermore, the morphism

$$H^{\circ}_{dR}(X) \longrightarrow \varinjlim_{n} H^{\circ}_{dR}(U_{n})$$

identifies with the identity morphism

 $\mathbb{R} \longrightarrow \mathbb{R}$.

So, the long exact sequence of cohomology associated to our short exact sequence of complexes yields

$$H^k_{dR,c}(U) = \begin{cases} \mathbb{R} & \text{if } k = d, \\ 0 & \text{otherwise.} \end{cases}$$

For the computation of De Rham cohomology with compact support, we can use:

Lemma:

Let X = differential manifold with an open cover $X = U \cup V$. Then the complex

 $0 \longrightarrow \Gamma_{c}(U \cap V, \Omega_{X}^{\bullet}) \longrightarrow \Gamma_{c}(U, \Omega_{X}^{\bullet}) \oplus \Gamma_{c}(V, \Omega_{X}^{\bullet}) \longrightarrow \Gamma_{c}(X, \Omega_{X}^{\bullet}) \longrightarrow 0$

is a short exact sequence of complexes, and there is an associated long exact sequence of cohomology:

$$\cdots \to H^{k}_{dR,c}(U \cap V) \to H^{k}_{dR,c}(U) \oplus H^{k}_{dR,c}(V) \to H^{k}_{dR,c}(X) \to H^{k+1}_{dR,c}(U \cap V) \to \cdots$$

Proof:

Consider a partition of unity $1 = \varphi_U + \varphi_V$ where φ_U, φ_V are C^{∞} functions whose supports are contained in U and V. Then, any element $\omega \in \Gamma_c(X, \Omega_X^k)$ can be written

$$\omega = \varphi_U \cdot \omega + \varphi_V \cdot \omega$$

with

$$\varphi_U \cdot \omega \in \Gamma_c(U, \Omega_X^k)$$
 and $\varphi_V \cdot \omega \in \Gamma_c(V, \Omega_X^k)$.

Corollary:

Let X = differential manifold which can be written as a finite union

$$X = U_1 \cup \cdots \cup U_n$$

of open subsets U_1, \ldots, U_n which are diffeomorphic to \mathbb{R}^d (or, equivalently, to balls of \mathbb{R}^d) as well as their intersections

 $U_{i_1}\cap\cdots\cap U_{i_m}$.

Then the De Rham cohomology spaces with compact support

 $H^k_{dR,c}(X)$

are finite dimensional.

Remark:

This corollary applies in particular to any compact differential manifold.

The Poincaré pairing

Lemma:

Let X = oriented differential manifold of dimension d. Then the integration form

$$egin{array}{cccc} & G_c(X,\Omega^d_X) & \longrightarrow & \mathbb{R}\,, \ & \omega & \longmapsto & \int_X \omega \end{array}$$

defines a linear map

 $H^d_{dR,c}(X) \longrightarrow \mathbb{R}$.

Proof:

If $\omega \in \Gamma_c(X, \Omega^d_X)$ can be written

$$\omega = d\omega'$$
 with $\omega' \in \Gamma_c(X, \Omega_X^{d-1})$,

then Stokes' formula implies

$$\int_X \omega = 0$$

as X has no boundary.

Corollary:

Let X = oriented differential manifold of dimension d. Then the composition of the product

$$\begin{array}{cccc} H^k_{d\mathsf{R},c}(X) \times H^{d-k}_{d\mathsf{R}}(X) & \longrightarrow & H^d_{d\mathsf{R},c}(X) \,, \\ (\omega, \omega') & \longmapsto & \omega \wedge \omega' \end{array}$$

for any $k \in \{0, 1, \dots, d\}$ and of the integration form

$$H^d_{dR,c}(X) \longrightarrow \mathbb{R}$$

yields a bilinear pairing

$$H^k_{dR,c}(X) \times H^{d-k}_{dR}(X) \longrightarrow \mathbb{R}$$
.

The Poincaré duality

Theorem:

Let X = oriented differential manifold of dimension d. Then, for any k, the pairing

$$\begin{array}{ccc} H^k_{dR,c}(X) \times H^{d-k}_{dR}(X) & \longrightarrow & \mathbb{R} \,, \\ (\omega, \omega') & \longmapsto & \int_{\mathbb{R}} \omega \wedge \omega' \end{array}$$

induces an isomorphism

$$H^{d-k}_{dR}(X) \xrightarrow{\sim} H^k_{dR,c}(X)^{\vee} = \operatorname{Hom}(H^k_{dR,c}(X), \mathbb{R}).$$

Remark:

If the De Rham cohomology spaces of X are finite-dimensional, in particular if X has a finite C^{∞} -contractible open cover, the morphisms

$$H^k_{dR,c}(X) \longrightarrow H^{d-k}_{dR}(X)^{\vee} = \operatorname{Hom}(H^{d-k}_{dR}(X),\mathbb{R})$$

are also isomorphisms.

Remarks:

(i) The theorem applies in particular

to any oriented differential manifold *X* of dimension *d* which is compact.

In that case, we have perfect pairings

 $H^k_{dR}(X) \times H^{d-k}_{dR}(X) \longrightarrow \mathbb{R}$

which means in particular that the spaces

 $H^k_{dR}(X) = H^k(X, \mathbb{R})$ and

$$H^{d-k}_{dR}(X) = H^{d-k}(X, \mathbb{R})$$

always have the same dimension.

(ii) Combining this theorem with the de Rham theorem, we get that, for any differential manifold X, De Rham cohomology with compact support

 $H^k_{dR,c}(X)$

identifies with singular homology

$$H_{d-k}(X,\mathbb{R})$$
.

Partial proof of the theorem:

Suppose X can be written as a finite union

$$X = U_1 \cup \cdots \cup U_n$$

of open subsets U_1, \ldots, U_n which are diffeomorphic to \mathbb{R}^d as well as their intersections $U_1 \cap \cdots \cap U_{i_n}$.

Then one can prove by induction on *n* that X verifies Poincaré duality.

If n = 1, the result is already known as

$$\mathcal{H}_{dR}^{k}(\mathbb{R}^{d}) = \begin{cases} \mathbb{R} & \text{if } k = 0, \\ 0 & \text{if } k \neq 0, \end{cases}$$

and

$$H_{dR,c}^{k}(\mathbb{R}^{d}) = \begin{cases} \mathbb{R} & \text{if } k = d, \\ 0 & \text{if } k \neq d. \end{cases}$$

If $n \ge 2$, write

$$U=U_1\cup\cdots\cup U_{n-1}$$

and

We can suppose the result is already known for U, V and $U \cap V$.

 $V = U_n$.

The Poincaré pairing induces a morphism of long exact sequences:

The conclusion follows from the "five lemma".

The cohomology class of a submanifold

Definition: Let X = differential manifold of dimension d. A closed submanifold of X of codimension k is a closed subspace

$$Y \hookrightarrow X$$

such that, for any point $y \in Y$, there exists an open neighborhood U of y in Xand a diffeomorphism to a ball of \mathbb{R}^d

$$U \xrightarrow{\sim} B = \{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid x_1^2 + \cdots + x_d^2 < 1\}$$

sending $Y \cap U$ to $B \cap \{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid x_1 = 0, \ldots, x_k = 0\}.$

Remark:

Equivalently, a closed subset $Y \subset X$ is a submanifold of codimension *d* if, in an open neighborhood $U \subset X$ of any point $y \in Y$, it can be defined by *k* equations

$$f_1=0,\ldots,f_k=0$$

where $f_1, \ldots, f_k : U \to \mathbb{R}$ are C^{∞} functions whose differentials are linearly independent at *y*.

Definition:

Let X = oriented differential manifold of dimension d,

 $(Y \stackrel{i}{\hookrightarrow} X) =$ closed submanifold of X endowed with an orientation.

The cohomology class of Y is the unique element

 $\operatorname{cl}_Y \in H^k_{dR}(X)$

such that, for any differential form with compact support

 $\omega \in \Gamma_{c}(X, \Omega_{X}^{d-k})$ verifying $d\omega = 0$,

we have

$$\int_X \mathrm{cl}_Y \wedge \omega = \int_Y i^* \omega \,.$$

Remark:

If $\omega \in \Gamma(X, \Omega_X^{d-k})$ has compact support, then $i^*\omega \in \Gamma(Y, \Omega_Y^{d-k})$ also has compact support and $\int_Y i^*\omega$ is well defined. This defines a linear form on $H^{d-k}_{dR,c}(X)$ which, by Poincaré duality, is represented by a unique element $\operatorname{cl}_Y \in H^k_{dR}(X)$.

Definition:

Let X = differential manifold of dimension d.

Two closed submanifolds

 $Y \hookrightarrow X$ of codimension k,

 $Y' \hookrightarrow X$ of codimension k',

are said to intersect transversely if, for any point $y \in Y$, there exists an open neighborhood of y in X and a diffeomorphism to a ball of \mathbb{R}^d

$$U \xrightarrow{\sim} B = \{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid x_1^2 + \cdots + x_d^2 < 1\}$$

sending $Y \cap U$ to $B \cap \{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid x_1 = 0, \ldots, x_k = 0\}$ and $Y' \cap U$ to $B' \cap \{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid x_{k+1} = 0, \ldots, x_{k+k'} = 0\}.$

Remark:

Equivalently, Y and Y' intersect transversely if, in an open neigborhood $U \subset X$ of any point $y \in Y \cap Y'$, Y and Y' can be defined by equations $f_1 = 0, \dots, f_k = 0$ and $f_{k+1} = 0, \dots, f_{k+k'} = 0$

where $f_1, \ldots, f_{k+k'}: U \to \mathbb{R}$ are C^{∞} functions whose differentials are linearly independent at *y*.

Lemma: Let X = differential manifold of dimension d,

Y, Y' = two closed submanifolds of codimensions k, k'which intersect transversely.

Suppose X and the closed submanifolds $Y, Y', Y \cap Y'$ are endowed with orientations.

At any element $y \in Y \cap Y'$, choose local coordinates

 x_1,\ldots,x_d of X

such that Y and Y' are respectively defined by

$$x_1 = 0, \dots, x_k = 0$$

 $x_{k+1} = 0, \dots, x_{k+k'} = 0.$

Define an "intersection sign"

and

sign(y)

as the product of the signs of the coordinate systems

$$x_1, \dots, x_d \quad \text{of} \quad X,$$

$$x_{k+1}, \dots, x_d \quad \text{of} \quad Y,$$

$$x_1, \dots, x_k, x_{k+k'+1}, \dots, x_d \quad \text{of} \quad Y'$$

$$x_{k+k'+1}, \dots, x_d \quad \text{of} \quad Y \cap Y'$$

with respect to the chosen orientations of $X, Y, Y', Y \cap Y'$. Then

(i) sign(y) doesn't depend on the choice of x_1, \ldots, x_d ,

(ii) it is locally constant on $Y \cap Y'$.

Proof:

(i) Let's consider another system of coordinates y_1, \ldots, y_d verifying the same conditions in a neighborhood of y.

At y, the diffeomorphism of change of coordinates has a differential matrix of the form

(A)	0	0 \
(A (*	В	0
/*	*	$\begin{pmatrix} 0\\0\\C \end{pmatrix}$

where *A*, *B*, *C* are square matrices of ranks k, k' and d - k - k'. The corresponding determinants are

 $\begin{array}{l} \det(A) \cdot \det(B) \cdot \det(C) \\ \det(B) \cdot \det(C) \\ \det(A) \cdot \det(C) \\ \det(C) \\ \det(C) \end{array}$

for the change of coordinates of X, for the change of coordinates of Y, for the change of coordinates of Y', for the change of coordinates of $Y \cap Y'$.

Their product is

$$\det(A)^2 \cdot \det(B)^2 \cdot \det(C)^4$$

whose sign is always +1.

(ii) is an obvious consequence of (i) and the definition of sign(y).

Theorem:

Let X = oriented differential manifold of dimension d,

Y, Y' = closed submanifolds of X which intersect transversely.

Suppose Y, Y' and $Y \cap Y'$ are endowed with orientations. Decompose $Y \cap Y'$ in connected components

$$Y \cap Y' = \coprod_i Y_i$$

and associate to any connected component Y_i the intersection sign

 $sign(Y_i)$

defined by the previous lemma.

Then we have the formula

$$\mathrm{cl}_{\mathbf{Y}} \wedge \mathrm{cl}_{\mathbf{Y}'} = \sum_{i} \mathrm{sign}(\mathbf{Y}_{i}) \cdot \mathrm{cl}_{\mathbf{Y}_{i}}$$

in $H^{k+k'}_{dB}(X)$.

Sketch of proof of the theorem:

Step 1: Reduction to a pull-back formula

Denoting $i_Y : Y \hookrightarrow X$, we have for any $\omega \in H^{k+k'}_{dR,c}(X)$ $\int \operatorname{cl}_Y \wedge \operatorname{cl}_{Y'} \wedge \omega = \int_Y i^*_Y(\operatorname{cl}_{Y'}) \wedge i^*_Y(\omega) \,.$

So we just have to prove that the pull-back

$$i_Y^*(\operatorname{cl}_{Y'}) \in H^{k'}_{dR}(Y)$$

is equal to the sum

 $\sum_{i} \operatorname{sign}(Y_{i}) \cdot \operatorname{cl}_{Y_{i}}^{Y}$

where, for any *i*, $cl_{Y_i}^{Y}$ is the cohomology class of

 $Y_i \hookrightarrow Y$

in $H_{dR}^{k'}(Y)$.

Step 2: Lifting to relative cohomology

We are going to lift the class

$$\mathrm{cl}_{\mathsf{Y}'}\in H^{k'}_{dR}(X)$$

to a refined class

$$\operatorname{cl}_{\mathsf{Y}'} \in H^{k'}_{d\mathsf{R}}(\mathsf{X},\mathsf{Y}')$$

in a "relative cohomology space" $H^k_{dR}(X, Y')$ where it can be computed locally. For this we need the following general definition:

Definition:

For any morphism of cochain [resp. chain] complexes,

$$A^{\bullet} \xrightarrow{u} B^{\bullet}$$
 [resp. $A_{\bullet} \longrightarrow B_{\bullet}$],

the cone of *u* is the cochain [resp. chain] complex

$$C_u^{\bullet}$$
 [resp. C_{\bullet}^u]

defined by

$$C_u^k = A^k \oplus B^{k-1}$$
 [resp. $C_k^u = A_k \oplus B_{k+1}$]

and the differentials

$$\begin{pmatrix} d & 0 \\ u_k & -d \end{pmatrix}$$

Remarks:

(i) If C^{\bullet} is the cone of $A^{\bullet} \xrightarrow{u} B^{\bullet}$ and $B[-1]^{\bullet}$ is defined by $B[-1]^{k} = B^{k-1}$ with differentials -d, the canonical short exact sequence of complexes

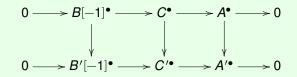
$$0 \longrightarrow B[-1]^{\bullet} \longrightarrow C^{\bullet} \longrightarrow A^{\bullet} \longrightarrow 0$$

yields a long exact sequence of cohomology:

$$\cdots \longrightarrow H^{k-1}(B^{\bullet}) \longrightarrow H^k(C^{\bullet}) \longrightarrow H^k(A^{\bullet}) \xrightarrow{u} H^k(B^{\bullet}) \longrightarrow \cdots$$

(ii) Any commutative square of complexes

yields a commutative diagram



if $C^{\bullet}, C'^{\bullet}$ are the cones of u and u'.

According to the "five lemma",

$$C^{ullet} \longrightarrow C'^{ullet}$$

is a quasi-isomorphism if $A^{\bullet} \to A'^{\bullet}$ and $B^{\bullet} \to B'^{\bullet}$ are quasi-isomorphisms.

Definition: Let Z = closed subset of X = differential manifold of dimension d.

(i) Let $\Gamma(X, Z, \Omega_X^{\bullet})$ be the cone of the morphism

 $\Omega^{\bullet}_{X}(X) \longrightarrow \Omega^{\bullet}_{X}(X-Z)$

and $H_{dR}^k(X, Z)$ its cohomology spaces. (ii) Let $\Gamma_c(X, Z, \Omega_X^{\bullet})$ be the cone of the morphism

 $\Gamma_{c}(X-Z,\Omega_{X}^{\bullet})\longrightarrow \Gamma_{c}(X,\Omega_{X}^{\bullet})$

and $H_{dR,c}^k(X,Z)$ its cohomology spaces.

Remark: According to Stokes' formula, we have for any differential form ω of degree k on X or X - Z and any differential form ω' of degree d - k - 1 with compact support

$$\int_{X} \mathbf{d}(\boldsymbol{\omega} \wedge \boldsymbol{\omega}') = \mathbf{0}$$

and so

$$\int_X \mathrm{d}\omega \wedge \omega' = (-1)^{k-1} \cdot \int_X \omega \wedge \mathrm{d}\omega' \,.$$

This implies:

Lemma:

For any k, integration of forms of degree d on X and Z - X defines isomorphisms

$$H^{k}_{dR}(X,Z) \xrightarrow{\sim} H^{d-k}_{dR,c}(X,Z)^{\vee} = \operatorname{Hom}(H^{d-k}_{dR,c}(X,Z),\mathbb{R})$$

which lift to a quasi-isomorphism of cochain diagrams

$$\begin{array}{ccc} \Gamma(X,Z,\Omega_X^{\bullet}) & \longrightarrow & \Gamma_c(X,Z,\Omega_X^{\bullet})^{\vee}[d] \\ & \parallel \\ & & \text{Hom}(\Gamma_c(X,Z,\Omega_X^{\bullet}),\mathbb{R})[d] \end{array}$$

induced by the commutative square

where

- the differentials of the bottom row have been modified by factors $(-1)^{d-k-1}$,
- the two vertical arrows are quasi-isomorphisms.

Remark:

For any complex *A*, A[d] denotes the complex whose indices have been shifted by $k \mapsto k + d$ and whose differentials have been modified by the factor $(-1)^d$.

Corollary: Suppose Z is an oriented submanifold of X of codimension k. Then the linear form

$$\Gamma_{c}(X, Z, \Omega_{X}^{\bullet})^{d-k} = \Gamma_{c}(X, \Omega_{X}^{d-k}) \oplus \Gamma_{c}(X - Z, \Omega_{X}^{d-k+1}) \longrightarrow \mathbb{R}$$
$$(\omega_{1}, \omega_{2}) \longmapsto \int_{Z} i_{Z}^{*}(\omega_{1})$$

defines an element

$$\mathrm{cl}_Y \in H^k_{dR}(X,Z) = H^{d-k}_{dR,c}(X,Z)^{\vee}$$

which lifts the already defined cohomology class

$$\operatorname{cl}_Y \in H^k_{dR}(X) = H^{d-k}_{dR,c}(X)^{\vee}$$
.

Proof: Indeed, the linear form

$$(\omega_1, \omega_2) \longmapsto \int_Z i_Z^*(\omega_1)$$

vanishes on all pairs (ω_1, ω_2) which are in the image of

$$\begin{split} \Gamma_{c}(X,\Omega_{X}^{d-k-1}) \oplus \Gamma_{c}(X-Z,\Omega_{X}^{d-k}) & \longrightarrow & \Gamma_{c}(X,\Omega_{X}^{d-k}) \oplus \Gamma_{c}(X-Z,\Omega_{X}^{d-k+1}), \\ & (\omega_{1}',\omega_{2}') & \longmapsto & (\mathrm{d}\omega_{1}+\omega_{2}',\mathrm{d}\omega_{2}') \,. \end{split}$$

Step 3: excision

Definition:

Let X = topological space,

Z = closed subspace,

R =coefficient ring for singular (co)homology.

We denote

 $C^{X,Z}_{\bullet}$ [resp. $C^{\bullet}_{X,Z}$]

the cone of the morphism of complexes

$$C^{X-Z}_{\bullet} \longrightarrow C^X_{\bullet}$$
 [resp. $C^{\bullet}_X \longrightarrow C^{\bullet}_{X-Z}$]
 $H_k(X, Z, R)$ [resp. $H^k(X, Z, R)$]

and

their associated (co)-homology invariants.

Remark: By definition,

$$C^{\bullet}_{X,Z}$$
 identifies with $\operatorname{Hom}(C^{X,Z}_{\bullet},R)$

and there are induced isomorphisms

$$H^k(X, Z, R) \xrightarrow{\sim} \operatorname{Hom}(H_k(X, Z, R), R)$$

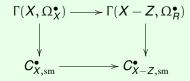
if R is a field.

Remark:

If X =differential manifold,

 $R = \mathbb{R},$

the commutative square



whose vertical arrows are quasi-isomorphisms (according to De Rham's theorem) induces a quasi-isomorphism

$$\Gamma(X, Z, \Omega^{ullet}_X) \longrightarrow C^{ullet}_{X,Z,\mathrm{sm}} = \text{ cone of } C^{ullet}_{X,\mathrm{sm}} \longrightarrow C^{ullet}_{X-Z,\mathrm{sm}}$$

and so isomorphisms:

$$\begin{array}{ccc} H^k_{dR}(X,Z) & \xrightarrow{\sim} & H^k(X,Z,\mathbb{R}) \\ & & \parallel \\ & & \text{Hom}(H_k(X,Z,\mathbb{R}),\mathbb{R}) \end{array}$$

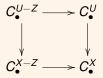
Lemma:

- Let X = topological space,
 - Z = closed subspace,
 - R = coefficient ring,
- and U = open subset of X which contains Z.

Then the morphism of complexes

$$C^{U,Z}_{ullet}\longrightarrow C^{X,Z}_{ullet}$$

induced by the commutative square



is a quasi-isomorphism, inducing identifications

$$H_k(U,Z,R) \xrightarrow{\sim} H_k(X,Z,R)$$
.

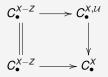
Proof of the lemma: Denote \mathcal{U} the open cover of X by X - Z and U. Recall $C^{X,\mathcal{U}}_{\bullet}$ is the subcomplex of C^X_{\bullet} generated by simplices $\Delta_k \xrightarrow{x} X$ which factorise through X - Z or U, and the morphism

$$C^{X,\mathcal{U}}_{ullet}\longrightarrow C^{X}_{ullet}$$

is a quasi-isomorphism.

$$C^{X,Z,\mathcal{U}}_{ullet} = \text{ cone of } C^{X-Z}_{ullet} \longrightarrow C^{X,\mathcal{U}}_{ullet}.$$

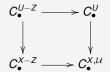
The commutative square



yields a quasi-isomorphism

$$C^{X,Z,\mathcal{U}}_{ullet}\longrightarrow C^{X,Z}_{ullet}$$

and the morphism $C^{U,Z}_{\bullet} \to C^{X,Z}_{\bullet}$ factorises through the morphism $C^{U,Z}_{\bullet} \to C^{X,Z,U}_{\bullet}$ induced by the commutative square:



We observe that the quotient complexes associated to the embeddings

$$egin{array}{ccc} \mathcal{C}^{\mathcal{U}-\mathcal{Z}} & \hookrightarrow & \mathcal{C}^{\mathcal{X}-\mathcal{Z}}, \ \mathcal{C}^{\mathcal{U}} & \hookrightarrow & \mathcal{C}^{\mathcal{X},\mathcal{U}}, \end{array}$$

identify.

This implies that the quotient complex associated to the induced embedding

$$C^{U,Z}_{ullet} \hookrightarrow C^{X,Z,\mathcal{U}}_{ullet}$$

is quasi-isomorphic to 0.

This means that the morphism

$$C^{U,Z}_{ullet}\longrightarrow C^{X,Z,\mathcal{U}}_{ullet}$$

is a quasi-isomorphism.

Corollary of the lemma:

- Let X = differential manifold,
 - Z = closed subset,
 - U = open subset which contains Z.

Then the natural morphism of complexes

$$\Gamma(\boldsymbol{X},\boldsymbol{Z},\boldsymbol{\Omega}^{\bullet}_{\boldsymbol{X}}) \longrightarrow \Gamma(\boldsymbol{U},\boldsymbol{Z},\boldsymbol{\Omega}^{\bullet}_{\boldsymbol{X}})$$

is a quasi-isomorphism, yielding isomorphisms

$$H^k_{dR}(X,Z) \longrightarrow H^k_{dR}(U,Z)$$
.

Step 4: reduction to the case of a vector bundle

Definition:

Let X = differential manifold,

 $(Z \stackrel{i}{\hookrightarrow} X) =$ closed submanifold of codimension *k*.

The normal tangent bundle of Z in X is the vector bundle

 $N_{Z/X}$ over Z

which is associated to the dual of the locally free \mathcal{O}_Z -Module of rank k

 $\operatorname{Ker}(i^*\Omega_X \longrightarrow \Omega_Y)$

or, equivalently, to the locally free \mathcal{O}_Z -Module

$$\mathcal{N}_{Z/X} = \operatorname{Coker}(\Omega_Y^{\vee} \longrightarrow i^* \Omega_X^{\vee}).$$

Remark: Any orientation of *X* induces an orientation of $N_{Z/X}$. If *Z* is also oriented, the fibers of the projection

$$N_{Z/X} \longrightarrow Z$$

are oriented. Locally over *Z*, $N_{Z/X}$ is isomorphic to $Z \times \mathbb{R}^k$ and the orientation of its fibers is induced by an orientation of \mathbb{R}^k .

Proposition:

Let X = differential manifold,

Z = closed submanifold of codimension k,

 $N = N_{Z/X}$ = normal tangent bundle of Z in X

endowed with its 0 section $Z \hookrightarrow N$.

Then:

(i) For any coefficient ring *R*, the relative (co)homology modules

 $H_k(X, Z, R)$ and $H_k(N, Z, R)$

[resp. $H^k(X, Z, R)$ and $H^k(N, Z, R)$]

identify.

(ii) In particular, the relative De Rham cohomology spaces

 $H_{dR}^{k}(X,Z)$ and $H_{dR}^{k}(N,Z)$

identify.

Sketch of proof: One can prove that there exist open neighborhoods U of Z in X (called a tubular neighborhood), V of Z in $N = N_{X/Z}$ and a diffeomorphism $U \xrightarrow{\sim} V$

which tranforms $Z \hookrightarrow X$ into $Z \hookrightarrow V$.

Then the proposition is a consequence of excision.

Step 5: localisation in the case of a vector bundle

Proposition:

- Let Z = differential manifold,
 - N = vector bundle of rank k over Zendowed with its canonical projection $p: N \rightarrow Z$ and its 0 section $Z \hookrightarrow N$,
 - R =coefficient ring.

Then the presheaf on Z

$$\bigcup_{\substack{||\\ open subset of Z}} \longmapsto H^k(p^{-1}(U), p^{-1}(U) \cap Z, R)$$

is a sheaf of *R*-modules which is locally free of rank 1.

Sketch of proof:

If *U* is an open subset of *Z* which is C^{∞} -contractible and such that $p^{-1}(U)$ is isomorphic to $U \times \mathbb{R}^k$, the relative cohomology modules

$$H^i(p^{-1}(U), p^{-1}(U) \cap Z, R)$$

identify with the modules

$$H^i(\mathbb{R}^k, \{0\}, R)$$

We have a long exact equence

 $\longrightarrow H^{i}(\mathbb{R}^{k}, \{0\}, R) \longrightarrow H^{i}(\mathbb{R}^{k}, R) \longrightarrow H^{i}(\mathbb{R}^{k} - \{0\}, R) \longrightarrow H^{i+1}(\mathbb{R}^{k}, \{0\}, R) \longrightarrow \cdots$

where we know

$$\mathcal{H}^{i}(\mathbb{R}^{k}, \mathbf{R}) = \begin{cases} \mathbf{R} & \text{if } i = 0, \\ 0 & \text{if } i \neq 0 \end{cases}$$

and

$$H^{i}(\mathbb{R}^{k} - \{0\}, R) = \begin{cases} R & \text{if } i = 0 \text{ or } i = k - 1, \\ 0 & \text{if } i \neq 0, k - 1 \end{cases}$$

as the sphere S^{k-1} is a homotopy retract of $\mathbb{R}^k - \{0\}$. So we have

$$H^i(\mathbb{R}^k, \{0\}, R) = egin{cases} R & ext{if } i = k\,, \ 0 & ext{otherwise}. \end{cases}$$

Therefore, the sheaf of *R*-modules associated to the presheaf

$$U \longmapsto H^i(p^{-1}(U), p^{-1}(U) \cap Z, R)$$

is 0 if $i \neq k$ and is locally free of rank 1 if i = k.

The conclusion of the proposition follows for general sheaf-theoretic reasons.

Step 6: conclusion of the proof of the proposition:

Let's come back to X, Y, Y' and $Y \cap Y' = \coprod Y_i$.

According to the previous proposition, the formula

$$i_{Y}^{*} \mathrm{cl}_{Y'} = \sum_{i} \mathrm{sign}(Y_{i}) \cdot \mathrm{cl}_{Y_{i}}^{Y}$$

in $H_{dR}^{k'}(Y, Y \cap Y')$ can be checked locally. So we are reduced to the case where

$$\begin{array}{rcl} X = N & = & \mathbb{R}^{k} \times \mathbb{R}^{k'} \times \mathbb{R}^{d-k-k'}, \\ Y & = & \{0\} \times \mathbb{R}^{k'} \times \mathbb{R}^{d-k-k'}, \\ Y' = Z & = & \mathbb{R}^{k} \times \{0\} \times \mathbb{R}^{d-k-k'}, \\ Y \cap Y' & = & \{0\} \times \{0\} \times \mathbb{R}^{d-k-k'}. \end{array}$$

We can suppose that X, Y, Y' and $Y \cap Y'$ are endowed with the orientations deduced from the usual orientations of $\mathbb{R}^k, \mathbb{R}^{k'}, \mathbb{R}^{d-k}$. In that case, the class

$$\mathrm{cl}_{Y'}\in H^{k'}_{dR}(X,Y') \quad ext{with} \quad X=\mathbb{R}^{k'}\times Y'\,,$$

and the class

$$\mathrm{cl}_{Y\cap Y'}^{Y}\in H^{k'}_{dR}(Y,Y\cap Y') \quad \text{with} \quad Y=\mathbb{R}^{k'}\times (Y\cap Y')\,,$$

are deduced by pull-back from the class associated to

$$\{\mathbf{0}\} \hookrightarrow \mathbb{R}^{k'}$$

in $H_{dR}^{k'}(\mathbb{R}^{k'}, \{0\}).$

It is interesting to express this class concretely:

Proposition:

Let's consider the spherical coordinates on $\mathbb{R}^n - \{0\}$ defined by the diffeomorphism

$$egin{array}{rcl}]0,+\infty[imes S^{n-1}&\stackrel{\sim}{\longrightarrow}&\mathbb{R}^n-\{0\}\ &(
ho,u)&\longmapsto&
ho\cdot u\,, \end{array}$$

the invariant volume form ω_S on S^{n-1} and the total volume V of S^{n-1} . The cohomology class of

$$\{\mathbf{0}\} \hookrightarrow \mathbb{R}^n$$
 in $H^n_{dR}(\mathbb{R}^n, \mathbb{R}^n - \{\mathbf{0}\})$

is represented by the closed form

$$(-d\omega, -\omega)$$
 in $\Omega^n_{\mathbb{R}^n}(\mathbb{R}^n) \oplus \Omega^{n-1}_{\mathbb{R}^n}(\mathbb{R}^n - \{\mathbf{0}\})$

with $\omega = V^{-1} \cdot \omega_s$ and $d\omega = 0$.

Proof: For any closed form

we have

$$-\int_{\mathbb{R}^n} f \cdot \mathrm{d}\omega - \int_{\mathbb{R}^n - \{0\}} \mathrm{d}f \wedge \omega = -\int_{\mathbb{R}^n - \{0\}} \mathrm{d}(f \cdot \omega) = \lim_{\rho \mapsto 0} \int_{\rho \cdot S} f \cdot \omega = f(0) \,.$$

O. Caramello & L. Lafforgue

 $(f, \mathrm{d}f) \in \Omega^{\mathbf{0}}_{\mathbb{R}^n, \mathbf{c}}(\mathbb{R}^n) \oplus \Omega^{\mathbf{1}}_{\mathbb{R}^n, \mathbf{c}}(\mathbb{R}^n - \{\mathbf{0}\}),$

Theorem:

Let X = oriented compact differential manifold of dimension d, $f = C^{\infty}$ -map $X \to X$ whose graph $\Gamma_f \hookrightarrow X \times X$ intersects the diagonal $\Gamma_{id} \hookrightarrow X \times X$ transversely.

For any point $x \in X$ such that f(x) = x, denote $\operatorname{sign}_{f}(x) = \operatorname{sign}$ of the intersection of Γ_{f} and Γ_{id} at x.

Then we have

$$\sum_{\substack{x \in X \\ f(x) = x}} \operatorname{sign}_{f}(x) = \sum_{\substack{0 \le k \le d}} (-1)^{k} \cdot \operatorname{Tr}(f^{*}, H^{k}_{dR}(X))$$
$$= \operatorname{Tr}(f^{*}, H^{\bullet}_{dR}(X)).$$

Remarks:

- (i) Even if Γ_f does not intersect Γ_{i_d} transversely, one can prove there exists $q: X \to X$ such that
 - (• f and g are C^{∞} -homotopic,
 - the intersection of Γ_{i_d} and Γ_g is transverse,

and, therefore,

$$\operatorname{Tr}(f, H^{\bullet}_{dR}(X)) = \operatorname{Tr}(g, H^{\bullet}_{dR}(X)) = \sum_{\substack{x \in X \\ g(x) = x}} \operatorname{sign}_{g}(x).$$

(ii) The Euler-Poincaré characteristic of X is

$$\sum_{k} (-1)^{k} \cdot \dim H^{k}_{dR}(X) = \operatorname{Tr}(\operatorname{id}, H^{\bullet}_{dR}(X)).$$

Proof of the theorem: The Lefschetz formula follows from the previous theorem combined with two other results:

- the Künneth formula which expresses the cohomology spaces of a product X × Y in terms of the cohomology spaces of its factors X, Y,
- the computation of the cohomology class of the diagonal

$$\Delta: X \hookrightarrow X \times X$$
.

Step 1: the Künneth formula

Let X, Y = differential manifolds, $X \times Y =$ their product endowed with the projections

 p_1

The formula

$$: X \times Y \longrightarrow X, \quad p_2 : X \times Y \longrightarrow Y.$$

$$(\omega_1, \omega_2) \longmapsto p_1^* \omega_1 \wedge p_2^* \omega_2$$

defines morphisms

$$\Gamma(\boldsymbol{X}, \Omega_{\boldsymbol{X}}^{\boldsymbol{k_1}}) \otimes_{\mathbb{R}} \Gamma(\boldsymbol{Y}, \Omega_{\boldsymbol{Y}}^{\boldsymbol{k_2}}) \longrightarrow \Gamma(\boldsymbol{X} \times \boldsymbol{Y}, \Omega_{\boldsymbol{X} \times \boldsymbol{Y}}^{\boldsymbol{k_1} + \boldsymbol{k_2}})$$

and

$$\Gamma_{\mathcal{C}}(\mathcal{X},\Omega_{\mathcal{X}}^{k_{1}})\otimes_{\mathbb{R}}\Gamma_{\mathcal{C}}(\mathcal{Y},\Omega_{\mathcal{Y}}^{k_{2}})\longrightarrow\Gamma_{\mathcal{C}}(\mathcal{X} imes\mathcal{Y},\Omega_{\mathcal{X} imes\mathcal{Y}}^{k_{1}+k_{2}})$$

such that

$$(\mathrm{d}(p_1^*\omega_1 \wedge p_2^*\omega_2) = p_1^*(\mathrm{d}\omega_1) \wedge p_2^*\omega_2 + (-1)^{k_1} \cdot p_1^*\omega_1 \wedge p_2^*(\mathrm{d}\omega_1).$$

So it induces morphisms

$$H^{k_1}_{dR}(X)\otimes_{\mathbb{R}} H^{k_2}_{dR}(Y) \longrightarrow H^{k_1+k_2}_{dR}(X imes Y)$$

and

$$H^{k_1}_{dR,c}(X)\otimes_{\mathbb{R}} H^{k_2}_{dR,c}(Y) \longrightarrow H^{k_1+k_2}_{dR,c}(X imes Y)$$

Proposition: Let X, Y = differential manifolds.

(i) If X or Y is a finite union

 $U_1 \cup \cdots \cup U_n$

of open subsets which are C^{∞} -contractible as well as their intersections $U_{i_1} \cap \cdots \cap U_{i_m}$, then the morphisms

$$\bigoplus_{k_1+k_2=k} H^{k_1}_{dR}(X) \otimes H^{k_2}_{dR}(Y) \longrightarrow H^k_{dR}(X \times Y)$$

are isomorphisms.

(ii) The morphisms

$$\bigoplus_{k_1+k_2=k} H^{k_1}_{dR,c}(X) \otimes H^{k_2}_{dR,c}(Y) \longrightarrow H^k_{dR,c}(X \times Y)$$

are always isomorphisms.

Proof:

We need the following algebraic lemma:

Lemma:

Let R =commutative field,

A, B = two cochain complexes of R-vector spaces

$$(\cdots \longrightarrow A^{k-1} \longrightarrow A^k \longrightarrow A^{k+1} \longrightarrow \cdots)$$

and

$$(\cdots \longrightarrow B^{k-1} \longrightarrow B^k \longrightarrow B^{k+1} \longrightarrow \cdots)$$

which are 0 in degrees $k \ll 0$.

Let $A \otimes B$ = the complex whose degree k component is

k

$$\bigoplus_{1+k_2=k} A^{k_1} \otimes_R B^{k_2}$$

and whose differential is defined by

k.

$$\begin{array}{rccc} A^{k_1} \otimes_R B^{k_2} & \longrightarrow & (A^{k_1+1} \otimes_R B^{k_2}) \oplus (A^{k_1} \otimes_R B^{k_2+1}) \\ & (a \otimes b) & \longmapsto & (\mathrm{d} a \otimes_R b, (-1)^{k_1} \cdot a \otimes_R \mathrm{d} b) \,. \end{array}$$

Then the natural morphisms

$$\bigoplus_{1+k_2=k} H^{k_1}(A) \otimes_R H^{k_2}(B) \longrightarrow H^k(A \otimes B)$$

are isomorphisms.

Proof of the lemma:

- As the functor ⊗_R is exact, the statement is true if A or B is concentrated in one degree.
- Let's denote m_A and m_B the biggest integers such that

$$A^{k_1} = 0, \ \forall \ k_1 < m_A$$
 and $B^{k_2} = 0, \ \forall \ k_2 < m_B$.

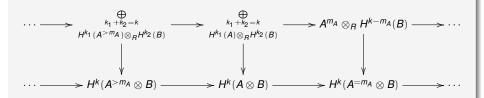
Then the statement is obvious in all degrees $k < m_A + m_B$.

For any *m*, let's denote A^{=m} [resp. A^{>m}] the complex which coincides with A in degree k = m [resp. in degrees k > m] and is 0 elsewhere. Then there are short exact sequences of complexes

$$0 \longrightarrow A^{> m_A} \longrightarrow A \longrightarrow A^{= m_A} \longrightarrow 0,$$

$$0 \longrightarrow A^{> m_A} \otimes B \longrightarrow A \otimes B \longrightarrow A^{= m_A} \otimes B \longrightarrow 0,$$

and an associated morphism of long exact sequences:



- Using the "five lemma", the statement is proved by decreasing induction on m_A if A only has finitely many non zero components.
- The statement for A and B in degree k reduces to the statement for $A/A^{>m}$ and B if $m + m_B > k$.

Proof of the proposition:

(i) According to the lemma, we have to prove that if *X* has the form of the statement $X = U_1 \cup \cdots \cup U_n$, then the morphism of cochain complexes

$$\Gamma(X, \Omega_X^{\bullet}) \otimes_{\mathbb{R}} \Gamma(Y, \Omega_Y^{\bullet}) \longrightarrow \Gamma(X \times Y, \Omega_{X \times Y}^{\bullet})$$

is a quasi-isomorphism.

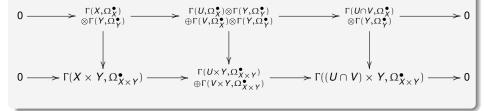
The proof is by induction on *n*.

If n = 1, $X = U_1$ is C^{∞} -contractible, Y is a C^{∞} -retract of $X \times Y$ and the natural morphism

$$\begin{array}{ccc} \mathbb{R} = \Gamma(\{\bullet\}, \Omega_{\{\bullet\}}^{\bullet}) & \longrightarrow & \Gamma(X, \Omega_X^{\bullet}) \,, \\ \Gamma(Y, \Omega_Y^{\bullet}) & \longrightarrow & \Gamma(X \times Y, \Omega_{X \times Y}^{\bullet}) \end{array}$$

are quasi-isomorphisms.

If $n \ge 2$, let's denote $U = U_1 \cup \cdots \cup U_{n-1}$, $V = U_n$ and suppose the result is already know for U, V and $U \cap V$. Then the result for $X = U \cup V$ follows from the "five lemma" applied to the morphism of long exact sequences deduced from the morphism of short exact sequences of complexes:



(ii) If X is diffeomorphic to \mathbb{R}^d and Y is diffeomorphic to $\mathbb{R}^{d'}$,

 $\Gamma_{c}(X, \Omega_{X}^{\bullet}), \Gamma_{c}(Y, \Omega_{Y}^{\bullet})$ and $\Gamma_{c}(X \times Y, \Omega_{X \times Y}^{\bullet})$

are quasi-isomorphic to \mathbb{R} concentrated in degrees d, d', d + d'. The statement of the proposition follows. If

$$\begin{array}{rcl} X & = & U_1 \cup \cdots \cup U_n, \\ Y & = & V_1 \cup \cdots \cup V_{n'}, \end{array}$$

where U_1, \ldots, U_n [resp. $V_1, \ldots, V_{n'}$] are diffeomorphic to some \mathbb{R}^d [resp. $\mathbb{R}^{d'}$] as well as the intersections

$$U_{i_1} \cap \cdots \cap U_{i_m}$$
 [resp. $V_{j_1} \cap \cdots \cap V_{j_{m'}}$],

the statement of the proposition is proved by induction on n and n', using the "five lemma" in the same way as in (i).

In general, let \mathcal{U} and \mathcal{V} be the ordered sets of open subsets

$$U \subset X$$
 $V \subset Y$

which can be written in the above form

$$U = U_1 \cup \cdots \cup U_n$$
 $V = V_1 \cup \cdots \cup V_{n'}$.

One can prove that ${\mathcal U}$ and ${\mathcal V}$ are filtered ordered sets and that

$$X = \varinjlim_{U \in \mathcal{U}} U, \qquad Y = \varinjlim_{V \in \mathcal{V}} V.$$

Then the result follows from the formulas

$$\begin{split} H^{k_1}_{dR,c}(X) &= \varinjlim_{U \in \mathcal{U}} H^{k_1}_{dR,c}(U) \,, \ H^{k_2}_{dR,c}(Y) = \varinjlim_{V \in \mathcal{V}} H^{k_2}_{dR,c}(V) \,, \\ H^{k}_{dR,c}(X \times Y) &= \varinjlim_{U \in \mathcal{U}} H^{k}_{dR,c}(U \times V) \,. \end{split}$$

Step 2: the cohomology class of the diagonal

Proposition:

Let X = oriented compact differential manifold of dimension d. Then the cohomology class

$$\operatorname{cl}_{\Delta} \in H^{d}_{dR}(X \times X) = \bigoplus_{0 \le k \le d} H^{d-k}_{dR}(X) \otimes H^{k}_{dR}(X)$$

of the diagonal submanifold

$$\Delta: X \hookrightarrow X \times X$$

is the sum

$$\sum_{0 \le k \le d} (-1)^k \cdot \sum_i \omega_i^* \otimes \omega_i$$

where, for any degree k,

- the family (ω_i) is a basis of the space $H^k_{dR}(X)$,
- the family (ω^{*}_i) is the dual basis of the space H^{n−k}_{dR}(X) identified to the dual space H^k_{dR}(X)[∨] by the pairing

$$\begin{array}{cccc} H^{d-k}_{dR}(X) \times H^k_{dR}(X) & \longrightarrow & \mathbb{R} \,, \\ (\ell, \omega) & \longmapsto & \int_X \ell \wedge \omega \,. \end{array}$$

Proof of the proposition: For any basis element

$$\omega_{i_1} \otimes \omega_{i_2}^* \in H^k_{dR}(X) \otimes H^{d-k}_{dR}(X) \hookrightarrow H^d_{dR}(X imes X) \,,$$

$$\int_{X\times X} \mathrm{cl}_{\Delta} \wedge (\omega_{i_1}\otimes \omega_{i_2}^*) = \int_X \omega_{i_1} \wedge \omega_{i_2}^*$$

while

$$\int_{X \times X} \left(\sum_{k'} (-1)^{k'} \cdot \sum_{i} \omega_{i}^{*} \otimes \omega_{i} \right) \wedge (\omega_{i_{1}} \otimes \omega_{i_{2}}^{*})$$

$$= \sum_{i} \left(\int_{X} \omega_{i}^{*} \wedge \omega_{i_{1}} \right) \cdot \left(\int_{X} \omega_{i} \wedge \omega_{i_{2}}^{*} \right)$$

$$= \sum_{i} \left(\int_{X} \omega_{i_{1}} \wedge \omega_{i}^{*} \right) \cdot \left(\int_{X} \omega_{i_{2}}^{*} \wedge \omega_{i} \right)$$

$$= \int_{X} \omega_{i_{1}} \wedge \omega_{i_{2}}^{*}.$$

Step 3: conclusion of the proof of the Lefschetz formula

We have

$$\sum_{\substack{x \in X \\ (x) = x}} \operatorname{sign}_{f}(x) = \int_{X \times X} \operatorname{cl}_{f} \cdot \operatorname{cl}_{\Delta}$$
$$= \int_{X} (\operatorname{id}_{X}, f)^{*} \operatorname{cl}_{\Delta}$$

by definition of the cohomology class cl_f of $X \xrightarrow{(id_X, t)} X \times X$. Pulling back the formula for cl_Δ , we get

$$\begin{split} \int_{X} (\mathrm{id}_{X}, f)^{*} \mathrm{cl}_{\Delta} &= \sum_{\substack{0 \leq k \leq d \\ 0 \leq k \leq d}} (-1)^{k} \cdot \sum_{i} \int_{X} \omega_{i}^{*} \wedge f^{*} \omega_{i} \\ &= \sum_{\substack{0 \leq k \leq d \\ 0 \leq k \leq d}} (-1)^{k} \cdot \mathrm{Tr}(f^{*}, H_{dR}^{k}(X)) \,. \end{split}$$