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The “unifying notion” of topos

“It is the topos theme which is this “bed” or “deep river”
where come to be married geometry and algebra, topology and arithmetic,
mathematical logic and category theory, the world of the “continuous” and

that of “discontinuous” or discrete structures. It is what I have conceived of
most broad to perceive with finesse, by the same language rich of

geometric resonances, an “essence” which is common to situations
most distant from each other coming from one region or another

of the vast universe of mathematical things”.

A. Grothendieck

Topos theory can be regarded as a unifying subject in Mathema-
tics, with great relevance as a framework for systematically inves-
tigating the relationships between different mathematical theories
and studying them by means of a multiplicity of different points of
view. Its methods are transversal to the various fields and com-
plementary to their own specialized techniques. In spite of their
generality, the topos-theoretic techniques are liable to generate in-
sights which would be hardly attainable otherwise and to establish
deep connections that allow effective transfers of knowledge bet-
ween different contexts.
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The multifaceted nature of toposes

The role of toposes as unifying spaces is intimately tied to their
multifaceted nature.

For instance, a topos can be seen as:

• a generalized space

• a mathematical universe

• a theory modulo ‘Morita-equivalence’

In this course we shall review each of these classical points of
view, and then present the more recent theory of topos-theoretic
‘bridges’, which combines all of them to provide tools for making
toposes effective means for studying mathematical theories from
multiple points of view, relating and unifying theories with each
other and constructing ‘bridges’ across them.
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A bit of history

• Toposes were originally introduced by Alexander Grothendieck in the
early 1960s, in order to provide a mathematical underpinning for the
‘exotic’ cohomology theories needed in algebraic geometry. Every
topological space gives rise to a topos and every topos in
Grothendieck’s sense can be considered as a ‘generalized space’.

• At the end of the same decade, William Lawvere and Myles Tierney
realized that the concept of Grothendieck topos also yielded an
abstract notion of mathematical universe within which one could carry
out most familiar set-theoretic constructions, but which also, thanks to
the inherent ‘flexibility’ of the notion of topos, could be profitably
exploited to construct ‘new mathematical worlds’ having particular
properties.

• A few years later, the theory of classifying toposes added a further
fundamental viewpoint to the above-mentioned ones: a topos can be
seen not only as a generalized space or as a mathematical universe,
but also as a suitable kind of first-order theory (considered up to a
general notion of equivalence of theories).
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Toposes as unifying ‘bridges’

Since the times of my Ph.D. studies I have been developing a
theory and a number of techniques which allow to effectively use
toposes as unifying spaces.

The key idea is that the possibility of representing a topos in a
multitude of different ways can be effectively exploited for building
unifying ‘bridges’ between theories having an equivalent, or
strictly related, mathematical content.

These ‘bridges’ allow effective and often deep transfers of
notions, ideas and results across the theories.

In spite of the number of applications in different fields obtained
throughout the last years, the potential of these methods has just
started to be explored.

In fact, ‘bridges’ have proved useful not only for connecting
different theories with each other, but also for working inside a
given mathematical theory and investigating it from a multiplicity
of different points of view.
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Presheaves on a topological space
Definition
Let X be a topological space. A presheaf F on X consists of the data:

(i) for every open subset U of X , a set F (U) and
(ii) for every inclusion V ⊆ U of open subsets of X , a function

ρU,V : F (U)→F (V ) subject to the conditions
• ρU,U is the identity map F (U)→F (U) and
• if W ⊆ V ⊆ U are three open subsets, then ρU,W = ρV ,W ◦ρU,V .

The maps ρU,V are called restriction maps, and we sometimes write s|V
instead of ρU,V (s), if s ∈F (U).
A morphism of presheaves F → G on a topological space X is a
collection of maps F (U)→ G (U) which is compatible with respect to
restriction maps.

Remark
Categorically, a presheaf F on X is a functor F : O(X )op→ Set, where
O(X ) is the poset category corresponding to the lattice of open sets of
the topological space X (with respect to the inclusion relation).
A morphism of presheaves is then just a natural transformation
between the corresponding functors.
So we have a category [O(X )op,Set] of presheaves on X.
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Sheaves on a topological space
Definition
A sheaf F on a topological space X is a presheaf on X satisfying the
additional conditions

(i) if U is an open set, if {Vi | i ∈ I} is an open covering of U, and if
s, t ∈F (U) are elements such that s|Vi = t |Vi for all i, then s = t ;

(ii) if U is an open set, if {Vi | i ∈ I} is an open covering of U, and if we
have elements si ∈F (Vi ) for each i , with the property that for each
i , j ∈ I, si |Vi∩Vj = sj |Vi∩Vj , then there is an element s ∈F (U)

(necessarily unique by (i)) such that s|Vi = si for each i .

A morphism of sheaves is defined as a morphism of the underlying
presheaves.

Examples

• the sheaf of continuous real-valued functions on any topological
space

• the sheaf of regular functions on a variety
• the sheaf of differentiable functions on a differentiable manifold
• the sheaf of holomorphic functions on a complex manifold

In each of the above examples, the restriction maps of the sheaf are the
usual set-theoretic restrictions of functions to a subset.
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Sheaves from a categorical point of view
Sheaves arising in Mathematics are often equipped with more structure
than the mere set-theoretic one; for example, one may wish to consider
sheaves of modules (resp. rings, abelian groups, ...) on a topological
space X .
The natural categorical way of looking at these notions is to consider
them as models of certain (geometric) theories in a category Sh(X ) of
sheaves of sets.

Remarks
• Categorically, a sheaf is a functor O(X )op→ Set which satisfies

certain conditions expressible in categorical language entirely in
terms of the poset category O(X ) and of the usual notion of
covering on it. The category Sh(X ) of sheaves on a topological
space X is thus a full subcategory of the category [O(X )op,Set] of
presheaves on X.

• Many important properties of topological spaces X can be naturally
formulated as (invariant) properties of the categories Sh(X ) of
sheaves of sets on the spaces.

These remarks led Grothendieck to introduce a significant categorical
generalization of the notion of sheaf, and hence the notion of
Grothendieck topos.
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Limits and colimits in Sh(X )

Theorem
(i) The category Sh(X ) is closed in [O(X )op,Set] under

arbitrary (small) limits.
(ii) The associated sheaf functor a : [O(X )op,Set]→ Sh(X )

(having a right adjoint) preserves all (small) colimits.

• Part (i) follows from the fact that limits commute with limits, in
light of the characterization of sheaves in terms of limits.

• From part (ii) it follows that Sh(X ) has all small colimits,
which are computed by applying the associated sheaf functor
to the colimit of the diagram considered with values in
[O(X )op,Set].
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Adjunctions induced by points

Let x be a point of a topological space X .

Definition
Let A be a set. Then the skyscraper sheaf Skyx (A) of A at x is the
sheaf on X defined as

• Skyx (A)(U) = A if x ∈ U
• Skyx (A)(U) = 1 = {∗} if x /∈ U

and in the obvious way on arrows.
The assignment A→ Skyx (A) is clearly functorial.

Theorem
The stalk functor Stalkx : Sh(X )→ Set at x is left adjoint to the
skyscraper functor Skyx : Set→ Sh(X ).

In fact, as we shall see later in the course, points in topos theory
are defined as suitable kinds of functors (more precisely, colimit
and finite-limit preserving ones).
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Open sets as subterminal objects

Since limits in a category Sh(X ) are computed as in the category
of presheaves [O(X )op,Set], a subobject of a sheaf F in Sh(X ) is
just a subsheaf, that is a subfunctor which is a sheaf.
Notice that a subfunctor S ⊆ F is a sheaf if and only if for every
open covering {Ui ⊆ U | i ∈ I} and every element x ∈ F (U),
x ∈ S(U) if and only if x |Ui ∈ S(Ui ).

Definition
In a category with a terminal object, a subterminal object is an
object whose unique arrow to the terminal object is a
monomorphism.

Theorem
Let X be a topological space. Then we have a frame isomorphism

SubSh(X )(1)∼= O(X ) .

between the subterminal objects of Sh(X ) and the open sets of X .
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Sieves
In order to ‘categorify’ the notion of sheaf of a topological space,
the first step is to introduce an abstract notion of covering (of an
object by a family of arrows to it) in a category.

Definition
• Given a category C and an object c ∈Ob(C ), a presieve P in

C on c is a collection of arrows in C with codomain c.
• Given a category C and an object c ∈Ob(C ), a sieve S in C

on c is a collection of arrows in C with codomain c such that

f ∈ S ⇒ f ◦g ∈ S

whenever this composition makes sense.
• We say that a sieve S is generated by a presieve P on an

object c if it is the smallest sieve containing it, that is if it is the
collection of arrows to c which factor through an arrow in P.

If S is a sieve on c and h : d → c is any arrow to c, then

h∗(S) := {g | cod(g) = d , h ◦g ∈ S}

is a sieve on d .
12 / 66
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Grothendieck topologies

Definition
• A Grothendieck topology on a category C is a function J

which assigns to each object c of C a collection J(c) of
sieves on c in such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c} is
in J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such that
f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are
said to be J-covering.

• A site is a pair (C ,J) where C is a small category and J is a
Grothendieck topology on C .

13 / 66
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Examples of Grothendieck topologies
• For any (small) category C , the trivial topology on C is the

Grothendieck topology in which the only sieve covering an
object c is the maximal sieve Mc .

• The dense topology D on a category C is defined by: for a
sieve S,

S ∈ D(c) if and only if for any f : d → c there exists
g : e→ d such that f ◦g ∈ S .

If C satisfies the right Ore condition i.e. the property that any
two arrows f : d → c and g : e→ c with a common codomain
c can be completed to a commutative square

• //

��

d

f
��

e
g // c

then the dense topology on C specializes to the atomic
topology on C i.e. the topology Jat defined by: for a sieve S,

S ∈ Jat (c) if and only if S 6= /0 .
14 / 66
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Examples of Grothendieck topologies
• If X is a topological space, the usual notion of covering in Topology

gives rise to the following Grothendieck topology JO(X ) on the poset
category O(X ): for a sieve S = {Ui ↪→ U | i ∈ I} on U ∈Ob(O(X )),

S ∈ JO(X )(U) if and only if ∪
i∈I

Ui = U .

• More generally, given a frame (or complete Heyting algebra) H, we
can define a Grothendieck topology JH , called the canonical
topology on H, by:

{ai | i ∈ I} ∈ JH(a) if and only if ∨
i∈I

ai = a .

• Given a small category of topological spaces which is closed under
finite limits and under taking open subspaces, one may define the
open cover topology on it by specifying as basis the collection of
open embeddings {Yi ↪→ X | i ∈ I} such that∪

i∈I
Yi = X .

• The Zariski topology on the opposite of the category Rngf.g. of
finitely generated commutative rings with unit is defined by: for any
cosieve S in Rngf.g. on an object A, S ∈ Z (A) if and only if S
contains a finite family {ξi : A→ Afi | 1≤ i ≤ n} of canonical maps
ξi : A→ Afi in Rngf.g. where {f1, . . . , fn} is a set of elements of A
which is not contained in any proper ideal of A.
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Sheaves on a site
Definition

• A presheaf on a (small) category C is a functor P : C op→ Set.
• Let P : C op→ Set be a presheaf on C and S be a sieve on an

object c of C .

A matching family for S of elements of P is a function which
assigns to each arrow f : d → c in S an element xf ∈ P(d) in
such a way that

P(g)(xf ) = xf◦g for all g : e→ d .

An amalgamation for such a family is a single element
x ∈ P(c) such that

P(f )(x) = xf for all f in S .

Remark
For any covering family F = {Ui ⊆ U | i ∈ I} in a topological space
X and any presheaf F on X, giving a family of elements
si ∈F (Ui ) such that for any i , j ∈ I si |Ui∩Uj = sj |Ui∩Uj is equivalent
to giving a family of elements {sW ∈F (W ) |W ∈ SF} such that for
any open set W ′ ⊆W, sW |W ′ = sW ′ , where SF is the sieve
generated by F. In other words, it is the same as giving a
matching family for SF of elements of F .
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Sheaves on a site

• Given a site (C ,J), a presheaf on C is a J-sheaf if every
matching family for any J-covering sieve on any object of C
has a unique amalgamation.

• The category Sh(C ,J) of sheaves on the site (C ,J) is the full
subcategory of [C op,Set] on the presheaves which are
J-sheaves.

• A Grothendieck topos is any category equivalent to the
category of sheaves on a site.
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Examples of toposes

The following examples show that toposes can be naturally
attached to mathematical notions as different as (small)
categories, topological spaces, or groups.

Examples

• For any (small) category C , [C op,Set] is the category of
sheaves Sh(C ,T ) where T is the trivial topology on C .

• For any topological space X , Sh(O(X ),JO(X )) is equivalent to
the usual category Sh(X ) of sheaves on X .

• For any (topological) group G, the category BG = Cont(G) of
continuous actions of G on discrete sets is a Grothendieck
topos (equivalent, as we shall see, to the category
Sh(Contt(G),Jat) of sheaves on the full subcategory
Contt(G) on the non-empty transitive actions with respect to
the atomic topology).
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Basic properties of Grothendieck toposes
Grothendieck toposes satisfy all the categorical properties that
one might hope for:

Theorem
Let (C ,J) be a site. Then

• the inclusion Sh(C ,J) ↪→ [C op,Set] has a left adjoint
a : [C op,Set]→ Sh(C ,J) (called the associated sheaf functor),
which preserves finite limits.

• The category Sh(C ,J) has all (small) limits, which are
preserved by the inclusion functor Sh(C ,J) ↪→ [C op,Set]; in
particular, limits are computed pointwise and the terminal
object 1Sh(C ,J) of Sh(C ,J) is the functor T : C op→ Set
sending each object c ∈Ob(C ) to the singleton {∗}.

• The associated sheaf functor a : [C op,Set]→ Sh(C ,J)
preserves colimits; in particular, Sh(C ,J) has all (small)
colimits.

• The category Sh(C ,J) has exponentials, which are
constructed as in the topos [C op,Set].

• The category Sh(C ,J) has a subobject classifier.
• The category Sh(C ,J) has a separating set of objects.
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Geometric morphisms
The natural, topologically motivated, notion of morphism of
Grothendieck toposes is that of geometric morphism. The natural
notion of morphism of geometric morphisms if that of geometric
transformation.

Definition
(i) Let E and F be toposes. A geometric morphism f : E →F

consists of a pair of functors f∗ : E →F (the direct image of
f ) and f ∗ : F → E (the inverse image of f ) together with an
adjunction f ∗ a f∗, such that f ∗ preserves finite limits.

(ii) Let f and g : E →F be geometric morphisms. A geometric
transformation α : f → g is defined to be a natural
transformation a : f ∗→ g∗.

(iii) A point of a topos E is a geometric morphism Set→ E .

• Grothendieck toposes and geometric morphisms between
them form a 2-category.

• Given two toposes E and F , geometric morphisms from E to
F and geometric transformations between them form a
category, denoted by Geom(E ,F ).
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Examples of geometric morphisms

• A continuous function f : X → Y between topological spaces
gives rise to a geometric morphism Sh(f ) : Sh(X )→ Sh(Y ).
The direct image Sh(f )∗ sends a sheaf F ∈Ob(Sh(X )) to the
sheaf Sh(f )∗(F ) defined by Sh(f )∗(F )(V ) = F (f−1(V )) for
any open subset V of Y . The inverse image Sh(f )∗ acts on
étale bundles over Y by sending an étale bundle p : E → Y to
the étale bundle over X obtained by pulling back p along
f : X → Y .

• Every Grothendieck topos E has a unique geometric
morphism E → Set. The direct image is the global sections
functor Γ : E → Set, sending an object e ∈ E to the set
HomE (1E ,e), while the inverse image functor ∆ : Set→ E

sends a set S to the coproduct
⊔
s∈S

1E .

• For any site (C ,J), the pair of functors formed by the
inclusion Sh(C ,J) ↪→ [C op,Set] and the associated sheaf
functor a : [C op,Set]→ Sh(C ,J) yields a geometric
morphism i : Sh(C ,J)→ [C op,Set].
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Geometric morphisms as flat functors I

Theorem
Let C be a small category and E be a locally small cocomplete
category. Then, for any functor A : C → E the functor
RA : E → [C op,Set] defined for each e ∈Ob(E ) and c ∈Ob(C ) by:

RA(e)(c) = HomE (A(c),e)

has a left adjoint −⊗C A : [C op,Set]→ E .

Definition
• A functor A : C → E from a small category C to a

Grothendieck topos E is said to be flat if the functor
−⊗C A : [C op,Set]→ E preserves finite limits.

• The full subcategory of [C ,E ] on the flat functors will be
denoted by Flat(C ,E ).
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Geometric morphisms as flat functors II

Theorem
Let C be a small category and E be a Grothendieck topos. Then
we have an equivalence of categories

Geom(E , [C op,Set])' Flat(C ,E )

(natural in E ), which sends

• a flat functor A : C → E to the geometric morphism
E → [C op,Set] determined by the functors RA and −⊗C A,
and

• a geometric morphism f : E → [C op,Set] to the flat functor
given by the composite f ∗ ◦y of f ∗ : [C op,Set]→ E with the
Yoneda embedding y : C → [C op,Set].
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Geometric morphisms to Sh(C ,J) I

Definition
Let E be a Grothendieck topos.

• A family {fi : ai → a | i ∈ I} of arrows in E with common
codomain is said to be epimorphic if for any pair of arrows
g,h : a→ b with domain a, g = h if and only if g ◦ fi = h ◦ fi for
all i ∈ I.

• If (C ,J) is a site, a functor F : C → E is said to be
J-continuous if it sends J-covering sieves to epimorphic
families.

The full subcategory of Flat(C ,E ) on the J-continuous flat
functors will be denoted by FlatJ(C ,E ).
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Geometric morphisms to Sh(C ,J) II

Theorem
For any site (C ,J) and Grothendieck topos E , the above-mentioned
equivalence between geometric morphisms and flat functors restricts
to an equivalence of categories

Geom(E ,Sh(C ,J))' FlatJ(C ,E )

natural in E .

Sketch of proof.
Appeal to the previous theorem

• identifying the geometric morphisms E → Sh(C ,J) with the
geometric morphisms E → [C op,Set] which factor through the
canonical geometric inclusion Sh(C ,J) ↪→ [C op,Set], and

• using the characterization of such morphisms as the geometric
morphisms f : E → [C op,Set] such that the composite f ∗ ◦y of
the inverse image functor f ∗ of f with the Yoneda embedding
y : C → [C op,Set] sends J-covering sieves to colimits in E
(equivalently, to epimorphic families in E ).
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Flat = filtering
Definition
A functor F : C → E from a small category C to a Grothendieck
topos E is said to be filtering if it satisfies the following conditions:
(a) For any object E of E there exist an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C and
a generalized element Ei → F (bi ) in E .

(b) For any two objects c and d in C and any generalized element
〈x ,y〉 : E → F (c)×F (d) in E there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C with
arrows ui : bi → c and vi : bi → d in C and a generalized
element zi : Ei → F (bi ) in E such that 〈F (ui ),F (vi )〉 ◦zi =
〈x ,y〉 ◦ ei for all i ∈ I.

(c) For any two parallel arrows u,v : d → c in C and any
generalized element x : E → F (d) in E for which
F (u)◦x = F (v)◦x , there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an arrow wi : bi → d
and a generalized element yi : Ei → F (bi ) such that
u ◦wi = v ◦wi and F (wi )◦yi = x ◦ei for all i ∈ I.

Theorem
A functor F : C → E from a small category C to a Grothendieck
topos E is flat if and only if it is filtering.

Remarks
• For any small category C , a functor P : C → Set is filtering if

and only if its category of elements
∫

P is a filtered category
(equivalently, if it is a filtered colimit of representables).

• For any small cartesian category C , a functor C → E is flat if
and only if it preserves finite limits.
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Morphisms and comorphisms of sites
Geometric morphisms can be naturally induced by functors
between sites satisfying appropriate properties:

Definition
• A morphism of sites (C ,J)→ (D ,K ) is a functor F : C →D

such that the composite l ′ ◦F , where l ′ is the canonical
functor D → Sh(D ,K ), is flat and J-continuous. If C and D
have finite limits then F is a morphism of sites if and only if it
preserves finite limits and is cover-preserving.

• A comorphism of sites (D ,K )→ (C ,J) is a functor π : D → C
which is cover-reflecting (in the sense that for any d ∈D and
any J-covering sieve S on π(d) there is a K -covering sieve R
on d such that π(R)⊆ S).

Theorem
• Every morphism of sites (C ,J)→ (D ,K ) induces a geometric

morphism Sh(D ,K )→ Sh(C ,J).

• Every comorphism of sites (D ,K )→ (C ,J) induces a
geometric morphism Sh(D ,K )→ Sh(C ,J).
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Toposes as mathematical universes

W. Lawvere and M. Tierney discovered that a topos could not only
be seen as a generalized space, but also as a mathematical
universe in which one can do mathematics similarly to how one
does it in the classical context of sets, with the only important
exception that one must argue constructively. In fact, the internal
logic of a topos, captured to a great extent by its subobject
classifier, is in general intuitionistic.

Amongst other things, this view of toposes as mathematical
universes paved the way for:

• Exploiting the inherent ‘flexibility’ of the notion of topos to
construct ‘new mathematical worlds’ having particular
properties.

• Considering models of any kind of (first-order) mathematical
theory not just in the classical set-theoretic setting, but inside
every topos, and hence ‘relativise’ Mathematics.
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Subobjects in a Grothendieck topos

Since limits in a topos Sh(C ,J) are computed as in the presheaf
topos [C op,Set], a subobject of a sheaf F in Sh(C ,J) is just a
subsheaf, that is a subfunctor which is a sheaf.

Notice that a subfunctor F ′ ⊆ F is a sheaf if and only if for every
J-covering sieve S and every element x ∈ F (c), x ∈ F ′(c) if and
only if F (f )(x) ∈ F ′(dom(f )) for every f ∈ S.

Theorem
• For any Grothendieck topos E and any object a of E , the

poset SubE (a) of all subobjects of a in E is a complete
Heyting algebra.

• For any arrow f : a→ b in a Grothendieck topos E , the
pullback functor f ∗ : SubE (b)→ SubE (a) has both a left
adjoint ∃f : SubE (a)→ SubE (b) and a right adjoint
∀f : SubE (a)→ SubE (b).
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The Heyting operations on subobjects

Proposition
The collection SubSh(C ,J)(E) of subobjects of an object E in
Sh(C ,J) has the structure of a complete Heyting algebra with
respect to the natural ordering A≤ B if and only if for every c ∈ C ,
A(c)⊆ B(c). We have that

• (A∧B)(c) = A(c)∩B(c) for any c ∈ C ;
• (A∨B)(c) = {x ∈ E(c) | {f : d → c | E(f )(x) ∈ A(d)∪B(d)}
∈ J(c)} for any c ∈ C ;
(the infinitary analogue of this holds)

• (A⇒B)(c) = {x ∈ E(c) | for every f : d → c,E(f )(x) ∈ A(d)
implies E(f )(x) ∈ B(d)} for any c ∈ C .

• the bottom subobject 0 � E is given by the embedding into E
of the initial object 0 of Sh(C ,J) (given by: 0(c) = /0 if /0 /∈ J(c)
and 0(c) = {∗} if /0 ∈ J(c));

• the top subobject is the identity one.

Remark
From the Yoneda Lemma it follows that the subobject classifier Ω in
Sh(C ,J) has the structure of an internal Heyting algebra in
Sh(C ,J).
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The interpretation of quantifiers
Let φ : E → F be a morphism in Sh(C ,J).

• The pullback functor

φ
∗ : SubSh(C ,J)(F )→ SubSh(C ,J)(E)

is given by: φ ∗(B)(c) = φ(c)−1(B(c)) for any subobject
B � F and any c ∈ C .

• The left adjoint

∃φ : SubSh(C ,J)(E)→ SubSh(C ,J)(F )

is given by: ∃φ (A)(c) = {y ∈ E(c) | {f : d → c | (∃a ∈
A(d))(φ(d)(a) = E(f )(y))} ∈ J(c)}
for any subobject A � E and any c ∈ C .

• The right adjoint

∀φ : SubSh(C ,J)(E)→ SubSh(C ,J)(F )

is given by ∀φ (A)(c) = {y ∈ E(c) | for all f : d →
c,φ(d)−1(E(f )(y))⊆ A(d)}
for any subobject A � E and any c ∈ C .
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Model theory in toposes
We can consider models of arbitrary first-order theories in any
Grothendieck topos, thanks to the rich categorical structure
present on it.

The notion of model of a first-order theory in a topos is a natural
generalization of the usual Taskian definition of a (set-based)
model of the theory.

Let Σ be a (possibly multi-sorted) first-order signature. A structure
M over Σ in a category E with finite products is specified by the
following data:

• any sort A of Σ is interpreted by an object MA of E
• any function symbol f : A1, . . . ,An→ B of Σ is interpreted as an

arrow Mf : MA1×·· ·×MAn→MB in E
• any relation symbol R � A1, . . . ,An of Σ is interpreted as a

subobject MR � MA1×·· ·×MAn in E

Any formula {~x . φ} in a given context~x over Σ is interpreted as a
subobject [[~x . φ ]]M � MA1×·· ·×MAn defined recursively on the
structure of the formula.
A model of a theory T over a first-order signature Σ is a structure
over Σ in which all the axioms of T are satisfied.
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Geometric theories

Definition
A geometric theory T is a theory over a first-order signature Σ
whose axioms can be presented in the form (φ ~̀x ψ), where φ

and ψ are geometric formulae, that is formulae in the context~x
built up from atomic formulae over Σ by only using finitary
conjunctions, infinitary disjunctions and existential quantifications.

Remark
Inverse image functors of geometric morphisms of toposes
always preserve models of a geometric theory (but in general not
those of an arbitrary first-order theory).

Most of the first-order theories naturally arising in Mathematics
are geometric; anyway, if a finitary first-order theory is not
geometric, one can always canonically associate with it a
geometric theory, called its Morleyization, having the same
set-based models.
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Classifying toposes

It was realized in the seventies (thanks to the work of several
people, notably including W. Lawvere, A. Joyal, G. Reyes and M.
Makkai) that:

• Every geometric theory T has a classifying topos ET which is
characterized by the following representability property: for
any Grothendieck topos E we have an equivalence of
categories

Geom(E ,ET)' T-mod(E )

natural in E , where
- Geom(E ,ET) is the category of geometric morphisms E → ET

and
- T-mod(E ) is the category of T-models in E .

• The classifying topos of a geometric theory T can be
canonically built as the category Sh(CT,JT) of sheaves on
the syntactic site (CT,JT) of T.
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The syntactic category of a geometric theory
Definition (Makkai and Reyes 1977)

• Let T be a geometric theory over a signature Σ. The syntactic
category CT of T has as objects the ‘renaming’-equivalence
classes of geometric formulae-in-context {~x . φ} over Σ and as
arrows {~x . φ}→ {~y . ψ} (where the contexts~x and ~y are
supposed to be disjoint without loss of generality) the
T-provable-equivalence classes [θ ] of geometric formulae
θ(~x ,~y) which are T-provably functional i.e. such that the
sequents

(φ ~̀x (∃y)θ),
(θ ~̀x ,~y φ ∧ψ), and

((θ ∧θ [~z/~y ]) ~̀x ,~y ,~z (~y =~z))

are provable in T.
• The composite of two arrows

{~x . φ}
[θ ] // {~y . ψ}

[γ] // {~z . χ}

is defined as the T-provable-equivalence class of the formula
(∃~y)θ ∧ γ.

• The identity arrow on an object {~x . φ} is the arrow

{~x . φ}
[φ∧~x ′=~x ] // {~x ′ . φ [~x ′/~x ]}
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The syntactic site
On the syntactic category of a geometric theory it is natural to put
the Grothendieck topology defined as follows:

Definition
The syntactic topology JT on the syntactic category CT of a
geometric theory T is the geometric topology on it; in particular,

a small family {[θi ] : {~xi . φi}→ {~y . ψ}} in CT is JT-covering

if and only if

the sequent (ψ ~̀y∨i∈I
(∃~xi )θi ) is provable in T.

This notion is instrumental for identifying the models of the theory
T in any geometric category C (and in particular in any
Grothendieck topos) as suitable functors defined on the syntactic
category CT with values in C ; indeed, these are precisely the
JT-continuous cartesian functors CT→ C . So if C is a
Grothendieck topos they correspond precisely to the geometric
morphisms from C to Sh(CT,JT). This topos therefore classifies
T.
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Morita equivalence

• Two mathematical theories are said to be Morita-equivalent if
have the same classifying topos (up to equivalence): this
means that they have equivalent categories of models in
every Grothendieck topos E , naturally in E .

• Every Grothendieck topos is the classifying topos of some
geometric theory (and in fact, of infinitely many theories).

• So a Grothendieck topos can be seen as a canonical
representative of equivalence classes of theories modulo
Morita-equivalence.
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Toposes as bridges

• The notion of Morita-equivalence is ubiquitous in
Mathematics; indeed, it formalizes in many situations the
feeling of ‘looking at the same thing in different ways’, or
‘constructing a mathematical object through different
methods’.

• In fact, many important dualities and equivalences in
Mathematics can be naturally interpreted in terms of
Morita-equivalences.

• On the other hand, Topos Theory itself is a primary source of
Morita-equivalences. Indeed, different representations of the
same topos can be interpreted as Morita-equivalences
between different mathematical theories.

• Any two theories which are bi-interpretable in each other are
Morita-equivalent but, very importantly, the converse does
not hold.

• We can expect most of the categorical equivalences between
categories of set-based models of geometric theories to lift to
Morita equivalences.
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Toposes as bridges
• In the topos-theoretic study of theories, the latter are

represented by sites (of definition of their classifying topos or
of some other topos naturally attached to them).

• The existence of theories which are Morita-equivalent to each
other translates into the existence of different sites of definition
(or, more generally, presentations) for the same Grothendieck
topos.

• Grothendieck toposes can be effectively used as ‘bridges’ for
transferring notions, properties and results across different
Morita-equivalent theories:

ET ' ET′

��
T

11

T′

• The transfer of information takes place by expressing
topos-theoretic invariants in terms of the different sites of
definition (or, more generally, presentations) for the given
topos.

• As such, different properties (resp. constructions) arising in
the context of theories classified by the same topos are seen
to be different manifestations of a unique property (resp.
construction) lying at the topos-theoretic level.
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Toposes as bridges
• This methodology is technically effective because the

relationship between a topos and its representations is often
very natural, enabling us to easily transfer invariants across
different representations (and hence, between different
theories).

• On the other hand, the ‘bridge’ technique is highly non-trivial, in
the sense that it often yields deep and surprising results. This
is due to the fact that a given invariant can manifest itself in
significanly different ways in the context of different
presentations.

• The level of generality represented by topos-theoretic
invariants is ideal to capture several important features of
mathematical theories and constructions. Indeed, many
important invariants of mathematical structures are actually
invariants of toposes (think for instance of cohomology or
homotopy groups) and topos-theoretic invariants considered on
the classifying topos ET of a geometric theory T often translate
into interesting logical (i.e. syntactic or semantic) properties of
T.
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Toposes as bridges
• The fact that topos-theoretic invariants specialize to important

properties or constructions of natural mathematical interest is
a clear indication of the centrality of these concepts in
Mathematics. In fact, whatever happens at the level of toposes
has ‘uniform’ ramifications in Mathematics as a whole: for
instance

This picture represents the lattice structure on the collection of
the subtoposes of a topos E inducing lattice structures on the
collection of ‘quotients’ of geometric theories T, S, R classified
by it.
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The ‘bridge-building’ technique
• Decks of ‘bridges’: Morita-equivalences (or more generally

morphisms or other kinds of relations between toposes)

• Arches of ‘bridges’: Site characterizations for topos-theoretic
invariants (or more generally ‘unravelings’ of topos-theoretic
invariants in terms of concrete representations of the relevant
topos)

The ‘bridge’ yields a logical equivalence (or an implication)
between the ‘concrete’ properties P(C ,J) and Q(D ,K ), interpreted in
this context as manifestations of a unique property I lying at the
level of the topos. 42 / 66
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Topos-theoretic invariants
• By a topos-theoretic invariant we mean any notion which is

invariant under categorical equivalence of toposes.

• The notion of a geometric morphism of toposes has notably
allowed to build general comology theories starting from the
categories of internal abelian groups or modules in toposes. In
particular, the topos-theoretic viewpoint has allowed
Grothendieck to refine and enrich the study of cohomology, up to
the so-called ‘six-operation formalism’.
The cohomological invariants have had a tremendous impact on
the development of modern Algebraic Geometry and beyond.

• On the other hand, also homotopy-theoretic invariants such as
the fundamental group and the higher homotopy groups can be
defined as invarants of toposes.

• Still, these are by no means the only invariants that one can
consider on toposes: indeed, there are infinitely many invariants
of toposes (of algebraic, logical, geometric or whatever nature),
the notion of identity for toposes being simply categorical
equivalence.
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A few selected applications
Since the theory of topos-theoretic ‘bridges’ was introduced in
2010, several applications of it have been obtained in different
fields of Mathematics, such as:

• Model theory (topos-theoretic Fraïssé theorem)
• Proof theory (various results for first-order theories)
• Algebra (topos-theoretic generalization of topological Galois

theory)
• Topology (topos-theoretic interpretation/generation of

Stone-type and Priestley-type dualities)
• Functional analysis (various results on Gelfand spectra and

Wallman compactifications)
• Many-valued logics and lattice-ordered groups (two joint

papers with A. C. Russo)
• Cyclic homology, as reinterpreted by A. Connes (work on

“cyclic theories”, jointly with N. Wentzlaff)
• Algebraic geometry (logical analysis of (co)homological

motives, cf. the paper “Syntactic categories for Nori motives”
joint with L. Barbieri-Viale and L. Lafforgue)

44 / 66



An introduction to
Grothendieck

toposes

Olivia Caramello

Introduction

Toposes as
generalized
spaces
Sheaves on a
topological space

Sheaves on a site

Geometric
morphisms

Toposes as
mathematical
universes

Classifying
toposes

Toposes as
bridges

Examples of
‘bridges’

Topological
Galois theory

Theories of
presheaf type

Topos-theoretic
Fraïssé theorem

Stone-type
dualities

General remarks

Future directions

Some examples of ‘bridges’

We shall now discuss a few ‘bridges’ established in the context of
the above-mentioned applications:

• Topological Galois theory

• Theories of presheaf type

• Topos-theoretic Fraïssé theorem

• Stone-type dualities

The results are completely different... but the methodology is
always the same!
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Topological Galois theory

Recall that classical topological Galois theory provides, given a
Galois extension F ⊆ L, a bijective correspondence between the
intermediate field extensions (resp. finite field extensions)
F ⊆ K ⊆ L and the closed (resp. open) subgroups of the Galois
group AutF (L).

This admits the following categorical reformulation: the functor
K →Hom(K ,L) defines an equivalence of categories

(L L
F )op ' Contt (AutF (L)),

where L L
F is the category of finite intermediate field extensions

and Contt (AutF (L)) is the category of continuous non-empty
transitive actions of AutF (L) on discrete sets.

A natural question thus arises: can we characterize the
categories C whose dual is equivalent to (or fully embeddable
into) the category of (non-empty transitive) actions of a
topological automorphism group?
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The topos-theoretic interpretation

Key observation: the above equivalence extends to an
equivalence of toposes

Sh(L L
F

op
,Jat )' Cont(AutF (L)),

where Jat is the atomic topology on L L
F

op and Cont(AutF (L)) is
the topos of continuous actions of AutF (L) on discrete sets.

It is therefore natural to investigate our problem by using the
methods of topos theory: more specifically, we shall look for
conditions on a small category C and on an object u of its
ind-completion for the existence of an equivalence of toposes of
the form

Sh(C op,Jat )' Cont(Aut(u)) .

We will then be able to obtain, starting from such an equivalence,
an answer to our question, and hence build Galois-type theories
in a great variety of different mathematical contexts.

47 / 66



An introduction to
Grothendieck

toposes

Olivia Caramello

Introduction

Toposes as
generalized
spaces
Sheaves on a
topological space

Sheaves on a site

Geometric
morphisms

Toposes as
mathematical
universes

Classifying
toposes

Toposes as
bridges

Examples of
‘bridges’

Topological
Galois theory

Theories of
presheaf type

Topos-theoretic
Fraïssé theorem

Stone-type
dualities

General remarks

Future directions

The key notions I
• A category C is said to satisfy the amalgamation property

(AP) if for every objects a,b,c ∈ C and morphisms f : a→ b,
g : a→ c in C there exists an object d ∈ C and morphisms
f ′ : b→ d , g′ : c→ d in C such that f ′ ◦ f = g′ ◦g:

a

g

��

f // b

f ′
��

c
g′
// d

• A category C is said to satisfy the joint embedding property
(JEP) if for every pair of objects a,b ∈ C there exists an
object c ∈ C and morphisms f : a→ c, g : b→ c in C :

a

f
��

b g
// c
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The key notions II

• An object u ∈ Ind-C is said to be C -universal if for every
a ∈ C there exists an arrow χ : a→ u in Ind-C :

a
χ // u

• An object u ∈ Ind-C is said to be C -ultrahomogeneous if for
any object a ∈ C and arrows χ1 : a→ u, χ2 : a→ u in Ind-C
there exists an automorphism j : u→ u such that j ◦χ1 = χ2:

a

χ2 ��

χ1 // u

j
��

u
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Topological Galois theory as a ‘bridge’

Theorem
Let C be a small category satisfying the amalgamation and joint
embedding properties, et let u be a C -universal et
C -ultrahomogeneous object of the ind-completion Ind-C of C . Then
there is an equivalence of toposes

Sh(C op,Jat )' Cont(Aut(u)),

where Aut(u) is endowed with the topology in which a basis of open
neighbourhoods of the identity is given by the subgroups of the form
Iχ = {α ∈ Aut(u) | α ◦χ = χ} for χ : c→ u an arrow in Ind-C from an
object c of C .
This equivalence is induced by the functor

F : C op→ Cont(Aut(u))

which sends any object c of C on the set HomInd-C (c,u) (endowed
with the obvious action of Aut(u)) and any arrow f : c→ d in C to the
Aut(u)-equivariant map

−◦ f : HomInd-C (d ,u)→HomInd-C (c,u) .
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Topological Galois theory as a ‘bridge’
The following result arises from two ‘bridges’, respectively obtained by
considering the invariant notions of atom and of arrow between atoms.

Theorem
Under the hypotheses of the last theorem, the functor F is full and
faithful if and only if every arrow of C is a strict monomorphism, and it is
an equivalence on the full subcategory Contt (Aut(u)) of Cont(Aut(u))
on the non-empty transitive actions if C is moreover atomically complete.

Sh(C op,Jat )' Cont(Aut(u))

C op Contt (Aut(u))

This theorem generalizes Grothendieck’s theory of Galois categories and
can be applied for generating Galois-type theories in different fields of
Mathematics, for example that of finite groups and that of finite graphs.

Moreover, if a category C satisfies the first but not the second condition
of the theorem, our topos-theoretic approach gives us a fully explicit way
to complete it, by means of the addition of ‘imaginaries’, so that also the
second condition gets satisfied.
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Theories of presheaf type

Definition
A geometric theory is said to be of presheaf type if it is classified by
a presheaf topos.
Theories of presheaf type are very important in that they constitute
the basic ‘building blocks’ from which every geometric theory can be
built. Indeed, as every Grothendieck topos is a subtopos of a
presheaf topos, so every geometric theory is a ‘quotient’ of a theory
of presheaf type.
These theories are the logical counterpart of small categories, in the
sense that:

• For any theory of presheaf type T, its category T-mod(Set) of
(set-based) models is equivalent to the ind-completion of the full
subcategory f.p.T-mod(Set) on the finitely presentable models.

• Any small category C is, up to idempotent splitting completion,
equivalent to the category f.p.T-mod(Set) for some theory of
presheaf type T.

Moreover, any geometric theory T can be expanded to a theory
classified by the topos [f.p.T-mod(Set),Set].
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Theories of presheaf type
Every finitary algebraic (or, more generally, cartesian) theory is of
presheaf type, but this class contains many other interesting
mathematical theories including

• the theory of linear orders (classified by the simplicial topos)
• the theory of algebraic extensions of a given field
• the theory of flat modules over a ring
• the theory of lattice-ordered abelian groups with strong unit
• the ‘cyclic theories’ (classified by the cyclic topos, the

epicyclic topos and the arithmetic topos)
• the theory of perfect MV-algebras (or more generally of local

MV-algebras in a proper variety of MV-algebras)
• the geometric theory of finite sets

Any theory of presheaf type T gives rise to two different
representations of its classifying topos, which can be used to
build ‘bridges’ connecting its syntax and semantics:

[f.p.T-mod(Set),Set]' Sh(CT,JT)

f.p.T-mod(Set)op (CT,JT)
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Irreducible formulae and finitely presentable models

Definition
Let T be a geometric theory over a signature Σ. Then a geometric
formula φ(~x) over Σ is said to be T-irreducible if, regarded as an
object of the syntactic category CT of T, it does not admit any
non-trivial JT-covering sieves.

Theorem
Let T be a theory of presheaf type over a signature Σ. Then

(i) Any finitely presentable T-model in Set is presented by a
T-irreducible geometric formula φ(~x) over Σ;

(ii) Conversely, any T-irreducible geometric formula φ(~x) over Σ
presents a T-model.

In fact, the category f.p.T-mod(Set)op is equivalent to the full
subcategory C irr

T of CT on the T-irreducible formulae.
Irreducible object

[f.p.T-mod(Set),Set]' Sh(CT,JT)

f.p.T-mod(Set)op

Every object

(
CT,JT)

T-irreducible
formula
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A definability theorem

Theorem
Let T be a theory of preshef type and suppose that we are given,
for every finitely presentable Set-model M of T, a subset RM of
M n in such a way that every T-model homomorphism
h : M →N maps RM into RN . Then there exists a geometric
formula-in-context φ(x1, . . . ,xn) such that RM = [[~x . φ ]]M for each
finitely presentable T-model M .

Subobject of UA1×···×UAn

[f.p.T-mod(Set),Set]' Sh(CT,JT)

f.p.T-mod(Set)op

Functorial assignment
M→RM⊆MA1×···×MAn

(
CT,JT)

Geometric formula
φ(x

A1
1 ,...,xAn

n )
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Topos-theoretic Fraïssé theorem

The following result, which generalizes Fraïssé’s theorem in
classical model theory, arises from a triple ‘bridge’.

Definition
A set-based model M of a geometric theory T is said to be
homogeneous if for any arrow y : c→M in T-mod(Set) and any
arrow f in f.p.T-mod(Set) there exists an arrow u in T-mod(Set)
such that u ◦ f = y :

c

f
��

y // M

d
u

??

Theorem
Let T be a theory of presheaf type such that the category
f.p.T-mod(Set) is non-empty and has AP and JEP. Then the
theory T′ of homogeneous T-models is complete and atomic.
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Topos-theoretic Fraïssé theorem

Atomic topos
Sh(f.p.T-mod(Set)op,Jat )' Sh(CT′ ,JT′)

(f.p.T-mod(Set)op,Jat )
Atomic site i.e.

AP on f.p.T-mod(Set)

(
CT′ ,JT′)

Atomicity of T′

Two-valued topos
Sh(f.p.T-mod(Set)op,Jat )' Sh(CT′ ,JT′)

(f.p.T-mod(Set)op,Jat )
JEP on f.p.T-mod(Set)

(
CT′ ,JT′)

Completeness of T′

Point of
Sh(f.p.T-mod(Set)op,Jat )' Sh(CT′ ,JT′)

(f.p.T-mod(Set)op,Jat )
homogeneous T-model in Set

(
CT′ ,JT′)

T′-model in Set
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Stone-type dualities through ‘bridges’
The ‘bridge-building’ technique allows one to unify all the classical
Stone-type dualities between special kinds of preorders and partial
orders, locales or topological spaces as instances of just one
topos-theoretic phenomenon, and to generate many new such
dualities.

More precisely, this machinery generates Stone-type
dualities/equivalences by functorializing ‘bridges’ of the form

Sh(C ,JC )' Sh(D ,KD )

C D

where
• C is a preorder (regarded as a category),
• JC is a (subcanonical) Grothendieck topology on C ,
• C is a KD -dense full subcategory of D , and
• JC is the induced Grothendieck topology (KD )|C on C .
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Stone-type dualities through ‘bridges’

Our machinery relies on the following key points:
• The possibility of defining Grothendieck topologies on posets

in an intrinsic way which exploits the lattice-theoretic
structure present on them.

• The possibility of functorializing the assignments
C → Sh(C ,JC ) and D → Sh(D ,KD ) by means of the
(covariant or contravariant) theory of morphisms of sites.

• The possibility of recovering (under suitable hypotheses
which are satisfied in a great number of cases) a given
preordered structure from the associated topos by means of
a topos-theoretic invariant.
More precisely, if the topologies KD (resp. JC ) can be
‘uniformly described through an invariant C of families of
subterminals in a topos’ then the elements of D (resp. of C )
can be recovered as the subterminal objects of the topos
Sh(D ,KD ) (resp. Sh(C ,JC )) which satisfy a condition of
C-compactness.
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A mathematical morphogenesis

• The essential ambiguity given by the fact that any topos is
associated in general with an infinite number of theories or
different sites allows to study the relations between different
theories, and hence the theories themselves, by using
toposes as ’bridges’ between these different presentations.

• Every topos-theoretic invariant generates a veritable
mathematical morphogenesis resuting from its expression in
terms of different representations of toposes, which gives rise
in general to connections between properties or notions that
are completely different and apparently unrelated from each
other

• The mathematical exploration is therefore in a sense
‘reversed’ since it is guided by the Morita-equivalences and
by topos-theoretic invariants, from which one proceeds to
extract concrete information on the theoires that one wishes
to study.
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The duality between ‘real’ and ‘imaginary’
• The passage from a site (or a theory) to the associated topos

can be regarded as a sort of ‘completion’ by the addition of
‘imaginaries’ (in the model-theoretic sense), which materializes
the potential contained in the site (or theory).

• The duality between the (relatively) unstructured world of
presentations of theories and the maximally strucured world of
toposes is of great relevance as, on the one hand, the
‘simplicity’ and concreteness of theories or sites makes it easy
to manipulate them, while, on the other hand, computations are
much easier in the ‘imaginary’ world of toposes thanks to their
very rich internal structure and the fact that invariants live at
this level.

topos
Morita equivalence

starting point
= concrete fact

(often quite
elementary)

generation
of other

concrete results
no

direct
deduction

REAL

IMAGINARY

lifting
choice of invariants

for computation
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Some key features of toposes
Here are some essential features of toposes, which account for their
relevance in Mathematics:

• Generality: Unlike most of the invariants used in Mathematics,
the level of generality of topos-theoretic invariants is such as to
make them suitable for effectively comparing with each other
theories or objects coming from different fields of Mathematics.

• Expressivity: On the other hand, many important invariants
arising in Mathematics can be expressed as topos-theoretic
invariants (think for instance of the cohomological and
homotopy-theoretic invariants).

• Centrality: The fact that topos-theoretic invariants often
manifest as important properties or constructions of natural
mathematical or logical interest is a clear indication of the
centrality of these concepts in Mathematics. In fact, whatever
happens at the level of toposes has ‘uniform’ ramifications in
Mathematics as a whole.

• Technical flexibility: Toposes are mathematical universes which
are very rich in terms of internal structure; moreover, they have
a very-well behaved representation theory, which makes them
extremely effective computational tools, in particular when they
are considered as ‘bridges’.
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Toposes as ‘bridges’ and the Erlangen Program

The methodology ‘toposes as bridges’ is a vast extension of
Felix Klein’s Erlangen Program (A. Joyal)

More specifically:

• Every group gives rise to a topos (namely, the category of
actions of it), but the notion of topos is much more general.

• As Klein classified geometries by means of their
automorphism groups, so we can study first-order geometric
theories by studying the associated classifying toposes.

• As Klein established surprising connections between very
different-looking geometries through the study of the
algebraic properties of the associated automorphism groups,
so the methodology ‘toposes as bridges’ allows to discover
non-trivial connections between properties, concepts and
results pertaining to different mathematical theories through
the study of the categorical invariants of their classifying
toposes.
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Future directions

The evidence provided by the results obtained so far shows that
toposes can effectively act as unifying spaces for transferring
information between distinct mathematical theories and for
generating new equivalences, dualities and symmetries across
different fields of Mathematics.

In fact, toposes have an authentic creative power in Mathematics,
in the sense that their study naturally leads to the discovery of a
great number of notions and ‘concrete’ results in different
mathematical fields, which are pertinent but often unsuspected.

In the next years, we intend to continue pursuing the development
of these general unifying methodologies both at the theoretical
level and at the applied level, in order to continue developing the
potential of toposes as fundamental tools in the study of
mathematical theories and their relations, and as key concepts
defining a new way of doing Mathematics liable to bring distinctly
new insights in a great number of different subjects.
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Future directions
Central themes in this programme will be:

• investigation of important dualities or correspondences in
Mathematics from a topos-theoretic perspective (in particular,
the theory of motives, class field theory and the Langlands
programme)

• systematic study of invariants of toposes in terms of their
presentations, and introduction of new invariants which
capture important aspects of concrete mathematical
problems

• interpretation and generalization of important parts of
classical and modern model theory in terms of toposes and
development of a functorial model theory

• introduction of new methodologies for generating
Morita-equivalences

• development of general techniques for building spectra by
using classifying toposes

• generalization of the ‘bridge’ technique to the setting of
higher categories and toposes through the introduction of
higher geometric logic

• development of a relative theory of classifying toposes
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For further reading

O. Caramello
Grothendieck toposes as unifying ‘bridges’ in Mathematics,
Mémoire d’habilitation à diriger des recherches,
Université de Paris 7 (2016),
available from my website www.oliviacaramello.com.

O. Caramello
Theories, Sites, Toposes: Relating and studying
mathematical theories through topos-theoretic ‘bridges’,
Oxford University Press (2017).

S. Mac Lane and I. Moerdijk.
Sheaves in geometry and logic: a first introduction to topos
theory
Springer-Verlag (1992).
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