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Plan of the course

• Motivation

• Topos-theoretic background

• Toposes as ‘bridges’

• Functors inducing morphisms of toposes

• Relative toposes (joint work with Riccardo Zanfa)

- Relative presheaf toposes
- The fundamental adjunction
- Relative sheaf toposes

• A problem of Grothendieck
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Relativity techniques

• Broadly speaking, in Mathematics the relativization method
consists in trying to state notions and results in terms of
morphisms, rather than objects, of a given category, so that
they can be ‘relativized’ to an arbitrary base object.

• One works in the new, relative universe as it were the
‘classical’ one, and then interprets the obtained results from
the point of view of the original universe. This process is
usually called externalization.

• Relativity techniques can be thought as general ‘change of
base techniques’, allowing one to choose the universe
relatively to which one works according to one’s needs.

• The relativity method has been pionneered by Grothendieck,
in particular for schemes, in his categorical refoundation of
Algebraic Geometry, and have played a key role in his work.

• We aim for a similar set of tools for toposes, that is, for an
efficient formalism for doing topos theory over an arbitrary
base topos.
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Topos theory over an arbitrary base topos

Our new foundations for relative topos theory are based on stacks
(and, more generally, fibrations and indexed categories).

The approach of category theorists (Lawvere, Diaconescu,
Johnstone, etc.) to this subject is chiefly based on the notions of
internal category and of internal site.

The problem with these notions is that they are too rigid to
naturally capture relative topos-theoretic phenomena, as well as
for making computations and formalizing ‘parametric reasoning’.

We shall resort to the more general and technically flexible notion
of stack, developing the point of view originally introduced by J.
Giraud in his paper Classifying topos.
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Sheaves on a topological space
• Categorically, a sheaf on a topological space X can be

defined as a functor O(X )op → Set which satisfies certain
conditions expressible in categorical language entirely in
terms of the poset category O(X ) and of the usual notion of
covering on it.

• More precisely, a presheaf F : O(X )op → Set on a topological
space X is a sheaf if and only if the canonical arrow

F(U)→
∏
i∈I

F(Ui )

given by s → (s|Ui | i ∈ I) be the equalizer of the two arrows∏
i∈I

F(Ui )→
∏
i,j∈I

F(Ui ∩ Uj )

given by (si → (si |Ui∩Uj )) and (si → (sj |Ui∩Uj )).

This paves the way for a significant categorical generalization of
the notion of sheaf, leading to the notion of Grothendieck topos.
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Sieves
In order to ‘categorify’ the notion of sheaf of a topological space, the
first step is to introduce an abstract notion of covering (of an object
by a family of arrows to it) in a category.

Definition
Given a category C and an object c ∈ Ob(C), a sieve S in C on c is a
collection of arrows in C with codomain c such that

f ∈ S ⇒ f ◦ g ∈ S

whenever this composition makes sense.

Remark
For any covering family F = {Ui ⊆ U | i ∈ I}, giving a family of
elements si ∈ F(Ui ) such that for any i , j ∈ I si |Ui∩Uj = sj |Ui∩Uj is
equivalent to giving a family of elements {sW ∈ F(W ) |W ∈ SF}
such that for any open set W ′ ⊆W, sW |W ′ = sW ′ , where SF is the
sieve generated by F.

If S is a sieve on c and h : d → c is any arrow to c, then

h∗(S) := {g | cod(g) = d , h ◦ g ∈ S}

is a sieve on d . 6 / 55
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Grothendieck topologies
Definition
• A Grothendieck topology on a category C is a function J which

assigns to each object c of C a collection J(c) of sieves on c in
such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c} is
in J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such that
f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are
said to be J-covering.

• A site (resp. small site) is a pair (C, J) where C is a category
(resp. a small category) and J is a Grothendieck topology on
C.

• A site (C, J) is said to be small-generated if C is locally small
and has a small J-dense subcategory (that is, a category D
such that every object of C admits a J-covering sieve
generated by arrows whose domains lie in D, and for every
arrow f : d → c in C where d lies in D the family of arrows
g : dom(g)→ d such that f ◦ g lies in D generates a
J-covering sieve).

7 / 55



Introduction to
relative topos

theory

Olivia Caramello

Motivation

Topos-theoretic
background
Sheaves on a
topological space

Grothendieck
toposes

Geometric
morphisms

Stacks

Toposes as
‘bridges’
The ‘bridge’
technique

Morphisms and
comorphisms of sites

Continuous functors

Relative toposes
Operations on stacks

Relative ‘presheaf
toposes’

Relative sheaf
toposes

A question of
Grothendieck

Future directions

Examples of Grothendieck topologies
• For any (small) category C, the trivial topology on C is the

Grothendieck topology in which the only sieve covering an
object c is the maximal sieve Mc .

• If X is a topological space, the usual notion of covering in
Topology gives rise to the following Grothendieck topology
JO(X) on the poset category O(X ): for a sieve
S = {Ui ↪→ U | i ∈ I} on U ∈ Ob(O(X )),

S ∈ JO(X)(U) if and only if ∪
i∈I

Ui = U .

• If C satisfies the right Ore condition i.e. the property that any
two arrows f : d → c and g : e→ c with a common codomain
c can be completed to a commutative square

• //

��

d

f
��

e
g // c

then the atomic topology on C is the topology Jat defined by:
for a sieve S,

S ∈ Jat (c) if and only if S 6= ∅ .
8 / 55
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Examples of Grothendieck topologies

• Given a small category of topological spaces which is closed
under finite limits and under taking open subspaces, one may
define the open cover topology on it by specifying as basis
the collection of open embeddings {Yi ↪→ X | i ∈ I} such that
∪
i∈I

Yi = X .

• The Zariski topology on the opposite of the category Rngf.g.
of finitely generated commutative rings with unit is defined
by: for any cosieve S in Rngf.g. on an object A, S ∈ Z (A) if
and only if S contains a finite family {ξi : A→ Afi | 1 ≤ i ≤ n}
of canonical maps ξi : A→ Afi in Rngf.g. where {f1, . . . , fn} is
a set of elements of A which is not contained in any proper
ideal of A.

• Given a (first-order geometric) theory T, one can naturally
associate a site (CT, JT) with it, called its syntactic site, which
embodies essential aspects of the syntax and proof theory of
T.
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Sheaves on a site

Definition
• A presheaf on a (small) category C is a functor P : Cop → Set.
• Let P : Cop → Set be a presheaf on C and S be a sieve on an

object c of C.

A matching family for S of elements of P is a function which
assigns to each arrow f : d → c in S an element xf ∈ P(d) in
such a way that

P(g)(xf ) = xf◦g for all g : e→ d .

An amalgamation for such a family is a single element
x ∈ P(c) such that

P(f )(x) = xf for all f in S .

10 / 55



Introduction to
relative topos

theory

Olivia Caramello

Motivation

Topos-theoretic
background
Sheaves on a
topological space

Grothendieck
toposes

Geometric
morphisms

Stacks

Toposes as
‘bridges’
The ‘bridge’
technique

Morphisms and
comorphisms of sites

Continuous functors

Relative toposes
Operations on stacks

Relative ‘presheaf
toposes’

Relative sheaf
toposes

A question of
Grothendieck

Future directions

Sheaves on a site
• Given a site (C, J), a presheaf on C is a J-sheaf if every

matching family for any J-covering sieve on any object of C
has a unique amalgamation.
• The J-sheaf condition can be expressed as the requirement

that for every J-covering sieve S the canonical arrow

P(c)→
∏
f∈S

P(dom(f ))

given by x → (P(f )(x) | f ∈ S) should be the equalizer of the
two arrows ∏

f∈S

P(dom(f ))→
∏

f,g, f ∈ S
cod(g)=dom(f )

P(dom(g))

given by (xf → (xf◦g)) and (xf → (P(g)(xf ))).

The category Sh(C, J) of sheaves on the site (C, J) is the full
subcategory of [Cop,Set] on the presheaves which are J-sheaves.

11 / 55
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The notion of Grothendieck topos

Definition
A Grothendieck topos is any category equivalent to the category
of sheaves on a site.
The following examples show that toposes can be naturally
attached to mathematical notions as different as (small)
categories, topological spaces, or groups:

Examples
• For any (small) category C, [Cop,Set] is the category of

sheaves Sh(C,T ) where T is the trivial topology on C.
• For any topological space X , Sh(O(X ), JO(X)) is equivalent to

the usual category Sh(X ) of sheaves on X .
• For any (topological) group G, the category BG = Cont(G) of

continuous actions of G on discrete sets is a Grothendieck
topos (equivalent, as we shall see, to the category
Sh(Contt(G), Jat) of sheaves on the full subcategory
Contt(G) on the non-empty transitive actions with respect to
the atomic topology).
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Basic properties of Grothendieck toposes
Grothendieck toposes satisfy all the categorical properties that one
might hope for:

Theorem
Let (C, J) be a (small-generated) site. Then
• the inclusion Sh(C, J) ↪→ [Cop,Set] has a left adjoint

a : [Cop,Set]→ Sh(C, J) (called the associated sheaf functor),
which preserves finite limits.
• The category Sh(C, J) has all (small) limits, which are preserved

by the inclusion functor Sh(C, J) ↪→ [Cop,Set]; in particular, limits
are computed pointwise and the terminal object 1Sh(C,J) of
Sh(C, J) is the functor T : Cop → Set sending each object
c ∈ Ob(C) to the singleton {∗}.
• The associated sheaf functor a : [Cop,Set]→ Sh(C, J) preserves

colimits; in particular, Sh(C, J) has all (small) colimits.
• The category Sh(C, J) has exponentials, which are constructed

as in the topos [Cop,Set].
• The category Sh(C, J) has a subobject classifier.
• The category Sh(C, J) has a separating set of objects (for

instance, the one provided by the objects of the form l(c) for
c ∈ C, where l is the canonical functor C → Sh(C, J)).

13 / 55
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Geometric morphisms

The natural, topologically motivated, notion of morphism of
Grothendieck toposes is that of geometric morphism:

Definition
(i) Let E and F be toposes. A geometric morphism f : E → F

consists of a pair of functors f∗ : E → F (the direct image of f )
and f ∗ : F → E (the inverse image of f ) together with an
adjunction f ∗ a f∗, such that f ∗ preserves finite limits.

(ii) Let f and g : E → F be geometric morphisms. A geometric
transformation α : f → g is defined to be a natural
transformation a : f ∗ → g∗.

(iii) A point of a topos E is a geometric morphism Set→ E .

Grothendieck toposes, geometric morphisms and geometric
transformations form a 2-category, called Topos.

14 / 55
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Examples of geometric morphisms

• A continuous function f : X → Y between topological spaces
gives rise to a geometric morphism Sh(f ) : Sh(X )→ Sh(Y ).
The direct image Sh(f )∗ sends a sheaf F ∈ Ob(Sh(X )) to the
sheaf Sh(f )∗(F ) defined by Sh(f )∗(F )(V ) = F (f−1(V )) for
any open subset V of Y . The inverse image Sh(f )∗ acts on
étale bundles over Y by sending an étale bundle p : E → Y
to the étale bundle over X obtained by pulling back p along
f : X → Y .

• Every Grothendieck topos E has a unique geometric
morphism E → Set. The direct image is the global sections
functor Γ : E → Set, sending an object e ∈ E to the set
HomE(1E ,e), while the inverse image functor ∆ : Set→ E
sends a set S to the coproduct

⊔
s∈S 1E .

• For any (small) site (C, J), the pair of functors formed by the
inclusion Sh(C, J) ↪→ [Cop,Set] and the associated sheaf
functor a : [Cop,Set]→ Sh(C, J) yields a geometric morphism
i : Sh(C, J)→ [Cop,Set].

15 / 55
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Indexed categories and fibrations
The language in which we shall work for developing relative topos
theory is that of indexed categories and fibrations.
• Given a category C, we shall denote by IndC the 2-category of
C-indexed categories: it is the 2-category [Cop,Cat]ps whose
0-cells are the pseudofunctors Cop → Cat, whose 1-cells are
the pseudonatural transformations and whose 2-cells are the
modifications between them.

• Given a category C, we shall denote by FibC the 2-category of
fibrations over C: it is the sub-2-category of CAT/C whose
0-cells are the (Street) fibrations p : D → C, whose 1-cells are
the morphisms of fibrations (with a ‘commuting’ isomorphism)
and whose 2-cells are the natural transformations between
them.
We shall denote by cFibC the full sub-2-category of cloven
fibrations (i.e. fibrations equipped with a cleavage).

It is well-known that indexed categories and fibrations are in
equivalence with each other:

Theorem
For any category C, there is an equivalence of 2-categories
between IndC and cFibC , one half of which is given by the
Grothendieck construction and whose other half is given by the
functor taking the fibers at the objects of C.
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The notion of stack
Definition
Consider a site (C, J) and a fibration p : D → C: then p is a
J-prestack (resp. J-stack) if for every J-sieve mS : S � yC(X ) the
functor

− ◦
∫

mS : FibC(C/X ,D)→ FibC(
∫

S,D)

is full and faithful (resp. an equivalence).
Stacks over a site (C, J) form a 2-full and faithful subcategory of
IndC , which we will denote by St(C, J).

The notion of stack on a site is a higher-categorical generalization
of that of sheaf on that site:

Proposition
Consider a site (C, J) and a presheaf P : Cop → Set: then P is
J-separated (resp. J-sheaf) if and only if the fibration

∫
P → C is a

J-prestack (resp. J-stack).
We can rewrite the condition for a pseudofunctor Cop → Cat to be a
J-prestack (resp. J-stack) in the language of indexed categories, as
the requirement that for every sieve mS : S � yC(X ) the functor

IndC(yC(X ),D)
−◦mS−−−→ IndC(S,D)

be full and faithful (resp. an equivalence), where both yC(X ) and S
are interpreted as discrete C-indexed categories.
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Presentations of toposes

The most classical way for building toposes is through sites
(indeed, a Grothendieck topos is, by definition, any category
equivalent to the category of sheaves on a small-generated site).

Still, toposes can also be canonically associated with groups (or
more generally topological or localic groupoids) or with (first-order
geometric) theories or with non-commutative structures such as
quantales or quantaloids, etc.

Every topos is associated with infinitely many presentations (in
particular, with infinitely many sites of definition), which may
belong to different areas of mathematics.

In this course we shall approach toposes from the geometric point
of view of their site presentations.

18 / 55
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Toposes as ‘bridges’

• One can exploit the duality between toposes and their
presentations to build ‘bridges’ across different mathematical
theories or contexts.

• More specifically, for any topos-theoretic invariant (i.e. notion
which is invariant under categorical equivalence of toposes),
one can try to construct a ‘bridge’ by ‘computing’ it in terms of
different presentations of a given topos.

• Provided that such ‘unravelings’ are technically feasible, this
will result in correspondences between ‘concrete’ notions
pertaining to the different presentations.

• The effectiveness of the ‘bridge’ technique actually relies on
the natural structural relationship between a topos and its
presentations.
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Toposes as ‘bridges’

• These ‘bridges’ allow effective and often deep transfers of
notions, ideas and results across the theories.

• Note that toposes disappear in the end, though they have
been instrumental for performing the ‘translation’.

• In fact, ‘bridges’ have proved useful not only for connecting
different theories with each other, but also for working inside
a given mathematical theory and investigating it from a
multiplicity of different points of view.

• The level of mathematical depth of a ‘bridge’ may vary
enormously from case to case, as it depends on the degree
of sophistication of the invariant inducing it, in particular in
relation to the given presentations, as well as on the
complexity of the given equivalence of toposes. Still, even
simple invariants applied to easy-to-establish equivalences
can lead to surprising, deep results.
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The ‘bridge’ technique
• Decks of ‘bridges’: Morita-equivalences (that is, equivalences

between different presentations of a given topos, or more
generally morphisms or other kinds of relations between
toposes)

• Arches of ‘bridges’: Characterizations for topos-theoretic
invariants in terms of different presentations of toposes

For example, this ‘bridge’ yields a logical equivalence between the
‘concrete’ properties P(C,J) and Q(D,K ), interpreted in this context as
manifestations of a unique property I lying at the topo level.
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Morphisms and comorphisms of sites
Geometric morphisms can be naturally induced by functors
between sites satisfying appropriate properties:

Definition
• A morphism of sites (C, J)→ (C, J ′) is a functor F : C → C′

such that there is a geometric morphism
u : Sh(C′, J ′)→ Sh(C, J) making the following square
commutative:

C F //

l
��

C′

l′

��
Sh(C, J)

u∗ // Sh(C′, J ′);

• A comorphism of sites (D,K )→ (C, J) is a functor π : D → C
which has the covering-lifting property (in the sense that for
any d ∈ D and any J-covering sieve S on π(d) there is a
K -covering sieve R on d such that π(R) ⊆ S).

Theorem
• Every morphism of sites F : (C, J)→ (D,K ) induces a

geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J).

• Every comorphism of sites π : (D,K )→ (C, J) induces a
geometric morphism Cπ : Sh(D,K )→ Sh(C, J).
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Morphisms of sites

Theorem
Let (C, J) and (C′, J ′) be small-generated sites. Then, given a
functor F : C → C′, the following conditions are equivalent:

(i) F is a morphism of sites (C, J)→ (D,K );

(ii) F satisfies the following properties:
(1) F sends every J-covering family in C into a J ′-covering family

in C′.

(2) Every object c′ of C′ admits a J ′-covering family

c′i −→ c′ , i ∈ I ,

by objects c′i of C′ which have morphisms

c′i −→ F (ci)

to the images under F of objects ci of C.
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Morphisms of sites
(3) For any objects c1, c2 of C and any pair of morphisms of C′

f ′1 : c′ −→ F (c1) , f ′2 : c′ −→ F (c2) ,

there exists a J ′-covering family

g′i : c′i −→ c′ , i ∈ I ,

and a family of pairs of morphisms of C

f i
1 : bi −→ c1 , f i

2 : bi → c2 , i ∈ I ,

and of morphisms of C′

h′i : c′i −→ F (bi ) , i ∈ I ,

making the following squares commutative:

c′i
g′i //

h′i
��

c′

f ′1
��

F (bi )
F (f i

1) // F (c1)

c′i
g′i //

h′i
��

c′

f ′2
��

F (bi )
F (f i

2) // F (c2)
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Morphisms of sites
(4) For any pair of arrows f1, f2 : c ⇒ d of C and any arrow of C′

f ′ : b′ −→ F (c)

satisfying
F (f1) ◦ f ′ = F (f2) ◦ f ′ ,

there exist a J ′-covering family

g′i : b′i −→ b′ , i ∈ I ,

and a family of morphisms of C

hi : bi −→ c , i ∈ I ,

satisfying
f1 ◦ hi = f2 ◦ hi , ∀ i ∈ I ,

and of morphisms of C′

h′i : b′i −→ F (bi ) , i ∈ I ,

making commutative the following squares:

b′i
g′i //

h′i
��

b′

f ′

��
F (bi )

F (hi ) // F (c)
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Kan extensions
The direct and image functors of geometric morphisms induced
by morphisms or comorphisms of sites can be naturally described
in terms of Kan extensions.

Recall that, given a functor f : C → D,
• the right Kan extension ranf op along f op, which is right adjoint

to the functor f ∗ : [Dop,Set]→ [Cop,Set], is given by the
following formula:

ranf op (F )(b) = lim←−
φ:fa→b

F (a),

where the limit is taken over the opposite of the comma
category (f ↓b).

• the left Kan extension lanf op along f op, which is left adjoint to
f ∗, is given by the following formula:

lanf op (F )(b) = lim−→
φ:b→fa

F (a),

where the colimit is taken over the opposite of the comma
category (b↓ f ).
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Geometric morphisms and Kan extensions
Proposition

(i) Let F : (C, J)→ (D,K ) be a morphism of small-generated sites.
Then
• the direct image Sh(F )∗ of the geometric morphism

Sh(F ) : Sh(D,K )→ Sh(C, J)

induced by F is given by the restriction to sheaves of F∗;
• the inverse image Sh(F )∗ of Sh(F ) is given by

aK ◦ lanFop ◦ iJ ,

where lanFop is the left Kan extension and iJ is the inclusion
Sh(C, J) ↪→ [Cop,Set].

(ii) Let F : (D,K )→ (C, J) be a comorphism of small-generated
sites. Then
• the direct image (CF )∗ of the geometric morphism

CF : Sh(D,K )→ Sh(C, J)

induced by F is given by the restriction to sheaves of the right
Kan extension ranFop ;

• the inverse image (CF )
∗ of CF is given by

aJ ◦ F∗ ◦ iK ,

where iK is the inclusion Sh(D,K ) ↪→ [Dop,Set].
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Unifying morphisms and comorphisms of sites

We shall unify the notions of morphism and comorphisms of sites
by interpreting them as two fundamentally different ways of
describing morphisms of toposes which correspond to each other
under a ‘bridge’.

More specifically, morphisms of sites provide an ‘algebraic’
perspective on morphisms of toposes, while comorphisms of sites
provide a ‘geometric’ perspective on them.

The key idea is to replace the given sites of definition with
Morita-equivalent ones in such a way that the given morphism
(resp. comorphism) of sites acquires a left (resp. right) adjoint,
not necessarily in the classical categorial sense but in the weaker
topos-theoretic sense of the associated comma categories having
equivalent associated toposes.
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From morphisms to comorphisms of sites

Theorem
Given a morphism F : (C, J)→ (D,K ) of small-generated sites,
let

- (1D ↓ F ) be the ‘comma category’ whose objects are the
triplets (d , c, α : d → F (c))

- iF be the functor C → (1D ↓ F ) sending any object c of C to
the triplet (F (c), c,1F (c)),

- πC : (1D ↓ F )→ C and πD : (1D ↓ F )→ D the canonical
projection functors, and

- K̃ be the Grothendieck topology on (1D ↓ F ) whose covering
sieves are those whose image under πD is K -covering.

Then:
(i) πC a iF , πD ◦ iF = F, iF is a morphism of sites

(C, J)→ ((1D ↓ F ), K̃ ) and cF := πC is a comorphism of sites
((1D ↓ F ), K̃ )→ (C, J).
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From morphisms to comorphisms of sites
(ii) πD : ((1D ↓ F ), K̃ )→ (D,K ) is both a morphism of sites and a

comorphism of sites inducing equivalences

CπD : Sh((1D ↓ F ), K̃ )→ Sh(D,K )

and
Sh(πD) : Sh(D,K )→ Sh((1D ↓ F ), K̃ )

which are quasi-inverse to each other and make the following
triangle commute:

Sh((1D ↓ F ), K̃ ) Sh(D,K )

Sh(C, J)

CπD

∼

CπC
∼=Sh(iF )

Sh(πD)

Sh(F )

For any geometric morphism f : F → E , f ∗ is a morphism of sites
(E , Jcan

E )→ (F , Jcan
F ) such that f = Sh(f ∗). We thus obtain the

following

Corollary
Let f : F → E be a geometric morphism. Then the canonical
projection functor

πE : (1F ↓ f ∗)→ E

is a comorphism of sites ((1F ↓ f ∗), J̃can
F )→ (E , Jcan

E ) such that
f = CπE .
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The canonical stack of a geometric morphism

The functor πE : (1F ↓ f ∗)→ E is actually a stack on E , which we
call the canonical stack of f : from an indexed point of view, this
stack sends any object E of E to the topos F/f ∗(E) and any arrow
u : E ′ → E to the pullback functor u∗ : F/f ∗(E)→ F/f ∗(E ′).
We shall call the Grothendieck topology J̃can

F on (1F ↓ f ∗) the
relative topology of f .

By taking f to be the identity, and choosing a site of definition
(C, J) for E , we obtain the canonical stack S(C,J) on (C, J), which
sends any object c of C to the topos Sh(C, J)/l(c). The above
corollary thus specializes to an equivalence

Sh(C, J) ' Sh(S(C,J), J̃can
Sh(C,J)),

which represents a ‘thickening’ of the usual representation of a
Grothendieck topos as the topos of sheaves over itself with
respect to the canonical topology.
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From comorphisms to morphisms of sites

With a comorphism of sites F : (D,K )→ (C, J) we can associate
the morphism of sites

mF : (C, J)→ (D̂, K̂ )

sending an object c of C to the presheaf HomC(F (−), c), where K̂
is the extension of the Grothendieck topology K along the Yoneda
embedding yD : D → D̂.

This morphism of sites induces a geometric morphism Sh(mF )
making the following triangle commute:

Sh(D̂, K̂ ) Sh(D,K )

Sh(C, J)

Sh(yD)

∼

Sh(mF )

CyD
CF
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Bridging morphisms and comorphisms of sites
We shall call a functor which both a morphism and a comorphism of
sites a bimorphism of sites.

We have actually shown that the relationship between a morphism F
(resp. comorphism G) of sites and the associated comorphism cF
(resp. morphism mF ) of sites is captured by the equivalence

Sh((1D ↓ F ), K̃ ) ' Sh((cF ↓ 1D), K̃ )

(resp.

Sh((G ↓ 1C),K ) ' Sh((1D̂ ↓ mG),
˜̂K ))

of toposes over Sh(C, J) induced by bimorphism of sites wF (resp.
zG) over C.

In fact, F and cF (resp. G and mG) are not adjoint to each other in a
concrete sense (that is, at the level of sites); nonetheless, they
become ‘abstractly’ adjoint in the world of toposes since toposes
naturally attached to such categories are equivalent.

These correspondences actually yield a dual adjunction between a
category of morphisms of sites from a given site and a category of
comorphisms of sites towards that site.
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Continuous functors

Another important class of functors between sites is that of
continuous ones:

Definition (Grothendieck)
Given sites (C, J) and (D,K ), a functor A : C → D is said to be
(J,K )-continuous, or simply, continuous, if the functor

DA := (− ◦ Aop) : [Dop,Set]→ [Cop,Set]

restricts to a functor Sh(D,K )→ Sh(C, J).

The property of continuity of a functor can be interpreted as a
form of cofinality; in fact, we have shown that it can be explicitly
characterized in terms of relative cofinality conditions.
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Fibrations as comorphisms of sites
Recall that, given a functor A : C → D and a Grothendieck topology
K in D, there is a smallest Grothendieck topology MA

K on C which
makes A a comorphism of sites to (D,K ).

Proposition
If A is a fibration, the topology MA

K admits the following simple
description: a sieve R is MA

K -covering if and only if the collection of
cartesian arrows in R is sent by A to a K -covering family.

We shall call MA
K the Giraud topology induced by K , in honour of

Jean Giraud, who used it for constructing the classifying topos
Sh(C,MA

K ) of a stack A on (D,K ).

Proposition
For any Grothendieck topology K on D, every morphism of
fibrations (A : C → D)→ (A′ : C′ → D) yields a continuous
comorphism of sites (C,MA

K )→ (C′,MA′
K ).

In particular, a fibration A : C → D yields a continuous comorphism
of sites (C,MA

K )→ (D,K ) for any Grothendieck topology K on D.
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Giraud topologies

The study of the Giraud topology can provide insights on the
given fibration. As a basic example of this, under the assumption
that J is subcanonical, the property of being a prestack can be
checked directly by analysing the Giraud topology:

Proposition (O.C. and R.Z.)
Consider a subcanonical site (C, J) and a cloven fibration
p : D → C: then p is a prestack if and only if the Giraud topology
Mp

J is subcanonical.

We actually have a Giraud topology functor

G : Cat/C → Com/(C, J),

mapping [p : E → C] to p : (E ,Mp
J )→ (C, J).

By the above results, this functor actually takes values in the
subcategory of continuous comorphisms of sites.
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Stacks for relative topos theory
The role of stacks in our approach to relative topos theory is
two-fold:
• On the one hand, the notion of stack represents a higher-order

categorical generalization of the notion of sheaf. Accordingly,
categories of stacks on a site represent higher-categorical
analogues of Grothendieck toposes. One can thus expect to
be able to lift a number of notions and constructions pertaining
to sheaves (resp. Grothendieck toposes) to stacks (resp.
categories of stacks on a site).

• On the other hand, stacks on a site (C, J) generalize internal
categories in the topos Sh(C, J). Since (ordinary) categories
can be endowed with Grothendieck topologies, so stacks on a
site can also be endowed with suitable analogues of
Grothendieck topologies. This leads to the notion of site
relative to a base topos, which is crucial for developing relative
topos theory.

Remark
Every stack is equivalent to a split stack, and hence to an internal
category, but most stacks naturally arising in the mathematical
practice are not split (think, for instance, of the canonical stack of a
topos).
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The big picture
Our theory is based on a network of 2-adjunctions (for any small
site (C, J)):

IndC Topos/Sh(C, J)co

St(C, J) EssTopos/Sh(C, J)co

Sh(C, J)

sJ

Λ

⊥
Γ

`

E◦Λ′

Λ′

⊥

L

Γ′

` Ea

In this diagram sJ denotes the stackification functor, Topos the
category of Grothendieck toposes and geometric morphisms and
EssTopos the full subcategory on the essential geometric
morphisms.

• The functor E sends an essential geometric morphism
f : E → Sh(C, J) to the object f!(1E ) (where f! is the left adjoint
to the inverse image f ∗ of f ).
• The functor L sends an object P of Sh(C, J) to the canonical

local homeomorphism Sh(C, J)/P → Sh(C, J).
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Pseudo-Kan extensions
Proposition
Denote by Inds

C the sub-2-category of IndC of pseudofunctors with
values in Cat (i.e. ‘small’ C-indexed categories). Consider any
functor F : C → D and the direct image 2-functor

F ∗ : Inds
D → Inds

C

which acts by precomposition with F op. The 2-functor F ∗ has both
a left and a right 2-adjoint, denoted respectively by LanF op and
RanF op , which act as follows:
• for any D in D denote by πD

F : (D ↓F )→ C the canonical
projection functor: then for E : Cop → Cat, its image
LanF op (E) : Dop → Cat is defined componentwise as

LanF op (E)(D) := colimps

(
(D ↓F )op (πD

F )op

−−−−→ Cop E−→ Cat
)

• for any D in D denote by π′DF : (F ↓D)→ C the canonical
projection functor: then for E : Cop → Cat, its image
RanF op (E) : Dop → Cat is defined componentwise as

RanF op (E)(D) := limps

(
(F ↓D)op (π′DF )op

−−−−→ Cop E−→ Cat
)
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Direct and inverse images of stacks

Proposition (O.C. and R.Z.)
Consider two sites (C, J) and (D,K ) and a functor F : C → D.
• Then F is (J,K )-continuous functor if and only if

F ∗ : IndD → IndC restricts to a 2-functor St(D,K )→ St(C, J).
• If F is a morphism of sites F : (C, J)→ (D,K ), or more

generally a (J,K )-continuous functor, it induces a 2-adjunction

Sts(C, J) Sts(D,K )

St(F )∗

St(F )∗
a

,

whose pair we shall refer to simply by St(F ).
• The 2-functor St(F )∗ is called the direct image of stacks along

F and acts as the precomposition

F ∗ := (− ◦ F op) : IndD → IndC ;

In terms of fibrations, a stack q : E → D is mapped by St(F )∗
to its strict pseudopullback p : P → C along F.
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Direct and inverse images of stacks
• The left adjoint St(F )∗ is the inverse image of stacks along F

and acts as the composite

Sts(C, J)
iJ−→ Inds

C
LanFop−−−−→ Inds

D
sK−→ Sts(D,K ),

where sK denotes the stackification functor. In terms of
fibrations, a stack p : P → C is mapped by St(F )∗ to the
stackification of its inverse image LanF op ([p]) along F , which
can be computed as a localization as follows. Consider the
fibration of generalized elements

(1D ↓(F ◦ p))
r−→ D

of the functor F ◦ p, whose objects are arrows
[d : D → (F ◦ p)(U)] of D, and whose morphisms

(e, α) : [d ′ : D′ → (F ◦ p)(V )]→ [d : D → (F ◦ p)(U)]

are indexed by an arrow e : D′ → D in D and an arrow
α : V → U in P such that (F ◦ p)(α) ◦ d ′ = d ◦ e. Consider the
class of arrows

S := {(e, α) : [d ′]→ [d ] | (e, α) r -vertical, α cartesian in P} :

then
LanF op ([p]) ' (1D ↓(F ◦ p))[S−1] .
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Direct and inverse images of stacks
In a similar way to morphisms of sites, comorphisms of sites also
induce an adjunction between categories of stacks:

Proposition (O.C. and R.Z.)
Consider a comorphism of sites F : (C, J)→ (D,K ): it induces a
2-adjunction

Sts(D,K ) Sts(C, J)

(CSt
F )∗

(CSt
F )∗

a

,

whose pair we shall refer to by CSt
F .

• The right adjoint (CSt
F )∗ acts by restriction of the right

pseudo-Kan extension RanF op to stacks;
• The left adjoint (CSt

F )∗ acts as the composite 2-functor

Sts(D,K )
iK−→ Inds

D
F∗−−→ Inds

C
sJ−→ Sts(C, J),

where F ∗ := (− ◦ F op).
• If F is also continuous the CSt

F also has a left adjoint (CSt
F )! given

by the composite 2-functor

Sts(C, J)
iJ−→ Inds

C
LanFop−−−−→ Inds

D
sK−→ Sts(D,K ) .
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Relative ‘presheaf toposes’

Given a C-indexed category D, we denote by G(D) the fibration on
C associated with it (through the Grothendieck construction) and
by pD the canonical projection functor G(D)→ C.

Proposition (O.C. and R.Z.)
Let (C, J) be a small-generated site, D a C-indexed category and
DV be the opposite indexed category of D (defined by setting, for
each c ∈ C, DV (c) = D(c)op). Then we have a natural equivalence

Sh(G(D),MpD
J ) ' IndC(DV ,S(C,J)) .

This proposition shows that, if D is a stack, the classifying topos
Sh(G(D),MpD

J ) of D, which we call the Giraud topos of D, can
indeed be seen as the “topos of relative presheaves on D”.
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Giraud toposes as weighted colimits

We have shown that, for any D, the Giraud topos
CpD : Sh(G(D),MpD

J )→ Sh(C, J) can be naturally seen as a
weighted colimit of a diagram of étale toposes over Sh(C, J):

Sh(C/X , JX ) Sh(C/Y , JX )

Sh(G(D,MpD
J )

λ(X,V ) λ(X,U)

CΣy

λ(Y ,(D(y)(U)))

λ(X,a)

∼=

where y : Y → X and a : U → V are arrows respectively in C and
in D(X ), the legs λ(X ,U) : Sh(C/X , JX )→ Sh(G(D,MpD

J ) of the
cocone are the morphisms Cξ(X,U)

induced by the morphisms of
fibrations ξ(X ,U) : C/X → D over C given by the fibered Yoneda
lemma, and the functor Σy : C/Y → C/X are given by composition
with y .
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The fundamental adjunction
The universal property of the above weighted colimit yields a
fundamental 2-adjunction between cloven fibrations over C and
toposes over Sh(C, J):

Theorem (O.C and R.Z.)
For any small-generated site (C, J), the two pseudofunctors

ΛToposco/Sh(C,J) : cFibC
G−→ Com/(C, J)

C(−)−−−→ Toposco/Sh(C, J),[
[p : D → C]

(F ,φ)−−−→ [q : E → C]

]
7→
[

[GirJ(p)]
(CF ,Cφ)−−−−−→ [GirJ(q)]

]
,

and

ΓToposco/Sh(C,J) : Toposco/Sh(C, J)→ IndC ' cFibC ,

[E : E → Sh(C, J)] 7→
[
Toposco/Sh(C, J)(Sh(C/−, J(−)), [E ]) : Cop → CAT

]
are the two components of a 2-adjunction

cFibC Toposco/Sh(C, J)

ΛToposco/Sh(C,J)

`

ΓToposco/Sh(C,J)

Remark
Since GirJ(p) ' IndC(DV ,S(C,J)), the canonical stack S(C,J) has a
similar behavior to that of a dualizing object for the adjunction Λ a Γ.
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The discrete setting

The restriction of our fundamental adjunction in the setting of
presheaves (that is, discrete fibrations) will yield a generalization
to the context of arbitrary sites of the classical adjunction

Psh(X ) Top/X

Λ

a

Γ

.

between presheaves on a topological space X and bundles over
it.

This adjunction and its applications to the theory of sheaves
(notably leading to fibrational descriptions of the sheafification
functor, as well as of direct and inverse images of sheaves) will be
discussed in the forthcoming lecture by Riccardo Zanfa.
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Relative sheaf toposes
As any Grothendieck topos is a subtopos of a presheaf topos, so
any relative topos should be a subtopos of a relative presheaf
topos. This motivates the following

Definition
Let (C, J) be a small-generated site. A site relative to (C, J) is a
pair consisting of a C-indexed category D and a Grothendieck
topology K on G(D) which contains the Giraud topology MpD

J .

The topos of sheaves on such a relative site (D,K ) is defined to
be the geometric morphism

CpD : Sh(G(D),K )→ Sh(C, J)

induced by the comorphism of sites pD : (G(D),K )→ (C, J).

Remark
Not every Grothendieck topology on K can be generated starting
by horizontal or vertical data (that is, by sieves generated by
cartesian arrows or entirely lying in some fiber), but many
important relative topologies naturally arising in practice are of
this form.
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Examples of relative topologies

• The relative topology on the canonical stack of a geometric
morphism (which allows one to represent any relative topos
as the topos of sheaves on a relative site).

• The Giraud topology is an example of a relative topology
generated by horizontal data.

• The total topology of a fibered site, in the sense of
Grothendieck, is generated by vertical data.

We have shown that, for a wide class of relative topologies
generated by horizontal and vertical data, one can describe
bases for them consisting of multicompositions of horizontal
families with vertical families.
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A question of Grothendieck

As recently brought to the public attention by Colin McLarty,
Grothendieck expressed, in his 1973 Buffalo lectures, the
aspiration of viewing any object of a topos geometrically as an
étale space over the terminal object:

The intuition is the following: viewing objects of a topos
as being something like étale spaces over the final object
of the topos, and the induced topos over an object as just
the object itself. That is I think the way one should handle
the situation.
It’s a funny situation because in strict terms, you see,
the language which I want to push through doesn’t make
sense. But of course there are a number of mathematical
statements which substantiate it.

Given his conception of gros and petit toposes, we can more
broadly interpret his wish as that for a framework allowing one to
think geometrically about any topos, that is, as it were a ‘petit’
topos related to a ‘gros’ topos by a local retraction.
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Local morphisms

Recall that a geometric morphism f : F → E is said to be local if f∗
has a fully faithful right adjoint.

Theorem (O.C.)
Let F : D → C be a bimorphism of sites (D,K )→ (C, J). Then:

(i) The geometric morphism CF : Sh(D,K )→ Sh(C, J) is
essential, and

(CF )!
∼= Sh(F )∗ a Sh(F )∗ ∼= (CF )∗ = DF := (−◦F op) a (CF )∗

(ii) The morphism Sh(F ) : Sh(C, J)→ Sh(D,K ) is local if and
only if CF is an inclusion, that is, if and only if F is K -faithful
and K -full. In this case, the morphisms CF and Sh(F ) realize
the topos Sh(D,K ) as a (coadjoint) retract of Sh(C, J) in
Topos.
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Gros and petit toposes

Pairs of gros and petit toposes are important for several reasons.
Morally, a petit topos is thought of as a generalized space, while a
gros topos is conceived as a category of spaces.

In fact, one advantage of gros toposes is that they are associated
with sites which tend to have better categorical properties than
those of the site presenting the petit topos.

Still, gros and petit toposes in a given pair are homotopically
equivalent (as they are related by a local retraction), whence they
share the same cohomological invariants.

The above result can be notably applied to construct pairs of gros
and petit toposes starting from a (K -)full and (K -)faithful
bimorphism of sites

(D,K )→ (T /TD,ETD ),

where T is a category endowed with a Grothendieck topology E ,
TD is an object of T and ETD is the Grothendieck topology
induced on (T /TD) by E .
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Every Grothendieck topos is a ‘small topos’
We define a Grothendieck topology Jét on Topos, which we call the
étale cover topology, by postulating that a sieve on a topos E is
Jét-covering if and only if it contains a family {E/Ai → E | i ∈ I} of
canonical local homeomorphisms such that the family of arrows
{!Ai : Ai → 1E | i ∈ I} is epimorphic in E .

The functor L is a J-full and J-faithful bimorphism of sites

(C, J)→ (Topos/Sh(C, J), Jét
Sh(C,J)) .

So, by the above result, the ‘petit’ topos Sh(C, J) identifies with a
coadjoint retract of the ‘big’ topos
Sh(Topos/Sh(C, J), Jét

Sh(C,J)) ' Sh(Topos, Jét)/l(Sh(C, J)) (in a
suitable Grothendieck universe) via the local morphism Sh(L) and
the essential inclusion CL.

This shows that every Grothendieck topos can be naturally
regarded as a ‘petit’ topos embedded in an associated ‘gros’ topos,
and that this embedding allows one to view any object of the original
topos as an étale morphism to the terminal object in the associated
‘gros’ topos, thus providing a solution to Grothendieck’s problem.
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Future developments

Our notion of relative site will play a key role in our future
development the theory of relative toposes.

We expect the development of this theory to parallel that of the
classical theory; indeed, by using a general stack semantics, we
plan to introduce, in a canonical, not ad hoc way, natural
generalizations to the relative setting of the classical notions of
morphism and comorphism of sites, flat functors, separating sets
for a topos, denseness conditions etc.

This will notably lead us to relative versions, in the language of
stacks (or, more generally, of indexed categories), of Giraud’s and
Diaconescu’s theorems, as well as to a theory of classifying
toposes of (higher-order) relative geometric theories.
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Towards relative geometric logic

Indeed, the geometric approach to relative toposes which we
have developed so far has a logical counterpart, which we may
call relative geometric logic.

In its classical formulation, geometric logic does not have
parameters embedded in its formalism; still, it is possible to
introduce them without changing its degree of expressivity.

In a relative setting, parameters are fundamental if one wants to
reason geometrically and use fibrational techniques. In fact, the
semantics of stacks involves parameters in an essential way.

It turns out that the logical framework corresponding to relative
toposes is a kind of fibrational, higher-order parametric logic in
which it is possible to express a great number of higher-order
constructions by using the parameters belonging to the base
topos.
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For further reading

O. Caramello,
Denseness conditions, morphisms and equivalences of
toposes,
monograph draft available as arxiv:math.CT/1906.08737v3
(2020).

O. Caramello and R. Zanfa,
Relative topos theory via stacks,
monograph draft available as arxiv:math.AG/2107.04417v1
(2021).

O. Caramello
Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic ‘bridges’,
Oxford University Press (2017).
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