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The “unifying notion” of topos

“It is the topos theme which is this “bed” or “deep river”
where come to be married geometry and algebra, topology and arithmetic,
mathematical logic and category theory, the world of the “continuous” and

that of “discontinuous” or discrete structures. It is what I have conceived of
most broad to perceive with finesse, by the same language rich of

geometric resonances, an “essence” which is common to situations
most distant from each other coming from one region or another

of the vast universe of mathematical things”.

A. Grothendieck

Topos theory can be regarded as a unifying subject in Mathema-
tics, with great relevance as a framework for systematically inves-
tigating the relationships between different mathematical theories
and studying them by means of a multiplicity of different points of
view. Its methods are transversal to the various fields and com-
plementary to their own specialized techniques. In spite of their
generality, the topos-theoretic techniques are liable to generate in-
sights which would be hardly attainable otherwise and to establish
deep connections that allow effective transfers of knowledge bet-
ween different contexts.
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Toposes as unifying ‘bridges’
The unifying nature of toposes is intimately tied to the fact that
Grothendieck toposes are objects that can be built from a great
variety of different mathematical situations, ideally in a such a way
that essential features of such situations can be captured by means
of topos-theoretic invariants on the associated toposes.

Indeed, the possibility of presenting a given topos is multiple ways is
at the heart of the bridge technique, introduced in 2010 in the paper
“The unification of Mathematics via Topos Theory” as a means to
effectively use toposes as unifying spaces across different
mathematical contexts, as well as for studying mathematical
theories in an intrinsically dynamical way.

The key idea is that the possibility of presenting a topos in a
multitude of different ways can be effectively exploited for building
unifying ‘bridges’ between theories having an equivalent, or strictly
related, mathematical content.

These ‘bridges’ allow effective and often deep transfers of notions,
ideas and results across the theories.

In fact, ‘bridges’ have proved useful not only for connecting different
theories with each other, but also for working inside a given
mathematical theory and investigating it from a multiplicity of
different points of view. 3 / 96
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Presentations of toposes

The most classical way for building toposes is through sites
(indeed, a Grothendieck topos is, by definition, any category
equivalent to the category of sheaves on a small-generated sites).

Still, toposes can also be canonically associated with groups (or
more generally topological or localic groupoids) or with (first-order
geometric) theories or with non-commutative structures such as
quantales or quantaloids, etc.

In this course we shall study morphisms and equivalences of
toposes from the (geometric) point of view of their site
presentations.
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Grothendieck toposes
• The notion of topos was introduced in the early sixties by A.

Grothendieck with the aim of bringing a topological or
geometric intuition also in areas where actual topological
spaces do not occur.

• Grothendieck realized that many important properties of
topological spaces X can be naturally formulated as
(invariant) properties of the categories Sh(X ) of sheaves of
sets on the spaces.

• He then defined toposes as more general categories of
sheaves of sets, by replacing the topological space X by a
(small) site, that is a pair (C, J) consisting of a (small)
category C and a ‘generalized notion of covering’ J on it, and
taking sheaves (in a generalized sense) over the site:

X //

��

Sh(X )

��
(C, J) // Sh(C, J)

5 / 96



The geometry of
morphisms and
equivalences of

toposes

Olivia Caramello

Preliminaries on
Grothendieck
toposes

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Denseness
conditions

Characterization
of invariant
properties of
morphisms

Characterizations
in terms of
comorphisms of
sites

Local morphisms

Sieves
The notion of Grothendieck topology on a category represents a
‘categorification’ of the classical notion of covering of an open set of a
topological space by a family of open subsets. In order to define it in full
generality, one needs to talk about sieves.

Definition
• Given a category C and an object c ∈ Ob(C), a presieve P in C on c

is a collection of arrows in C with codomain c.
• Given a category C and an object c ∈ Ob(C), a sieve S in C on c is

a collection of arrows in C with codomain c such that

f ∈ S ⇒ f ◦ g ∈ S

whenever this composition makes sense.
• We say that a sieve S is generated by a presieve P on an object c

if it is the smallest sieve containing it, that is if it is the collection of
arrows to c which factor through an arrow in P.

If S is a sieve on c and h : d → c is any arrow to c, then

h∗(S) := {g | cod(g) = d , h ◦ g ∈ S}

is a sieve on d .
6 / 96
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Grothendieck topologies
Definition

• A Grothendieck topology on a category C is a function J which
assigns to each object c of C a collection J(c) of sieves on c in
such a way that

(i) (maximality axiom) the maximal sieve Mc = {f | cod(f ) = c} is
in J(c);

(ii) (stability axiom) if S ∈ J(c), then f ∗(S) ∈ J(d) for any arrow
f : d → c;

(iii) (transitivity axiom) if S ∈ J(c) and R is any sieve on c such that
f ∗(R) ∈ J(d) for all f : d → c in S, then R ∈ J(c).

The sieves S which belong to J(c) for some object c of C are
said to be J-covering.

• A site (resp. small site) is a pair (C, J) where C is a category
(resp. a small category) and J is a Grothendieck topology on
C.

• A site (C, J) is said to be small-generated if C is locally small
and has a small J-dense subcategory (that is, a category D
such that every object of C admits a J-covering sieve
generated by arrows whose domains lie in D, and for every
arrow f : d → c in C where d lies in D the family of arrows
g : dom(g)→ d such that f ◦ g lies in D generates a
J-covering sieve).
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Examples of Grothendieck topologies
• For any (small) category C, the trivial topology on C is the

Grothendieck topology in which the only sieve covering an
object c is the maximal sieve Mc .

• The dense topology D on a category C is defined by: for a
sieve S,

S ∈ D(c) if and only if for any f : d → c there exists
g : e→ d such that f ◦ g ∈ S .

If C satisfies the right Ore condition i.e. the property that any
two arrows f : d → c and g : e→ c with a common codomain
c can be completed to a commutative square

• //

��

d

f
��

e
g // c

then the dense topology on C specializes to the atomic
topology on C i.e. the topology Jat defined by: for a sieve S,

S ∈ Jat (c) if and only if S 6= ∅ .
8 / 96
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Examples of Grothendieck topologies
• If X is a topological space, the usual notion of covering in Topology

gives rise to the following Grothendieck topology JO(X) on the poset
category O(X ): for a sieve S = {Ui ↪→ U | i ∈ I} on U ∈ Ob(O(X )),

S ∈ JO(X)(U) if and only if ∪
i∈I

Ui = U .

• More generally, given a frame (or complete Heyting algebra) H, we
can define a Grothendieck topology JH , called the canonical
topology on H, by:

{ai | i ∈ I} ∈ JH(a) if and only if ∨
i∈I

ai = a .

• The Zariski topology on the opposite of the category Rngf.g. of
finitely generated commutative rings with unit is defined by: for any
cosieve S in Rngf.g. on an object A, S ∈ Z (A) if and only if S
contains a finite family {ξi : A→ Afi | 1 ≤ i ≤ n} of canonical maps
ξi : A→ Afi in Rngf.g. where {f1, . . . , fn} is a set of elements of A
which is not contained in any proper ideal of A.

• Given a (first-order geometric) theory T, one can naturally
associate a site (CT, JT) with it, called its syntactic site, which
embodies essential aspects of the syntax and proof theory of T.

9 / 96
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Sheaves on a site

Definition
• A presheaf on a (small) category C is a functor P : Cop → Set.
• Let P : Cop → Set be a presheaf on C and S be a sieve on an

object c of C.

A matching family for S of elements of P is a function which
assigns to each arrow f : d → c in S an element xf ∈ P(d) in
such a way that

P(g)(xf ) = xf◦g for all g : e→ d .

An amalgamation for such a family is a single element
x ∈ P(c) such that

P(f )(x) = xf for all f in S .

10 / 96
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Sheaves on a site

• Given a site (C, J), a presheaf on C is a J-sheaf if every
matching family for any J-covering sieve on any object of C
has a unique amalgamation.

• The category Sh(C, J) of sheaves on the site (C, J) is the full
subcategory of [Cop,Set] on the presheaves which are
J-sheaves.

• A Grothendieck topos is any category equivalent to the
category of sheaves on a small (or equivalently,
small-generated) site.

11 / 96
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Examples of toposes

The following basic examples show that toposes can be naturally
attached to mathematical notions as different as (small)
categories, topological spaces, or groups.

Examples

• For any (small) category C, [Cop,Set] is the category of
sheaves Sh(C,T ) where T is the trivial topology on C.

• For any topological space X , Sh(O(X ), JO(X)) is equivalent to
the usual category Sh(X ) of sheaves on X .

• For any (topological) group G, the category BG = Cont(G) of
continuous actions of G on discrete sets is a Grothendieck
topos (equivalent, as we shall see, to the category
Sh(Contt(G), Jat) of sheaves on the full subcategory
Contt(G) on the non-empty transitive actions with respect to
the atomic topology).

12 / 96
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Basic properties of Grothendieck toposes
Grothendieck toposes satisfy all the categorical properties that
one might hope for:

Theorem
Let (C, J) be a site. Then

• the inclusion Sh(C, J) ↪→ [Cop,Set] has a left adjoint
a : [Cop,Set]→ Sh(C, J) (called the associated sheaf functor),
which preserves finite limits.

• The category Sh(C, J) has all (small) limits, which are
preserved by the inclusion functor Sh(C, J) ↪→ [Cop,Set]; in
particular, limits are computed pointwise and the terminal
object 1Sh(C,J) of Sh(C, J) is the functor T : Cop → Set sending
each object c ∈ Ob(C) to the singleton {∗}.

• The associated sheaf functor a : [Cop,Set]→ Sh(C, J)
preserves colimits; in particular, Sh(C, J) has all (small)
colimits.

• The category Sh(C, J) has exponentials, which are
constructed as in the topos [Cop,Set].

• The category Sh(C, J) has a subobject classifier.
• The category Sh(C, J) has a separating set of objects.

13 / 96
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Geometric morphisms
The natural, topologically motivated, notion of morphism of
Grothendieck toposes is that of geometric morphism. The natural
notion of morphism of geometric morphisms if that of geometric
transformation.

Definition
(i) Let E and F be toposes. A geometric morphism f : E → F

consists of a pair of functors f∗ : E → F (the direct image of
f ) and f ∗ : F → E (the inverse image of f ) together with an
adjunction f ∗ a f∗, such that f ∗ preserves finite limits.

(ii) Let f and g : E → F be geometric morphisms. A geometric
transformation α : f → g is defined to be a natural
transformation a : f ∗ → g∗.

(iii) A point of a topos E is a geometric morphism Set→ E .

• Grothendieck toposes and geometric morphisms between
them form a 2-category.

• Given two toposes E and F , geometric morphisms from E to
F and geometric transformations between them form a
category, denoted by Geom(E ,F).

14 / 96
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Examples of geometric morphisms
• A continuous function f : X → Y between topological spaces

gives rise to a geometric morphism Sh(f ) : Sh(X )→ Sh(Y ).
The direct image Sh(f )∗ sends a sheaf F ∈ Ob(Sh(X )) to the
sheaf Sh(f )∗(F ) defined by Sh(f )∗(F )(V ) = F (f−1(V )) for any
open subset V of Y . The inverse image Sh(f )∗ acts on étale
bundles over Y by sending an étale bundle p : E → Y to the
étale bundle over X obtained by pulling back p along f : X → Y .

• Every Grothendieck topos E has a unique geometric morphism
E → Set. The direct image is the global sections functor
Γ : E → Set, sending an object e ∈ E to the set HomE(1E ,e),
while the inverse image functor ∆ : Set→ E sends a set S to the

coproduct

⊔
s∈S

1E .

• For any site (C, J), the pair of functors formed by the inclusion
Sh(C, J) ↪→ [Cop,Set] and the associated sheaf functor
a : [Cop,Set]→ Sh(C, J) yields a geometric morphism
i : Sh(C, J)→ [Cop,Set].

• For any Grothendieck topos E and any morphism f : P → Q in E ,
the pullback functor f ∗ : E/Q → E/P has both a left adjoint
(namely, the functor Σf given by composition with f ) and a right
adjoint πf . It is therefore the inverse image of a geometric
morphism E/P → E/Q.

15 / 96
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A general hom-tensor adjunction I

Theorem
Let C be a small category, E be a locally small cocomplete
category and A : C → E a functor. Then we have an adjunction

LA : [Cop,Set] // E : RA
oo

where the right adjoint RA : E → [Cop,Set] is defined for each
e ∈ Ob(E) and c ∈ Ob(C) by:

RA(e)(c) = HomE(A(c),e)

and the left adjoint LA : [Cop,Set]→ E is defined by

LA(P) = colim(A ◦ πP),

where πP is the canonical projection functor
∫

P → C from the
category of elements

∫
P of P to C.

16 / 96
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A general hom-tensor adjunction II
Remarks

• The functor LA can be considered as a generalized tensor
product, since, by the construction of colimits in terms of
coproducts and coequalizers, we have the following
coequalizer diagram:∐

c∈C,p∈P(c)
u:c′→c

A(c′)
τ
//

θ //
∐

c∈C, p∈P(c)
A(c)

φ // LA(P),

where
θ(c,p,u, x) = (c′,P(u)(p), x)

and
τ(c,p,u, x) = (c,p,A(u)(x)) .

For this reason, we shall also denote LA by

−⊗C A : [Cop,Set]→ E .

• We can rewrite the above coequalizer as follows:∐
c,c′∈C

P(c)× HomC(c′, c)× A(c′)
τ
//

θ //
∐
c∈C

P(c)× A(c)
φ // P ⊗C A .

From this we see that this definition is symmetric in P and A,
that is

P ⊗C A ∼= A⊗Cop P .
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A couple of corollaries
Corollary
Every presheaf is a colimit of representables. More precisely, for
any presheaf P : Cop → Set, we have

P ∼= colim(yC ◦ πP),

where yC : C → [Cop,Set] is a Yoneda embedding and πP is the
canonical projection

∫
P → C.

Corollary
For any small category C, the topos [Cop,Set] is the free
cocompletion of C (via the Yoneda embedding yC); that is, any
functor A : C → E to a cocomplete category E extends, uniquely
up to isomorphism, to a colimit-preserving functor [Cop,Set]→ E
along yC :

C

yC
��

A // E

[Cop,Set]

;;

18 / 96
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Separating sets of objects
Definition
A separating set of objects for a Grothendieck topos E is a set C of
objects of E such that for any object A of E , the collection of arrows
from objects in C to A is epimorphic.

Proposition
For any site (C, J), the collection of objects of the form lJ(c) (for
c ∈ C), where

lJ : C → Sh(C, J)

is the composite of the Yoneda embedding yC : C → [Cop,Set] with
the associated sheaf functor aJ : [Cop,Set]→ Sh(C, J), is a
separating set of objects for the topos Sh(C, J).
The following theorem provides a sort of converse to this
proposition:

Theorem
For any set of objects C of E which is separating, we have an
equivalence

E ' Sh(C, Jcan
E |C)

where Jcan
E |C is the Grothendieck topology induced on C (regarded

as a full subcategory of E).
19 / 96
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Geometric morphisms as flat functors I

Definition
• A functor A : C → E from a small category C to a locally small

topos E with small colimits is said to be flat if the functor
−⊗C A : [Cop,Set]→ E preserves finite limits.

• The full subcategory of [C, E ] on the flat functors will be
denoted by Flat(C, E).

Theorem
Let C be a small category and E be a Grothendieck topos. Then we
have an equivalence of categories

Geom(E , [Cop,Set]) ' Flat(C, E)

(natural in E), which sends

• a flat functor A : C → E to the geometric morphism
E → [Cop,Set] determined by the functors RA and −⊗C A, and

• a geometric morphism f : E → [Cop,Set] to the flat functor
given by the composite f ∗ ◦ yC of f ∗ : [Cop,Set]→ E with the
Yoneda embedding yC : C → [Cop,Set].
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Flat = filtering
Definition
A functor F : C → E from a small category C to a Grothendieck
topos E is said to be filtering if it satisfies the following conditions:
(a) For any object E of E there exist an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C and
a generalized element Ei → F (bi ) in E .

(b) For any two objects c and d in C and any generalized element
〈x , y〉 : E → F (c)× F (d) in E there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an object bi of C
with arrows ui : bi → c and vi : bi → d in C and a generalized
element zi : Ei → F (bi ) in E such that 〈F (ui ),F (vi )〉 ◦ zi =
〈x , y〉 ◦ ei for all i ∈ I.

(c) For any two parallel arrows u, v : d → c in C and any
generalized element x : E → F (d) in E for which
F (u) ◦ x = F (v) ◦ x , there is an epimorphic family
{ei : Ei → E | i ∈ I} in E and for each i ∈ I an arrow wi : bi → d
and a generalized element yi : Ei → F (bi ) such that
u ◦ wi = v ◦ wi and F (wi ) ◦ yi = x ◦ ei for all i ∈ I.

Theorem (Mac Lane and Moerdijk)
A functor F : C → E from a small category C to a Grothendieck
topos E is flat if and only if it is filtering.

Remarks
• For any small category C, a functor P : C → Set is filtering if

and only if its category of elements
∫

P is a filtered category
(equivalently, if it is a filtered colimit of representables).

• For any small cartesian category C, a functor C → E is flat if
and only if it preserves finite limits.
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Geometric morphisms to Sh(C, J)
Definition
If (C, J) is a site, a flat functor F : C → E to a Grothendieck topos is
said to be J-continuous if it sends J-covering sieves to epimorphic
families.
The full subcategory of Flat(C, E) on the J-continuous flat functors
will be denoted by FlatJ(C, E).

Theorem
For any site (C, J) and Grothendieck topos E , the
above-mentioned equivalence between geometric morphisms and
flat functors restricts to an equivalence of categories

Geom(E ,Sh(C, J)) ' FlatJ(C, E)

natural in E .

Sketch of proof.
Appeal to the previous theorem

• identifying the geometric morphisms E → Sh(C, J) with the
geometric morphisms E → [Cop,Set] which factor through the
canonical geometric inclusion Sh(C, J) ↪→ [Cop,Set], and

• using the characterization of such morphisms as the
geometric morphisms f : E → [Cop,Set] such that the
composite f ∗ ◦ y of the inverse image functor f ∗ of f with the
Yoneda embedding y : C → [Cop,Set] sends J-covering sieves
to epimorphic families in E .
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Morphisms and comorphisms of sites
Geometric morphisms can be naturally induced by functors
between sites satisfying appropriate properties:

Definition
• A morphism of sites (C, J)→ (D,K ) is a functor F : C → D

such that the composite l ′ ◦ F , where l ′ is the canonical functor
D → Sh(D,K ), is flat and J-continuous. If C and D have finite
limits then F is a morphism of sites if and only if it preserves
finite limits.

• A comorphism of sites (D,K )→ (C, J) is a functor π : D → C
which has the covering-lifting property (in the sense that for
any d ∈ D and any J-covering sieve S on π(d) there is a
K -covering sieve R on d such that π(R) ⊆ S).

We have the following well-known fundamental result, which we
shall discuss in detail below:

Theorem
• Every morphism of sites F : (C, J)→ (D,K ) induces a

geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J).
• Every comorphism of sites π : (D,K )→ (C, J) induces a

geometric morphism Cπ : Sh(D,K )→ Sh(C, J).
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Characterizing morphisms of sites

We can explicitly characterize the functors which are morphisms
of sites by using:

• the characterization of filtering functors with values in a
Grothendieck topos as functors which send certain families
to epimorphic families,

• the fact that the image under the associated sheaf functor of
a family of natural transformations with common codomain is
epimorphic if and only if the family is locally jointly surjective,
and

• the following description of the arrows in a Grothendieck
topos between objects coming from a site in terms of locally
compatible families of arrows in the site.
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Arrows in a Grothendieck topos
Given a site (C, J), for two arrows h, k : c → d in C we shall write
h ≡J k for J-local equality, that is, to mean that there exists a
J-covering sieve S on c such that h ◦ f = k ◦ f for every f ∈ S.
Notice that, denoting by l the canonical functor C → Sh(C, J),
l(h) = l(k) if and only if h ≡J k .

Proposition
Let (C, J) be a small-generated site.

(i) Then any arrow ξ : l(c)→ l(d) in Sh(C, J) admits a local
representation by a family of arrows
{fu : cu → c,gu : cu → d | u ∈ U} such that
{fu : cu → c | u ∈ U} generates a J-covering sieve, for any
object e and arrows h : e→ cu and k : e→ cu′ such that
fu ◦ h = fu′ ◦ k we have gu ◦ h ≡J gu′ ◦ k, and ξ ◦ l(fu) = l(gu)
for every u ∈ U.

(ii) Conversely, any family F : {fu : cu → c,gu : cu → d | u ∈ U}
such that {fu : cu → c | u ∈ U} generates a J-covering sieve
and for any object e and arrows h : e→ cu and k : e→ cu′

such that fu ◦ h = fu′ ◦ k we have gu ◦ h ≡J gu′ ◦ k, determines
a unique arrow ξF : l(c)→ l(d) in Sh(C, J) such that
ξF ◦ l(fu) = l(gu) for every u ∈ U.
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Arrows in a Grothendieck topos

(iii) Two families F = {fu : cu → c,gu : cu → d | u ∈ U} and
F ′ = {f ′v : ev → c,g′v : ev → d | v ∈ V} as in (ii) determine
the same arrow l(c)→ l(d) (i.e. ξF = ξF ′ ) if and only if they
are locally equal on a common refinement, i.e. if there exist a
J-covering family {ak : bk → c | k ∈ K} and factorizations of
it through both of them by arrows xk : bk → cu(k) and
yk : bk → ev(k) (i.e. fu(k) ◦ xk = ak = f ′v(k) ◦ yk for every k ∈ K )
such that gu(k) ◦ xk ≡J g′v(k) ◦ yk for every k ∈ K .

(iv) Given two families F = {fu : cu → c,gu : cu → d | u ∈ U} and
G = {hv : dv → d , kv : dv → e | v ∈ V}, the composite arrow
ξG ◦ ξF : l(c)→ l(e) is induced as in (ii) by the family
{fu ◦ x : dom(x)→ c, kv ◦ y : dom(y)→ e | (u, v , x , y) ∈ Z},
where Z = {(u, v , x , y) | u ∈ U, v ∈ V ,dom(x) =
dom(y), cod(x) = cu, cod(y) = dv ,hv ◦ y = gu ◦ x}.
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Arrows in a Grothendieck topos
Proposition
Let (C, J) be a small-generated site and aJ the associated sheaf
functor [Cop,Set]→ Sh(C, J). Then

(i) An arrow ξ : l(c)→ aJ(P) in Sh(C, J) (equivalently, an element
of aJ(P)(c)) can be identified with an equivalence class of
families {xf ∈ P(dom(f )) | f ∈ S} of elements of P indexed by
the arrows f of a J-covering sieve S on c which are locally
matching in the sense that for any arrow g composable with an
arrow f ∈ S, xf◦g ≡J P(g)(xf ), modulo the equivalence which
identifies two such families when they are locally equal on a
common refinement.

(ii) Any such family yields a local representation of ξ in the sense
that ξ ◦ l(f ) = rxf for each f ∈ S, where rxf is the image under aJ
of the arrow yC(dom(f ))→ P corresponding to the element
xf ∈ P(dom(f )) via the Yoneda lemma.

Remark
The proposition gives an explicit description of the associated sheaf
functor aJ(P) of a presheaf P, different from the usual construction
of it by means of the double plus construction. This alternative
construction of the associated sheaf functor seems to have been
first discovered (albeit not published) by Eduardo Dubuc in the
eighties.
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J-functional relations

More generally, for any presheaves P,Q ∈ [Cop,Set], the arrows
aJ(P)→ aJ(Q) in Sh(C, J) are in natural bijection with the
J-functional relations from P to Q in [Cop,Set], in the sense of the
following

Definition
In a presheaf topos [Cop,Set], a relation R � P ×Q (that is, an
assignment c → R(c) to each object c of C of a subset R(c) of
P(c)×Q(c) which is functorial in the sense that for any arrow
f : c → c′ in C, P(f )×Q(f ) sends R(c′) to R(c)), is said to be
J-functional from P to Q if it satisfies the following properties:

(i) for any c ∈ C and any (x , y) ∈ P(c)×Q(c),
if {f : d → c | (P(f )(x),Q(f )(y)) ∈ R(d)} ∈ J(c) then
(x , y) ∈ R(c);

(ii) for any c ∈ C and any (x , y), (x ′, y ′) ∈ R(c), if x = x ′ then
{f : d → c | Q(f )(y) = Q(f )(y ′)} ∈ J(c);

(iii) for any c ∈ C and any x ∈ P(c),
{f : d → c | ∃y ∈ Q(d) (P(f )(x), y) ∈ R(d)} ∈ J(c).

28 / 96



The geometry of
morphisms and
equivalences of

toposes

Olivia Caramello

Preliminaries on
Grothendieck
toposes

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Denseness
conditions

Characterization
of invariant
properties of
morphisms

Characterizations
in terms of
comorphisms of
sites

Local morphisms

Morphisms of sites
Theorem
Let (C, J) and (C′, J ′) be small-generated sites, and
l : C → Sh(C, J), l ′ : C′ → Sh(C′, J ′) be the canonical functors
(given by the composite of the relevant Yoneda embedding with the
associated sheaf functor). Then, given a functor F : C → C′, the
following conditions are equivalent:

(i) A induces a geometric morphism u : Sh(C′, J ′)→ Sh(C, J)
making the following square commutative:

C F //

l
��

C′

l′

��
Sh(C, J)

u∗ // Sh(C′, J ′);

(ii) The functor F is a morphism of sites (C, J)→ (C′, J ′) in the
sense that it satisfies the following properties:
(1) A sends every J-covering family in C into a J ′-covering family in
C′.

(2) Every object c′ of C′ admits a J ′-covering family

c′i −→ c′ , i ∈ I ,

by objects c′i of C′ which have morphisms

c′i −→ F (ci)

to the images under A of objects ci of C.
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Morphisms of sites
(3) For any objects c1, c2 of C and any pair of morphisms of C′

f ′1 : c′ −→ F (c1) , f ′2 : c′ −→ F (c2) ,

there exists a J ′-covering family

g′i : c′i −→ c′ , i ∈ I ,

and a family of pairs of morphisms of C

f i
1 : bi −→ c1 , f i

2 : bi → c2 , i ∈ I ,

and of morphisms of C′

h′i : c′i −→ F (bi ) , i ∈ I ,

making the following squares commutative:

c′i
g′i //

h′i
��

c′

f ′1
��

F (bi )
F (f i

1) // F (c1)

c′i
g′i //

h′i
��

c′

f ′2
��

F (bi )
F (f i

2) // F (c2)
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Morphisms of sites
(4) For any pair of arrows f1, f2 : c ⇒ d of C and any arrow of C′

f ′ : b′ −→ F (c)

satisfying
F (f1) ◦ f ′ = F (f2) ◦ f ′ ,

there exist a J ′-covering family

g′i : b′i −→ b′ , i ∈ I ,

and a family of morphisms of C

hi : bi −→ c , i ∈ I ,

satisfying
f1 ◦ hi = f2 ◦ hi , ∀ i ∈ I ,

and of morphisms of C′

h′i : b′i −→ F (bi ) , i ∈ I ,

making commutative the following squares:

b′i
g′i //

h′i
��

b′

f ′

��
F (bi )

F (hi ) // F (c)
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Morphisms of sites
If F is a morphism of sites (C, J)→ (D,K ), we denote by
Sh(F ) : Sh(D,K )→ Sh(C, J) the geometric morphism which it
induces.

Remarks
• The above characterization of morphisms of sites is equivalent

to that given by Mike Shulman in his paper “Exact completions
and small sheaves”, which specifies that a functor is a
morphism of sites when it is cover-preserving and covering-flat
(in the sense that for any finite diagram D in C every cone over
an object of the form F (c) factors locally through the F-image
of a cone over D), and also proves the above theorem by using
his definition.

• If (C, J) and (D,K ) are cartesian sites (that is, C and D are
cartesian categories) then a functor C → D which is cartesian
and sends J-covering families to K -covering families is a
morphism of sites (C, J)→ (D,K ).

• If J and K are subcanonical then a geometric morphism
g : Sh(D,K )→ Sh(C, J) is of the form Sh(f ) for some f if and
only if the inverse image functor g∗ sends representables to
representables; if this is the case then f is isomorphic to the
restriction of g∗ to the full subcategories of representables.
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Comorphisms of sites

Recall that a comorphism of sites (D,K )→ (C, J) is a functor
π : D → C such that for any d ∈ D and any J-covering sieve S on
π(d) there is a K -covering sieve R on d such that π(R) ⊆ S.

Proposition
Every comorphism of sites π : D → C induces a flat and
J-continuous functor Aπ : C → Sh(D,K ) given by

Aπ(c) = aK (HomC(π(−), c))

and hence a geometric morphism

f : Sh(D,K )→ Sh(C, J)

with inverse image f ∗(F ) ∼= aK (F ◦ π) for any J-sheaf F on C.
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Kan extensions
The direct and image functors of geometric morphisms induced
by morphisms or comorphisms of sites can be naturally described
in terms of Kan extensions.

Recall that, given a functor f : C → D,
• the right Kan extension Ranf op along f op, which is right adjoint

to the functor f ∗ : [Dop,Set]→ [Cop,Set], is given by the
following formula:

Ranf op (F )(b) = lim←−
φ:fa→b

F (a),

where the limit is taken over the opposite of the comma
category (f ↓b).

• The left adjoint to f ∗ is the left Kan extension Lanf op along f op,
which is left adjoint to f ∗, is given by the following formula:

Lanf op (F )(b) = lim−→
φ:b→fa

F (a),

where the colimit is taken over the opposite of the comma
category (b↓ f ).
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Geometric morphisms and Kan extensions
Proposition

(i) Let F : (C, J)→ (D,K ) be a morphism of small-generated
sites. Then

• the direct image Sh(F )∗ of the geometric morphism

Sh(F ) : Sh(D,K )→ Sh(C, J)

induced by F is given by the restriction to sheaves of F∗;
• the inverse image Sh(F )∗ of Sh(F ) is given by

aK ◦ LanFop ◦ iJ ,

where LanFop is the left Kan extension and iJ is the inclusion
Sh(C, J) ↪→ [Cop,Set].

(ii) Let F : (D,K )→ (C, J) be a comorphism of small-generated
sites. Then

• the direct image (CF )∗ of the geometric morphism

CF : Sh(D,K )→ Sh(C, J)

induced by F is given by the restriction to sheaves of the right
Kan extension RanFop ;

• the inverse image (CF )
∗ of CF is given by

aJ ◦ F∗ ◦ iK ,

where iK is the inclusion Sh(D,K ) ↪→ [Dop,Set].
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Unifying morphisms and comorphisms of sites

In order to better contextualize the role of morphisms and of
comorphisms of sites, we will now briefly review the philosophy of
toposes as ‘bridges’, which also inspires all the other results
presented in this course.

In fact, we shall unify the notions of morphism and comorphisms
of sites by interpreting them as two fundamentally different ways
of describing morphisms of toposes which correspond to each
other under a ‘bridge’.

More specifically, morphisms of sites provide an ‘algebraic’
perspective on morphisms of toposes, while comorphisms of sites
provide a ‘geometric’ perspective on them.
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Topos-theoretic invariants
• By a topos-theoretic invariant we mean any notion which is

invariant under categorical equivalence of toposes.

• The notion of a geometric morphism of toposes is a fundamental
invariant, which has notably allowed to build general comology
theories starting from the categories of internal abelian groups or
modules in toposes. In particular, the topos-theoretic viewpoint
has allowed Grothendieck to refine and enrich the study of
cohomology, up to the so-called ‘six-operation formalism’.
The cohomological invariants have had a tremendous impact on
the development of modern Algebraic Geometry and beyond.

• On the other hand, also homotopy-theoretic invariants such as
the fundamental group and the higher homotopy groups can be
defined as invarants of toposes.

• Still, these are by no means the only invariants that one can
consider on toposes: indeed, there are infinitely many invariants
of toposes (of algebraic, logical, geometric or whatever nature),
the notion of identity for toposes being simply categorical
equivalence.

37 / 96



The geometry of
morphisms and
equivalences of

toposes

Olivia Caramello

Preliminaries on
Grothendieck
toposes

Arrows in a
Grothendieck
topos

Unifying
morphisms and
comorphisms of
sites

Comorphisms
and fibrations

Continuous
functors and
weak morphisms
of toposes

Relative cofinality

Denseness
conditions

Characterization
of invariant
properties of
morphisms

Characterizations
in terms of
comorphisms of
sites

Local morphisms

Toposes as bridges
• In the topos-theoretic study of theories or ‘concrete’

mathematical contexts, the latter are represented by sites (of
definition of their classifying topos or of some other topos
naturally attached to them).

• Grothendieck toposes can be effectively used as ‘bridges’ for
transferring notions, properties and results across them:

ET ' ET′

��
T

11

T′

• The transfer of information takes place by expressing
topos-theoretic invariants in terms of the different sites of
definition (or, more generally, presentations) for the given
topos.

• As such, different properties (resp. constructions) arising in the
context of the two presentations are seen to be different
manifestations of a unique property (resp. construction) lying
at the topos-theoretic level.
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The ‘bridge’ technique
• Decks of ‘bridges’: Morita-equivalences (that is, equivalences

between different presentations of a given topos, or more
generally morphisms or other kinds of relations between
toposes)

• Arches of ‘bridges’: Site characterizations for topos-theoretic
invariants (or more generally ‘unravelings’ of topos-theoretic
invariants in terms of concrete representations of the relevant
topos)

For example, this ‘bridge’ yields a logical equivalence between the
‘concrete’ properties P(C,J) and Q(D,K ), interpreted in this context as
manifestations of a unique property I lying at the level of the topos.
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Toposes as bridges

• This methodology is technically effective because the
relationship between a topos and its representations is often
very natural, enabling us to transfer invariants across
different representations.

• On the other hand, the ‘bridge’ technique is highly non-trivial,
in the sense that it often yields deep and surprising results.
This is due to the fact that a given invariant can manifest itself
in significanly different ways in the context of different
presentations.

• The level of generality represented by topos-theoretic
invariants is ideal to capture several important features of
mathematical theories and constructions.
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Relating morphisms and comorphisms of sites

The inspiration for our constructions is provided by the following
result:

Proposition
Let (C, J) and (D,K ) be small-generated sites, and
(F : C → D a G : D → C) adjoint functors. Then

(i) G is a morphism of sites (D,K )→ (C, J) if and only if F is a
comorphism of sites (C, J)→ (D,K ).

(ii) In the situation of (i), the geometric morphism CF induced by
F coincides with the geometric morphism Sh(G) induced by
G.

The key idea is to replace the given sites of definition with
Morita-equivalent ones in such a way that every morphism (resp.
comorphism) of sites acquires a left (resp. right) adjoint, not
necessarily in the classical categorial sense but in the weaker
topos-theoretic sense of the associated comma categories having
equivalent associated toposes.
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From morphisms to comorphisms of sites

We shall turn a morphism of sites into a comorphism of sites by
replacing the original codomain site with a site related to it by a
morphism inducing an equivalence of toposes such that the
composite of the given morphism of sites with it admits a left
adjoint; this left adjoint will then be a comorphism of sites inducing
the same geometric morphism (by the above proposition).

We shall denote by (F ↓ G), for two functors F : A → C and
G : B → C, the comma category whose objects are the triplets
(a,b, α) where a ∈ A, b ∈ B and α is an arrow F (a)→ G(b) in C
(and whose arrows are defined in the obvious way).

In particular, given a functor F : C → D, the objects of (1D ↓ F )
are triplets of the form (d , c, α : d → F (c)) where c ∈ C, d ∈ D
and α is an arrow in D.
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From morphisms to comorphisms of sites
Theorem
Let F : (C, J)→ (D,K ) be a morphism of small-generated sites. Let
iF be the functor C → (1D ↓ F ) sending any object c of C to the
triplet (F (c), c,1F (c)) (and acting on arrows in the obvious way), and
πC : (1D ↓ F )→ C and πD : (1D ↓ F )→ D the canonical projection
functors. Let K̃ be the Grothendieck topology on (1D ↓ F ) whose
covering sieves are those whose image under πD is K -covering.
Then

(i) πC a iF , πD ◦ iF = F, iF is a morphism of sites
(C, J)→ ((1D ↓ F ), K̃ ) and cF := πC is a comorphism of sites
((1D ↓ F ), K̃ )→ (C, J);

(ii) πD : ((1D ↓ F ), K̃ )→ (D,K ) is both a morphism of sites and a
comorphism of sites inducing equivalences

CπD : Sh((1D ↓ F ), K̃ )→ Sh(D,K )

and
Sh(πD) : Sh(D,K )→ Sh((1D ↓ F ), K̃ )

which are quasi-inverse to each other and make the following
triangle commute:

Sh((1D ↓ F ), K̃ ) Sh(D,K )

Sh(C, J)

CπD

∼

CπC
∼=Sh(iF )

Sh(πD)

Sh(F )
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From comorphisms to morphisms of sites
Below, we shall abbreviate by D̂ the category of presheaves on a
small category D.

Theorem
Let F : (D,K )→ (C, J) be a comorphism of small-generated sites.
Let π′C : (F ↓ 1C)→ C and π′D : (F ↓ 1C)→ D be the canonical
projection functors and jF : D → (F ↓ 1C) the functor sending any
object d of D to the triplet (d ,F (d),1F (d)). Let K be the
Grothendieck topology on (F ↓ 1C) whose covering families are
those which are sent by π′D to K -covering families. Then

(i) jF a π′D, π′C ◦ jF = F, π′C is a comorphism of sites
(F ↓ 1C ,K )→ (C, J) and jF is a (full and faithful) comorphism
and dense morphism of sites (D,K )→ (F ↓ 1C ,K );

(ii) π′D is both a morphism and a comorphism of sites
((F ↓ 1C),K )→ (D,K ) inducing equivalences

Cπ′D : Sh((F ↓ 1C),K )→ Sh(D,K )

and
Sh(π′D) : Sh(D,K )→ Sh((F ↓ 1C),K )

which are quasi-inverse to each other and make the following
triangle commute:

Sh((F ↓ 1C),K ) Sh(D,K )

Sh(C, J)

Cπ′D
∼=Sh(jF )

∼

Cπ′C

Sh(π′D)∼=CjF
CF
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From comorphisms to morphisms of sites

(iii) With the comorphism of sites F : (D,K )→ (C, J) we can
associate the morphism of sites

mF : (C, J)→ (D̂, K̂ )

sending an object c of C to the presheaf HomC(F (−), c) and
K̂ is the extension of the Grothendieck topology K along the
Yoneda embedding D → D̂, which induces a geometric
morphism Sh(mF ) making the following triangle commute:

Sh(D̂, K̂ ) Sh(D,K )

Sh(C, J)

Sh(yD)

∼

Sh(mF )

CyD
CF
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Bridging morphisms and comorphisms of sites
Theorem
Let (C, J) and (D,K ) be small-generated sites.

(i) Let F : (C, J)→ (D,K ) be a morphism of sites, with
corresponding comorphism of sites cF : ((1D ↓ F ), K̃ )→ (C, J)
as above. Let πD : ((1D ↓ F ), K̃ )→ (D,K ) be the canonical
projection functor, and let

wF : (1D ↓ F )→ (cF ↓ 1D)

be the functor jcF , sending an object A of (1D ↓ F ) to the object
(A, cF (A),1cF (A) : cF (A)→ cF (A)). Then wF is both a (full and
faithful) comorphism and a dense morphism of sites
((1D ↓ F ), K̃ )→ ((cF ↓ 1D), K̃ ) satisfying the relation
π′′′D ◦ wF = πD and inducing an equivalence relating F and cF ,
which makes the following diagram commute (where π′′′D
denotes the canonical projection functor (cF ↓ 1D)→ D):

Sh(D,K ) Sh(D,K )

Sh((cF ↓ 1D), K̃ ) Sh((1D ↓ F ), K̃ )

Sh(C, J)

Sh(πD′′′ )

=

Sh(πD)Cπ′′′D ∼ Sh(wF )∼=Cπ′
(1D↓F )

∼

Cπ′C

CwF
∼=Sh(π′(1D↓F ))

CπD ∼
CcF
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Bridging morphisms and comorphisms of sites
(ii) Let G : (D,K )→ (C, J) be a comorphism of sites, with

corresponding morphism of sites mG : (C, J)→ (D̂, K̂ ) as
above. Let

zG : (G ↓ 1C)→ (1D̂ ↓ mG)

be the functor sending any object (d , c, α : G(d)→ c) of
(G ↓ 1C) to the object (yD(d), c, α : yD(d)→ mG(c)) of
(1D̂ ↓ mG), where α is the arrow corresponding to the element
α of mG via the Yoneda Lemma. Then zG is both a (full and
faithful) comorphism and a dense morphism of sites

((G ↓ 1C),K )→ ((1D̂ ↓ mG),
˜̂K ) satisfying the relation

πD̂ ◦ zG = yD ◦ π′D and inducing an equivalence relating G and
mG, which makes the following diagram commute:

Sh(D̂, K̂ ) Sh(D,K )

Sh((1D̂ ↓ mG),
˜̂K ) Sh((G ↓ 1C),K )

Sh(C, J)

Sh(πD̂)

Sh(yD)

∼
CyD

Sh(π′D)∼=CjG
CπD̂ ∼

Sh(zG)

∼

CπC
∼=Sh(imG )

CzG

Sh(jG)∼=CπD′ ∼

Cπ′C
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Bridging morphisms and comorphisms of sites
We shall call a functor which both a morphism and a comorphism of
sites a bimorphism of sites.

The above theorem shows that the relationship between a morphism
F (resp. comorphism G) of sites and the associated comorphism cF
(resp. morphism mF ) of sites is captured by the equivalence

Sh((1D ↓ F ), K̃ ) ' Sh((cF ↓ 1D), K̃ )

(resp.

Sh((G ↓ 1C),K ) ' Sh((1D̂ ↓ mG),
˜̂K ))

of toposes over Sh(C, J) induced by the bimorphism of sites wF
(resp. zG) over C.

Our theorem then tells us that F and cF (resp. G and mG) are not
adjoint to each other in a concrete sense (that is, at the level of sites),
since they are not defined between a pair of categories, nor the
categories (1D ↓ F ) and (cF ↓ 1D) (resp. the categories (G ↓ 1C) and
(1D̂ ↓ mG)) are equivalent in general; nonetheless, they become
‘abstractly’ adjoint in the world of toposes since toposes naturally
attached to such categories are equivalent.
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The dual adjunction
Definition
Let (C, J) be a small-generated site.
(a) The category Mor(C,J) has as objects the morphisms of sites from

(C, J) to a small generated site (D,K ) and as arrows

(F : (C, J)→ (D,K ))→ (F ′ : (C, J)→ (D′,K ′))

between any two such morphisms the geometric morphisms

f : Sh(D′,K ′)→ Sh(D,K )

such that Sh(F ) ◦ f ∼= Sh(F ′):

Sh(C, J) Sh(D,K )

Sh(D′,K ′)

Sh(F )

f
Sh(F ′)

(b) The category Com(C,J) has as objects the comorphisms of sites
from a small-generated site (D,K ) to (C, J) and as arrows

(U : (D,K )→ (C, J))→ (U ′ : (D′,K ′)→ (C, J))

between any two such comorphisms the geometric morphisms

g : Sh(D,K )→ Sh(D′,K ′)

such that CU′ ◦ g ∼= CU :

Sh(D,K ) Sh(C, J)

Sh(D′,K ′)

g

CU

CU′
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The dual adjunction

The assignments F 7→ cF and G 7→ mG introduced above
naturally define two functors

C : (Mor(C,J))op → Com(C,J)

and
M : Com(C,J) → (Mor(C,J))op .

Theorem

The functors
C : (Mor(C,J))op → Com(C,J)

and
M : Com(C,J) → (Mor(C,J))op

are (2-categorically) adjoint (C on the right and M on the left) and
quasi-inverse to each other.
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From comorphisms of sites to fibrations
The following result shows that one can naturally associate with a
comorphism of sites a fibration inducing the same geometric
morphism.

Definition
The fibration of generalized elements of a functor F : D → C is the
canonical projection functor πF

C : (1C ↓ F )→ C.

Theorem
Let F : (D,K )→ (C, J) be a comorphism of small-generated sites, i ′F
the canonical functor D → (1C ↓ F ) and K i′F the Grothendieck topology
on (1C ↓ F ) whose covering sieves are those whose pullback along
any arrow whose domain is an object of the form i ′F (d) contains the
image under i ′F of a K -covering sieve on d. Let πF

C and πF
D be the

canonical projections from (1C ↓ F ) respectively to C and D. Then
(i) πF

D a i ′F , πF
C ◦ i ′F = F, πF

C is a comorphism of sites
((1C ↓ F ),K i′F )→ (C, J) and πF

D is a comorphism of sites
((1C ↓ F ),K i′F )→ (D,K );

(ii) i ′F is both a (full and faithful) comorphism of sites and a dense
morphism of sites (D,K )→ ((1C ↓ F ),K i′F ) inducing equivalences

Ci′F : Sh(D,K )→ Sh((1C ↓ F ),K i′F )

and
Sh(i ′F ) : Sh((1C ↓ F ),K i′F )→ Sh(D,K )

which are quasi-inverse to each other and make the following
triangle commute:

Sh((1C ↓ F ),K i′F ) Sh(D,K )

Sh(C, J)

Sh(i′F )∼=C
πF
D

∼

C
πF
C

Ci′F
CF
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Fibrations as comorphisms of sites
In the converse direction, every fibration can be naturally regarded
as a comorphism of sites, as follows.

Recall that, given a functor A : C → D and a Grothendieck topology
K in D, there is a smallest Grothendieck topology on C which makes
A a comorphism of sites to (D,K ). This topology, which we denote
by MA

K , is generated by the (pullback-stable) family of sieves of the
form SA

R := {f : dom(f )→ c | A(f ) ∈ R} for an object c of C and a
K -covering sieve R on A(c).

Proposition
If A is a fibration, the topology MA

K admits the following simpler
description: a sieve R is MA

K -covering if and only if the collection of
cartesian arrows in R is sent by A to a K -covering family.

This point of view on fibrations was inspired by Jean Giraud’s
construction of the classifying topos of a stack (see the forthcoming
joint work with Riccardo Zanfa).

Proposition
For any Grothendieck topology K on D, every morphism of
fibrations (A : C → D)→ (A′ : C′ → D) yields a comorphism of sites
(C,MA

K )→ (C′,MA′
K ).
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Weak morphisms of toposes
Definition
A weak morphism of toposes f : E → F is a pair of adjoint functors
(f ∗ a f∗).
As in the case of geometric morphism, we call f∗ the direct image of f
and f ∗ the inverse image of f .

Proposition
Let i : F ↪→ E be the geometric inclusion of a subtopos F of a
Grothendieck topos E into E , and let f : G → E be a weak morphism
from a Grothendieck topos G. Then the following conditions are
equivalent:

(i) The weak morphism f factors through i;
(ii) The direct image f∗ takes values in F (that is, factors through i∗);
(iii) The inverse image f ∗ factors (necessarily uniquely up to

isomorphism) through i∗.

Corollary
Let A : C → E be a functor from an essentially small category C to a
Grothendieck topos E , and J be a Grothendieck topology on C. Then
the following conditions are equivalent:

(i) The weak morphism (LA a RA) factors through the canonical
geometric inclusion i : Sh(C, J) ↪→ [Cop,Set];

(ii) The functor RA takes values in Sh(C, J);
(iii) The functor LA factors (necessarily uniquely up to isomorphism)

through the associated sheaf functor aJ : [Cop,Set]→ Sh(C, J).
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Continuous functors
The above result motivates the following definition:

Definition
(a) Given a small-generated site (C, J), we say that a functor

A : C → E is J-continuous if the hom functor RA : E → [Cop,Set]
takes values into Sh(C, J) (equivalently, if the functor
LA : [Cop,Set]→ E factors through aJ : [Cop,Set]→ Sh(C, J)).

(b) Given small-generated sites (C, J) and (D,K ), a functor
A : C → D is said to be (J,K )-continuous if l ′ ◦ A is
J-continuous, where l ′ is the canonical functor D → Sh(D,K ).

The following proposition shows that the above definition is
equivalent to Grothendieck’s notion of continuous functor:

Proposition
Let (C, J) and (D,K ) be small-generated sites and A : C → D a
functor. Then the following conditions are equivalent:

(i) A is (J,K )-continuous.
(ii) The functor

DA := (− ◦ Aop) : [Dop,Set]→ [Cop,Set]

restricts to a functor Sh(D,K )→ Sh(C, J).
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Classifying weak morphisms of toposes

Let [C, E ]J be the full subcategory of [C, E ] on the J-continuous
functors.

Proposition
Let C a locally small category and E a Grothendieck topos.

(i) There is an equivalence

Wmor(E , [Cop,Set]) ' [C, E ]

sending a weak morphism f = (f ∗ a f∗) to the functor f ∗ ◦ yC .
(ii) For any Grothendieck topology J on C making (C, J) a

small-generated site, the above equivalence restricts to an
equivalence

Wmor(E ,Sh(C, J)) ' [C, E ]J

sending a weak morphism g = (g∗ a g∗) to the functor g∗ ◦ l .
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Weak morphisms of sites
These results motivate the following

Definition
Let (C, J) and (D,K ) be small-generated sites. A functor F : C → D
is said to be a weak morphism of sites if it is (J,K )-continuous.
Note that this notion generalizes that of morphism of sites; indeed,
as morphisms of sites induce geometric morphisms of toposes, so
weak morphisms of sites induce weak morphisms of toposes:

Proposition
Any weak morphism F : (C, J)→ (D,K ) of small-generated sites
induces a weak geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J)
such that the following diagram commutes:

C F //

l
��

D

l′

��
Sh(C, J)

Sh(F )∗// Sh(D,K )

Conversely, any weak geometric morphism f = (f ∗ a f∗) such that
f ∗ ◦ l factors through l ′ is induced by a (necessarily unique, if K is
subcanonical) weak morphism of sites (C, J)→ (D,K ).
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Continuous functors
Proposition
Let (C, J) and (D,K ) be small-generated sites and E a
Grothendieck topos. Then

(i) A functor A : C → E is J-continuous if and only if for any
J-covering sieve S on an object c

A(c) = lim−→
f :d→c∈S

A(d)

for each J-covering sieve S on an object c (where the colimit is
indexed by the category

∫
S of elements of S).

(ii) A functor A : C → D is (J,K )-continuous if and only if for any
J-covering sieve S on an object c the canonical cocone with
vertex A(c) on the diagram {A(dom(f )) | f ∈ S} indexed over∫

S is sent by l ′ to a colimit in the topos Sh(D,K ).

(iii) Every J-continuous functor A : C → E is J-continuous in the
sense of Mac Lane and Moerdijk (that is, sends J-covering
families to epimorphic families), and the converse is true if A is
flat (but not in general). More generally, every
(J,K )-continuous functor (C, J)→ (D,K ) is cover-preserving,
and every morphism of sites (C, J)→ (D,K ) is
(J,K )-continuous.
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Continuity and cofinaliy

The above proposition suggests that the property of J-continuity
could be interpreted as a sort of cofinality condition. Indeed, if A
is J-continuous then in particular A sends any J-covering sieve S
on an object c of C to an epimorphic family and hence A(c) is the
colimit of the cocone under the diagram whose vertices are the
objects of the form A(d) where d is the domain of an arrow
f : d → c in S and whose arrows are all the arrows in E over A(c)
between such objects. So the condition for A to be J-continuous
amounts precisely to the assertion that A be J-continuous and
that this colimit be equal to the colimit lim−→f :d→c∈S

A(d).

In order to formally express continuity as a form of cofinality, we
are going to introduce relative cofinality conditions.
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Relative cofinality
Proposition
Let (C, J) be a small-generated site and F : A → C and F ′ : A′ → C
two functors to C related by a functor ξ : A → A′ and a natural
transformation α : F → F ′ ◦ ξ. Let Rc (resp. R′c), for any c ∈ C, be the
equivalence relations on the objects of the category (c ↓ F ) (resp. of
(c ↓ F ′)) given by the relation of belonging to the same connected
component.
Then the canonical arrow

α̃ : colim[Cop,Set](yC ◦ F )→ colim[Cop,Set](yC ◦ F ′)

is sent by aJ to an isomorphism

aJ(α̃) : colimSh(C,J)(l ◦ F )→ colimSh(C,J)(l ◦ F )

if and only if the pair (ξ, α) satisfies the following ‘cofinality’
conditions:

(i) For any object c of C and any arrow y : c → F ′(a′) in C there are
a J-covering family {fi : ci → c | i ∈ I} and for each i ∈ I an
object ai of A and an arrow yi : ci → F (ai ) such that
(y ◦ fi , α(ai ) ◦ yi ) ∈ R′ci

.
(ii) For any object c of C and any arrows x : c → F (a) and

x ′ : c → F (b) in C such that (α(a) ◦ x , α(b) ◦ x ′) ∈ R′c there is a
J-covering family {fi : ci → c | i ∈ I} such that (x ◦ fi , x ′ ◦ fi ) ∈ Rci

for each i ∈ I.
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J-cofinal functors
It is interesting to apply the proposition in two notable particular
cases:

(1) F = ξ : A → C, F ′ = 1C , α is the identity.
(2) F ′ is the forgetful functor Uc0 : C/c0 → C for an object c0 of C, ξ is

a cocone {ξa : F (a)→ c0 | a ∈ A} under the functor F with
vertex c0 and α is the identity.

Formulating the thesis of the proposition in these particular cases
leads us to introduce the following

Definition
Given a small-generated site (C, J), a functor F : A → C is said to be
J-cofinal if the following conditions are satisfied:

(i) For any object c of C there are a J-covering family
{fi : ci → c | i ∈ I} and for each i ∈ I an object ai of A and an
arrow yi : ci → F (ai ).

(ii) For any object c of C and any arrows x : c → F (a) and
x ′ : c → F (b) in C there is a J-covering family {fi : ci → c | i ∈ I}
such that x ◦ fi and x ′ ◦ fi belong to the same connected
component of the category (ci ↓ F ) for each i ∈ I.
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Two corollaries
The proposition thus yields the following two results:

Corollary
Let (C, J) be a small-generated site and F : A → C a functor. Then F
is J-cofinal if and only if the canonical arrow

colimSh(C,J)(l ◦ F )→ 1Sh(C,J)

is an isomorphism.

Corollary
Let D : A → C be a functor and ξ a cocone {ξa : D(a)→ c0 | a ∈ A}
under D with vertex c0. Let Uc0 be the forgetful functor C/c0 → C, Jc0

the Grothendieck topology on C/c0 whose covering sieves are
precisely those whose image under Uc0 is J-covering and
Dξ : A → C/c0 the canonical lift of D to C/c0 (which satisfies
Uc0 ◦ Dξ = D).
Then ξ is sent by the canonical functor l : C → Sh(C, J) to a colimit
cocone if and only if the functor Dξ is Jc0 -cofinal, equivalently if and
only if the following conditions are satisfied:

(i) For any object c of C and any arrow y : c → c0 in C there are a
J-covering family {fi : ci → c | i ∈ I} and for each i ∈ I an object
ai of A and an arrow yi : ci → D(ai ) such that y ◦ fi = ξai ◦ yi .

(ii) For any object c of C and any arrows x : c → D(a) and
x ′ : c → D(b) in C such that ξa ◦ x = ξb ◦ x ′ there is a J-covering
family {fi : ci → c | i ∈ I} such that x ◦ fi and x ′ ◦ fi belong to the
same connected component of the category (ci ↓ D) for each
i ∈ I.
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Characterization of colimits in toposes
This notion of relative cofinality has several applications. A basic
one is the characterization of colimits in Grothendieck toposes in
terms of generalized elements:

Corollary
Let D : A → E be a functor from a small category A to a
Grothendendieck topos E and ξ a cocone
{ξa : D(a)→ e0 | a ∈ A} under D with vertex e0. Then ξ is a
colimit cocone if and only if the functor Dξ is (Jcan

E )e0 -cofinal,
equivalently if and only if the following conditions are satisfied:

(i) For any object e of E and any arrow y : e→ e0 in E there are
an epimorphc family {fi : ei → e | i ∈ I} in E and for each
i ∈ I an object ai of A and an arrow yi : ei → D(ai ) such that
y ◦ fi = ξai ◦ yi .

(ii) For any object e of E and any arrows x : e→ D(a) and
x ′ : e→ D(b) in E such that ξa ◦ x = ξb ◦ x ′ there is an
epimorphic family {fi : ei → e | i ∈ I} in E such that x ◦ fi and
x ′ ◦ fi belong to the same connected component of the
category (ei ↓ D) for each i ∈ I.
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Characterization of continuous functors
Let

DA
S :

∫
S → D

be the functor sending any (d , f ) of
∫

S to A(d), together with the
cocone ξA with vertex A(c) under it (whose legs are the arrows
A(f ) : A(d) = DA

S((d , f ))→ A(c) for any object (d , f ) of
∫

S).

Applying one of the above corollaries to it, we obtain the following
explicit characterization of (J,K )-continuous functors:

Proposition
Let (C, J) and (D,K ) be small-generated sites. Then a functor
A : C → D is (J,K )-continuous if and only if it is cover-preserving (i.e.,
sends J-covering families to K -covering ones) and for any J-covering
sieve S on an object c and any commutative square of the form

d //

��

A(c′)

A(f )
��

A(c′′)
A(g) // A(c),

where f : c′ → c and g : c′′ → c are arbitrary arrows of S, there is a
K -covering family {di → d | i ∈ I} such that for each i ∈ I, the
composites di → A(c′) and di → A(c′′) belong to the same connected
component of the category (di ↓ DA

S).
Indeed, the conditions of the proposition are equivalent to the
requirement that that the lift

(DS
A )ξA :

∫
S → D/A(c)

of the diagram DS
A to D/A(c) induced by the cocone ξA be

KA(c)-cofinal.
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Continuity of (morphisms of) fibrations

By using the above characterization of continuous functors, one
can prove

Proposition
Let A : C → D be a fibration. Then, for any Grothendieck topology
K on D, A is a continuous comorphism of sites (C,MA

K )→ (D,K ).

More generally, we have the following result:

Theorem
For any Grothendieck topology K on D, every morphism of
fibrations (A : C → D)→ (A′ : C′ → D) is a continuous
comorphism of sites (C,MA

K )→ (C′,MA′
K ).
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Classifying essential morphisms
Recall that a geometric morphism f : F → E is said to be essential if
its inverse image f ∗ has a left adjoint, denoted by f! and called its
essential image.

Theorem
Let (C, J) be a small-generated site, E a Grothendieck topos. Let
Geomess(Sh(C, J), E) be the category of essential geometric
morphisms, and Comcont((C, J), (E , Jcan

E )) the category of
J-continuous comorphisms of sites (C, J)→ (E , Jcan

E ). Then we
have an equivalence

Geomess(Sh(C, J), E) ' Comcont((C, J), (E , Jcan
E ))

sending an essential geometric morphism f = (f! a f ∗ a f∗) to the
comorphism of sites f! ◦ l and a J-continuous comorphism of sites A
to the geometric morphism CA induced by it.
We say that two comorphisms of sites A,A′ : (C, J)→ (D,K ) are
K -equivalent if the geometric morphisms CA and CA′ that they
induce are isomorphic.

Corollary
Let (C, J) and (D,K ) be small-generated sites. Then we have an
equivalence between the essential geometric morphisms
f : Sh(C, J)→ Sh(D,K ) such that f! ◦ l : C → Sh(D,K ) factors
through the canonical functor l ′ : D → Sh(D,K ) and the
(J,K )-continuous comorphism of sites (C, J)→ (D,K ), considered
up to K -equivalence.
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Continuous comorphisms of sites
The following result provides alternative characterizations for the
property of a comorphism of sites to be continuous:

Proposition
Let A : (C, J)→ (D,K ) be a comorphism of sites. Then the following
conditions are equivalent:

(i) A is (J,K )-continuous.
(ii) The left Kan extension functor LanAop : [Cop,Set]→ [Dop,Set]

along Aop satisfies the property that aK ◦ LanAop factors
(necessarily uniquely) through aJ .

(iii) The geometric morphism CA induced by A is essential and its
essential image (CA)! makes the following diagram commute:

[Cop,Set]
LanAop //

aJ

��

[Dop,Set]

aK

��
Sh(C, J)

(CA)! // Sh(D,K )

If A induces an essential geometric morphism CA then there is a
canonical morphism (CA)! ◦ l → l ′ ◦ A, and A is (J,K )-continuous if
and only if this morphism is an isomorphism, equivalently if and only
if the canonical morphism

(CA)! ◦ aJ → aK ◦ LanAop

is an isomorphism.
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Local connectedness

The notion of locally connected morphism represents a natural
strengthening of the notion of essential morphism. Recall that a
geometric morphism f : F → E is said to be locally connected if f ∗

has an E-indexed left adjoint, equivalently for any arrow h : A→ B
in E , the square

F/f ∗(B)
(f/B)! //

(f∗(h))∗

��

E/B

h∗

��
F/f ∗(A)

(f/A)! // E/A

commutes.

The continuity of (morphisms of) fibrations implies that such
comorphisms always induce essential geometric morphisms. One
might thus wonder if these morphisms always induce locally
connected morphisms. Interestingly, this is true for fibrations but
not in general for morphisms of fibrations.
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Characterizing locally connected morphisms
In order to characterize locally connected morphisms, we need to
introduce the following

Definition
Given a functor F : C → D, an arrow h : d0 → d1 in D, an object c of C
and an arrow x : F (c)→ d1 in D:

(i) The category Ah
(c,x) has as objects the triplets (c′, y , f ) where c′

is an object of C, y is an arrow F (c′)→ d0 in D and f : c′ → c is
an arrow of C such that x ◦ F (f ) = h ◦ y , and as arrows
(c1, y1, f1)→ (c2, y2, f2) the arrows t : c1 → c2 in C such that
f2 ◦ t = f1 and y2 ◦ F (t) = y1.

(ii) The category Bh
(c,x) has as objects the triplets (d , z,g) where d is

an object of D, z is an arrow d → d0 in D and g : d → F (c) is an
arrow of D such that x ◦ g = h ◦ z, and as arrows
(d1, z1,g1)→ (d2, z2,g2) in Bh

(c,x) the arrows s : d1 → d2 in D
such that g2 ◦ s = g1 and z2 ◦ s = z1.

(iii) The categories Ah
(c,x) and Bh

(c,x) are actually fibered over D. We
shall denote by ah

(c,x) : Ah
(c,x) → D the functor sending any object

(c′, y , f ) of Ah
(c,x) to the object F (c′) of D and any arrow

s : (c1, y1, f1)→ (c2, y2, f2) in Ah
(c,x) to the arrow

F (s) : F (c1)→ F (c2) of D, and by bh
(c,x) : Bh

(c,x) → D the
canonical projection functor.

(iv) The functor
ξh
(c,x) : ah

(c,x) → bh
(c,x)

sends any object (c′, y , f ) of Ah
(c,x) to the object (F (c′), y ,F (f )) of

Bh
(c,x) and any arrow s : (c1, y1, f1)→ (c2, y2, f2) in Ah

(c,x) to the
arrow

F (s) : (F (c1), y1,F (f1))→ (F (c2), y2,F (f2))

of Bh
(c,x). In fact, ξh

(c,x) is a morphism of fibrations ah
(c,x) → bh

(c,x).
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Characterizing locally connected morphisms

The following theorem provides necessary and sufficient
conditions for a continuous comorphism of sites to induce a
locally connected morphism:

Theorem
Let F : (C, J)→ (D,K ) be a continuous comorphism of
small-generated sites. Then the following conditions are
equivalent:

(i) The geometric morphism CF : Sh(C, J)→ Sh(D,K ) induced
by F is locally connected.

(ii) For any arrow h : d0 → d1 in D, the morphism of fibrations

ξh
(c,x) : ah

(c,x) → bh
(c,x)

to D satisfies (together with the identical natural
transformation ah

(c,x) → bh
(c,x) ◦ ξ

h
(c,x)) the cofinality’ conditions

of the above proposition.
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Characterizing locally connected morphisms
Corollary
Let F : C → D be a functor. Then the geometric morphism

E(F ) : [Cop,Set]→ [Dop,Set]

induced by F is locally connected if and only if for any arrow
h : d0 → d1 in D, object c of C and arrow x : F (c)→ d1 in D, the
following conditions hold:
(a) For any object (d , z,g) of the category Bh

(c,x) there is an object
(c′, y , f ) of the category Ah

(c,x) and an arrow

s : d → F (c′) = ah
(c,x)((c′, y , f ))

such that
1d : d → d = bh

(c,x)((d , z,g))

and
s : d → F (c′) = bh

(c,x)((F (c′), y ,F (f ))))

belong to the same connected component of the category
(d ↓ bh

(c,x)).
(b) For any object d of D and any arrows

α : d → ah
(c,x)((a, y , f )) = F (a) and

β : d → ah
(c,x)((b, y ′, f ′)) = F (b) in D such that

α : d → bh
(c,x)((F (a), y ,F (f ))) = F (a)

and
β : d → bh

(c,x)((F (b), y ′,F (f ′))) = F (b)

belong to the same connected component of the category
(d ↓ bh

(c,x)),
α : d → ah

(c,x)((a, y , f )) = F (a)

and
β : d → bh

(c,x)((b, y ′, f ′)) = F (b)

belong to the same connected component of the category
(d ↓ ah

(c,x)).

This extends a partial result obtained in this connection by
Johnstone.
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The terminally connected factorization
We shall say that an essential geometric morphism f : F → E is
terminally connected if f!(1F ) is the terminal object of E .
Recall that a local homeomorphism is a geometric morphism of the
form E/A→ E for an object A of E .

Theorem
(i) Terminally connected morphisms are orthogonal to local

homeomorphisms in the 2-category of Grothendieck toposes;
that is, for any commutative square

F E

G H,

f

m nk

g

where f is terminally connected and g is a local
homeomorphism, there exists a morphism k : E → G (unique up
to unique 2-isomorphism) making both triangles commute.

(ii) Any essential geometric morphism can be factored, uniquely up
to equivalence, as a terminally connected morphism followed by
a local homeomorphism. More specifically, an essential
geometric morphism f : F → E factors as a terminally
connected morphism f ′ : F → E/f!(1) followed by the canonical
local homeomorphism E/f!(1)→ E .

This factorization generalizes the well-known factorization of a locally
connected morphism as a connected and locally connected
morphism followed by a local homeomorphism.
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The relative comprehensive factorization
By using our notion of relative cofinality, we can interpret the
terminally connected factorization of an essential geometric
morphism induced by a continuous comorphism of sites at the
level of sites, as follows:
Given a functor F : C → D and a Grothendieck topology K on D,
we associate with it the K -sheaf FK = colimSh(D,K )(l ′ ◦ F ) . We
say that a discrete fibration to D is K -glueing if the presheaf
corresponding to it is a K -sheaf.
Note that there is a canonical functor ξF

K : C →
∫

FK such that
πFK ◦ ξF

K = F , where πFK is the canonical projection functor∫
FK → D.

Definition
Let F : C → D be a functor and K a Grothendieck topology on D.
The K -comprehensive factorization of F is given by the composite
FK ◦ ξF

K :

C D

∫
FK

F

ξF
K πFK

Remark
In the case K is the trivial topology, the K -comprehensive
factorization of F specializes to the opposite of the
comprehensive factorization introduced by Street and Walters.
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The relative comprehensive factorization

Theorem
Let F : C → D be a functor and K a Grothendieck topology on D.

(i) The K -comprehensive factorization of F is characterized by
being the unique (up to equivalence) factorization of F as a
Mp

K -cofinal functor C → E followed by a K -glueing fibration
p : E → D.

(ii) If F is a continuous comorphism of sites (C, J)→ (D,K ) then
ξF

K : (C, J)→ (
∫

FK ,M
πFK
K ) and FK : (

∫
FK ,M

πFK
K )→ (D,K )

are continuous comorphism of sites and CF ∼= CFK ◦ CξF
K

is
the terminally connected-local homeomorphism factorization
of the geometric morphism CF : Sh(C, J)→ Sh(D,K ).
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Equivalences of toposes
We shall present several results around the theme of equivalences
of toposes.

In particular, we will present a chacterization theorem providing
necessary and sufficient explicit conditions for a morphism of sites to
induce an equivalence of toposes. This generalizes the following
classical result:

Theorem (Grothendieck’s Comparison Lemma)
Let (C, J) be a small-generated site and D be a J-dense subcategory
of C. Then the sieves in D of the form R ∩ arr(D) for a J-covering
sieve R in C form a Grothendieck topology J|D on D, and, denoting
by i : D → C the canonical inclusion functor, the essential geometric
morphism

E(i) : [Dop,Set]→ [Cop,Set],

induced by i restricts to an equivalence of categories

Sh(D, J|D) ' Sh(C, J) .

For this, we need to introduce general denseness conditions.
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Denseness conditions
Definition
Let F : C → D be a functor and J (resp. K ) a Grothendieck topology
on C (resp. on D). Then F is said to be
(a) (J,K )-faithful (resp. J-faithful) if whenever F (h) ≡K F (k) (resp.

F (h) = F (k)), h ≡J k ;
(b) (J,K )-full (resp. J-full) if for every x , y ∈ C and any arrow

g : F (x)→ F (y) in D, there exist a J-covering family of arrows
fi : xi → x and arrows gi : xi → y (for each i ∈ I) such that
g ◦ F (fi ) ≡K F (gi ) (resp. g ◦ F (fi ) = F (gi )) for all i ;

(c) K -dense if for every d ∈ D, there exists a K -covering family of
arrows whose domains are in the image of F .

Recall that a functor (C, J)→ (D,K ) is said to be dense if it is
J-faithful, J-full and K -dense, and it preserves and reflects covering
families. Actually, the J-faithfulness condition is redundant for
morphisms of sites since it follows from the latter condition by
definition of a morphism of sites.

It was shown by Shulman (in his paper “Exact completions and small
sheaves”) that every dense morphism of sites induces an equivalence
of toposes. Still, as we shall see, being dense is not a necessary
condition for a morphism of sites to induce an equivalence of toposes.
For this one needs a more refined notion of denseness, which we
shall call weak denseness. 75 / 96
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Weakly dense morphisms

Recall that a Grothendieck topology on a locally small category is
said to be subcanonical if all the representables are sheaves for it.

In order to characterize the morphisms of sites which induce an
equivalence of toposes, we shall proceed in two steps:

(1) We will show that if F : (C, J)→ (D,K ) is a morphism towards
a subcanonical site (D,K ) which induces an equivalence

Sh(F ) : Sh(D,K )→ Sh(C, J)

then F is dense.

(2) We will associate with (D,K ) a Morita-equivalent
subcanonical site, replace F with a morphism to this site
inducing the same geometric morphism, and rephrase in
terms of F the property of this latter morphism to be dense.
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Weakly dense morphisms
Given a small-generated site (C, J) and the canonical functor
l : C → Sh(C, J), we define aJ(C) to be the full (dense) subcategory of
Sh(C, J) on the objects of the form l(c) for c ∈ C. We denote by CCJ the
Grothendieck topology Jcan

Sh(C,J)|aJ (C) induced by the canonical
Grothendieck topology on the topos Sh(C, J) on it.

• We have an equivalence

Sh(D,K ) ' Sh(aK (D),CDK )

induced by the morphism of sites

l ′ : (D,K )→ (aK (D),CDK ) .

• The site (aK (D),CDK ) is subcanonical and the morphism of sites

l ◦ F : (C, J)→ (aK (D),CDK )

induces the same geometric morphism (up to equivalence) as F .

This motivates the following

Definition
We shall say that a morphism of sites F : (C, J)→ (D,K ) is weakly
dense if the morphism of sites l ′ ◦ F : (C, J)→ (aK (D),CDK ) is dense.
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Characterization of weakly dense morphisms
By using notably the explicit local description of arrows in a
Grothendieck topos obtained above, one can prove the following

Proposition
Let F : (C, J)→ (D,K ) be a morphism of sites. Then F is a weakly
dense morphism of sites if and only if it satisfies the following
conditions:

(i) P is a J-covering family in C if and only if F (P) is a K -covering
family in D;

(ii) for any object d of D there exist a family {Si | i ∈ I} of
K -covering sieves on objects of the form F (ci ) (where ci is an
object of C) and for each f ∈ Si an arrow gf : dom(f )→ d such
that gf◦z ≡K gf ◦ z whenever z is composable with f , such that
the family of arrows gf (for f ∈ Si for some i) is K -covering;

(iii) for any objects x , y of C and any family of arrows
gh : dom(h)→ F (y) indexed by the arrows of a K -covering
sieve U on F (x) such that gh◦k ≡K gh ◦ k for every arrow k
composable with h, there exist a J-covering family of arrows
{fi : xi → x | i ∈ I} and arrows ki : xi → y (for each i ∈ I) such
that for every arrows w and z such that F (fi ) ◦ w = h ◦ z, we
have gh ◦ z ≡K F (ki ) ◦ w (for every h ∈ U and i ∈ I).
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The characterization theorem
Summarizing, we obtain the following general version of the
Comparison Lemma:

Theorem
Let F : (C, J)→ (D,K ) be a morphism of small-generated sites.
Then the following conditions are equivalent:

(i) The geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J) is an
equivalence.

(ii) l ′ ◦ F : (C, J)→ (aK (D),CDK ) is a dense morphism of sites.
(iii) F is a weakly dense morphism of sites (C, J)→ (D,K ) (i.e. it

satisfies the conditions of the above proposition).
If K is subcanonical then any of the above conditions is equivalent to
the requirement that F should be dense.
Applying this result to flat J-continuous functors F : C → E (regarded
as morphisms of sites (C, J)→ (E , Jcan

E )), we obtain the following
criterion:

Corollary
Let (C, J) be a small-generated site, E a Grothendieck topos and
F : C → E a J-continuous flat functor. Then the geometric morphism
f : E → Sh(C, J) induced by F is an equivalence if and only if F
satisfies the following conditions:

(i) If the image under F of a sieve S in C is epimorphic in E then S
is J-covering;

(ii) the family of objects of the form F (c) for c ∈ C is separating for
E ;

(iii) for every x , y ∈ C and any arrow g : F (x)→ F (y) in E , there
exist a J-covering family of arrows fi : xi → x and a family of
arrows gi : xi → y such that g ◦ F (fi ) = F (gi ) for all i .
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Denseness and weak denseness

We have seen that the notions of weak denseness and of
denseness coincide if the codomain site is subcanonical.

The following countexample shows that, indeed, they do not
coincide in general:

Example
Let 2 be the preorder category with two distinct objects 0 and 1
and just one arrow 0→ 1 apart from the identities. Let us equip 2
with the atomic topology Jat. The functor F : 2→ 2 sending 0 to 1,
1 to 1 and the arrow 0→ 1 to the identity arrow on 1 is a
morphism of sites (2, Jat)→ (2, Jat) which induces an equivalence
of toposes (note that Sh(2, Jat) ' Set by the Comparison
Lemma). Therefore, by our characterization theorem, F is a
weakly dense. However, F is not a dense morphism of sites
(since it is not Jat-dense).
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Denseness and weak denseness
Given a morphism of sites F : (C, J)→ (D,K ), we have an induced
functor aF : aJ(C)→ aK (D) given by the restriction of the inverse
image of the induced geometric morphism Sh(F ), which is a
morphism of sites

aF : (aJ(C),CCJ )→ (aK (D),CDK )

Recall that a functor between sites is said to satisfy the
covering-lifting property if it is a comorphism between these sites.
The following proposition further illuminates the relationship between
denseness and weak denseness:

Proposition
Let F : (C, J)→ (D,K ) be a morphism of sites. Then

(i) F is (J,K )-faithful if and only if aF is faithful;
(ii) Supposing that F is (J,K )-faithful, if aF is full, F is (J,K )-full,

and the converse holds if F satisfies the covering-lifting
property;

(iii) If F is K -dense then aF is CDK -dense, and the converse holds if
F satisfies the covering-lifting property.

Indeed, by using the proposition, one can show the following

Corollary
Let F be a morphism of sites (C, J)→ (D,K ). Then the following
conditions are equivalent:

(i) F is a weakly dense and has the covering-lifting property;
(ii) F is dense.
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Morita equivalence of sites
Theorem
Let (C, J) and (D,K ) be two small-generated sites. Then the following
conditions are equivalent:

(i) The toposes Sh(C, J) and Sh(D,K ) are equivalent.

(ii) There exist a category (resp. an essentially small category, if C
and D are essentially small) A, a Grothendieck topology Z on A
(which can be supposed subcanonical) and two functors
H : C → A and K : D → A satisfying the following conditions:

(i) P is a J-covering family in C if and only if H(P) is a Z-covering
family in A;

(ii) Q is a K -covering family in D if and only if K (Q) is a Z-covering
family in A;

(iii) for any object a of A there exists a Z-covering sieve whose arrows
factor both through an arrow whose domain is in the image of H
and through an arrow whose domain is in the image of K ;

(iv) for every x , y ∈ C (resp. x ′, y ′ ∈ D) and any arrow g : H(x)→ H(y)
(resp. g′ : K (x ′)→ K (y ′)) in A, there exist a J-covering family of
arrows fi : xi → x (resp. a K -covering family of arrows f ′j : x ′j → x ′)
and a family of arrows gi : xi → y (resp. a family of arrows
g′j : x ′j → y ′) such that g ◦ H(fi) = H(gi) for all i (resp.
g′ ◦ K (f ′j ) = K (g′j ) for all j);

(v) for any arrows h, k : x → y (resp. h′, k ′ : x ′ → y ′) in C (resp. in D)
such that H(h) = H(k) (resp. K (h′) = K ′(k ′)) there exists a
J-covering (resp. K -covering) family of arrows fi : xi → x (resp.
f ′j : x ′j → x ′) such that h ◦ fi = k ◦ fi for all i (resp. h′ ◦ f ′j = k ′ ◦ f ′j for
all j).
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Morita equivalence of sites

Sketch of proof.
The conditions of the theorem are precisely those for the functor
H and K to respectively define dense morphisms of sites
(C, J)→ (A,Z ) and (D,K )→ (A,Z ).

On the other hand, if Sh(C, J) ' Sh(D,K ) then, by taking, for
instance, A to be the full subcategory of this topos on the objects
that are either coming from the site (C, J) or from the site (D,K )
with the Grothendieck topology Z induced on it by the canonical
topology on the topos, we obtain by the Comparison Lemma
equivalences Sh(C, J) ' Sh(A,Z ) and Sh(D,K )→ Sh(A,Z ),
whence by one of the above theorems the canonical functors
C → A and D → A are respectively dense morphisms of sites
(C, J)→ (A,Z ) and (D,K )→ (A,Z ).
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Surjections and inclusions

Recall that a geometric morphism f : F → E is said to be

• a surjection if f ∗ is faithful;
• an inclusion if f∗ is full and faithful.

Every geometric morphism can be factored, uniquely up to
commuting equivalence, as the composite of a surjection followed
by an inclusion. In fact, surjections and inclusions are orthogonal
to each other. This implies that a geometric morphism is an
equivalence if and only if it is both a surjection and an inclusion.

As we shall see, surjections and inclusions, as well as the
surjection-inclusion factorization, can be naturally characterized in
terms of sites.
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Characterizations of surjections and inclusions
Theorem
Let F : (C, J)→ (D,K ) be a morphism of small-generated sites.
Then:

(i) The geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J) induced
by F is a surjection if and only if F is cover-reflecting (that is, if
the image of a family of arrows with a fixed codomain is
K -covering then the family is J-covering).

(ii) The surjection-inclusion factorization of the geometric morphism
Sh(F ) : Sh(D,K )→ Sh(C, J) induced by F can be identified with
the factorization Sh(iJF ) ◦ Sh(Fr ), where JF is the Grothendieck
topology on C whose covering sieves are exactly those whose
image under F are K -covering families, iJF : (C, J)→ (C, JF ) is
the morphism of sites given by the canonical inclusion functor
and Fr : (C, JF )→ (D,K ) is the morphism of sites given by F.

(iii) The geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J) induced
by F is an inclusion if and only if Fr : (C, JF )→ (D,K ) is a
weakly dense morphism of sites; in particular, if K is
subcanonical then Sh(F ) is an inclusion if and only if the
following conditions are satisfied:

(i) for any object d of D there exists a K -covering family of arrows
di → d whose domains di are in the image of F ;

(ii) for every x , y ∈ C and any arrow g : F (x)→ F (y) in D, there exist
a JF -covering family of arrows fi : xi → x and a family of arrows
gi : xi → y such that g ◦ F (fi) = F (gi) for all i .
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Alternative characterization of inclusions
Corollary
Let f : F → E be a geometric morphism. Then f is an inclusion if
and only if f ∗ satisfies the following conditions:

(i) f ∗ is locally surjective, that is every object of F can be covered
by objects in the image of f ∗;

(ii) f ∗ is locally full, that is for every x , y ∈ E and any arrow
g : f ∗(x)→ f ∗(y) in F , there exists a family of arrows
si : xi → x in E which is sent by f ∗ to an epimorphic family and
a family of arrows gi : xi → y such that g ◦ f ∗(si ) = f ∗(gi ) for all
i .

Remark
Since a Grothendieck topos has all coproducts, the two above
conditions for f to be an inclusion are equivalent to the following
ones:

(i) every object of F is a quotient of an object in the image of f ∗;
(ii) for every x , y ∈ E and any arrow g : f ∗(x)→ f ∗(y) in F , there

exist an arrow s : x ′ → x in E which is sent by f ∗ to an
epimorphism and an arrow g′ : x ′ → y such that
g ◦ f ∗(s) = f ∗(g′).
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The induced topology
The following corollary of the above theorem shows that every
morphism of sites naturally induces a Grothendieck topology on the
domain category admitting a very simple description:

Proposition
Let f : E → [Cop,Set] be a geometric morphism (equivalently, a flat
functor F : C → E). Then there exists a Grothendieck topology Jf
(resp. JF ) on C, called the Grothendieck topology induced by f (resp.
F) whose covering sieves are precisely the sieves which are sent by
f ∗ (resp. by F) to epimorphic families in E . This applies in particular
to a morphism of small-generated sites G : (C, J)→ (D,K ), yielding
a Grothendieck topology JG on C whose covering sieves are exactly
those whose image under G are K -covering families.

In fact, JG is the largest topology on C which makes F continuous as
a functor from C to the site (D,K ).
As shown by the following result, the notion of induced topology can
be profitably applied for establishing equivalences of toposes:

Corollary
Let C be an essentially small category, E a Grothendieck topos and
F : C → E a flat functor. Then F induces an equivalence

E ' Sh(C, JF ),

if and only if F is JF -full and the objects of the form F (c) for c ∈ C
form a separating set for the topos E
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Hyperconnected and localic morphisms

Recall that a geometric morphism f : F → E is said to be

• hyperconnected if f ∗ is full and faithful and its image is closed
under subobjects in F ;

• localic if every object of F is a subquotient (that is, a quotient
of a subobject) of an object of the form f ∗(A) for A ∈ E .

Recall that every geometric morphism can be factored, uniquely
up to commuting equivalence, as the composite of a
hyperconnected morphism followed by a localic one. In fact,
hyperconnected and localic morphisms are orthogonal to each
other.
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Characterizations for localic morphisms

Proposition
Let (C, J) be a small-generated site, E a Grothendieck topos and
F : C → E a J-continuous flat functor inducing a geometric
morphism f : E → Sh(C, J). Then f is localic if and only if the
subobjects of objects of the form F (c) for c ∈ C form a separating
set for the topos E .

Proposition
Let F : (C, J)→ (D,K ) be a morphism of small-generated sites.
Then the geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J)
induced by F is localic if and only if for any object d of D there exist
a family {Si | i ∈ I} of sieves on objects of the form F (ci ) (where ci
is an object of C) and for each f ∈ Si an arrow gf : dom(f )→ d such
that gf◦z ≡K gf ◦ z whenever z is composable with f , such that the
family of arrows gf (for f ∈ Si for some i) is K -covering.
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Characterizations for hyperconnected morphisms

Proposition
Let (C, J) be a small-generated site, E a Grothendieck topos and
F : C → E a J-continuous flat functor. Then the geometric morphism
f : E → Sh(C, J) induced by F is hyperconnected if and only if F is
cover-reflecting and for every subobject A � F (c) in E there exists
a (J-closed) sieve R on c such that A is the union of the images of
the arrows F (f ) for f ∈ R.

Proposition
Let F : (C, J)→ (D,K ) be a morphism of small-generated sites.
Then the geometric morphism Sh(F ) : Sh(D,K )→ Sh(C, J)
induced by F is hyperconnected if and only if F is cover-reflecting
and closed-sieve-lifting, in the sense that for every object c of C and
any K -closed sieve S on F (c) there exists a (J-closed) sieve R on c
such that S coincides with the K -closure of the sieve on F (c)
generated by the arrows F (f ) for f ∈ R.

We have also obtained a site-theoretic description of the
hyperconnected-localic factorization of the geometric morphism
induced by a morphism of sites. This description specializes to a
particularly elegant one in the case of the geometric morphism
between the classifying toposes of two geometric theories induced
by an interpretation of one theory into the other.
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Other criteria for equivalence
Corollary
Let (C, J) be a small-generated site, E a Grothendieck topos and
F : C → E a J-continuous flat functor inducing a geometric
morphism f : E → Sh(C, J). Then f is an equivalence if and only if
the following conditions are satisfied:

(i) F is cover-reflecting;
(ii) for every subobject A � F (c) in E there exists a (J-closed)

sieve R on c such that A is the union of the images of the
arrows F (f ) for f ∈ R;

(iii) the objects of the form F (c) for c ∈ C form a separating set for
the topos E .

Corollary
Let f : F → E be a geometric morphism. Then

(i) f is an inclusion if and only if f ∗ is locally surjective and its
image is closed under subobjects.

(ii) f is an equivalence if and only if f ∗ is faithful, locally surjective
and its image is closed under subobjects.

By applying this latter corollary, we have obtained explicit and
elegant characterizations of

• the interpetations of one geometric theory into another which
identify the latter as a quotient of the former (up to Morita
equivalence);

• the interpetations of one geometric theory into another which
induce a Morita equivalence between them.
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Characterizations in terms of comorphisms
We have obtained characterizations for the property of a
comorphism of sites to induce a surjection (resp. an inclusion), as
well as of the surjection-inclusion factorization of the associated
geometric morphism. We have also derived characterizations for the
property of a comorphism of sites to induce a hyperconnected (resp.
a localic) morphism, as well as of the hyperconnected-localic
factorization. Under the most general assumptions, these
characterizations are normally rather technically involved.

Here are some of the simplest examples of such characterizations:

Proposition
The geometric morphism CF : Sh(D,K )→ Sh(C, J) induced by a
comorphism of sites F : (D,K )→ (C, J) is a surjection if and only if
whenever a sieve S on an object c ∈ C satisfies the property that for
every object d of D and arrow x : F (d)→ c in C, there exists a
K -covering sieve T on d such that F (T ) ⊆ x∗(S), then S is
J-covering. This condition implies that F is J-dense and is equivalent
to it if F is cover-preserving.

Proposition
Let F : (D,K )→ (C, J) be a comorphism of sites which is
cover-preserving. Then the surjection-inclusion factorization of the
geometric morphism CF : Sh(D,K )→ Sh(C, J) induced by F can be
identified with Ci ◦ CF ′ , where F ′ is the functor F regarded as a
comorphism of sites from (D,K ) to the site (C′, J ′), where C′ is the
full subcategory of C on the objects in the image of F and J ′ is the
smallest Grothendieck topology on C′ making the inclusion i of C′
into C a comorphism of sites to (C, J).
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Characterizations in terms of comorphisms

Proposition
Let F : D → C be a functor between essentially small categories.
Then the geometric morphism CF : [Dop,Set]→ [Cop,Set] is
hyperconnected if and only if F is full and every object of D is a
retract of an object in the image of F .

Proposition
Let F : (D,K )→ (C, J) be a comorphism of sites which is
cover-preserving. Then the hyperconnected-localic factorization
of the geometric morphism CF : Sh(D,K )→ Sh(C, J) induced by
F can be identified with CF̃ ◦ Cπ, where F̃ is the functor F
regarded as a comorphism of sites from the site (E ,L) whose
underlying category E is the quotient of the category D by the
congruence induced by F and whose Grothendieck topology L
has as covering sieves the sieves whose inverse image under the
canonical projection functor π : D → E is K -covering.
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Local morphisms
Recall that a (weak) geometric morphism f : F → E is said to be
local if f∗ has a fully faithful right adjoint.

Theorem
Let F : D → C be a continuous comorphism of sites (also regarded
as a weak morphism of sites) (D,K )→ (C, J). Then:

(i) The geometric morphism CF : Sh(D,K )→ Sh(C, J) is
essential, and

(CF )! ∼= Sh(F )∗ a Sh(F )∗ ∼= (CF )∗ = DF := (− ◦ F op) a (CF )∗

(ii) If F is a morphism of sites then the geometric morphisms Sh(F )
and CF form an adjoint pair in the 2-category Top of
Grothendieck toposes, geometric morphisms and geometric
transformations.

(iii) The weak morphism Sh(F ) : Sh(C, J)→ Sh(D,K ) is local if and
only if CF is an inclusion, that is, if and only if F is K -faithful and
K -full.

(iv) The canonical geometric transformation

1Sh(D,K ) → Sh(F ) ◦ CF

(given by the unit of the adjunction between Sh(F ) and CF ) is
an isomorphism if (and only if) F is K -faithful and K -full. In this
case, if F is moreover a morphism of sites (D,K )→ (C, J), the
morphisms CF and Sh(F ) realize the topos Sh(D,K ) as a
(coadjoint) retract of Sh(C, J) in Top.
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Gros and petit toposes
The above result can be notably applied to construct pairs of gros and
petit toposes starting from a (K -)full and (K -)faithful morphism and
comorphism of sites

(D,K )→ (T /TD,ETD ),

where T is a category endowed with a Grothendieck topology E , TD is
an object of T and ETD is the Grothendieck topology induced on
(T /TD) by E .

As an example, consider, for any small-generated site (C, J), the
functor L : C → Top/Sh(C, J) sending an object c of C to the local
homeomorphism Sh(C, J)/l(c)→ Sh(C, J). By equipping Top with the
topology E generated by the families of local homeomorphisms
{E/Ai → E | i ∈ I} such that the family {Ai → 1E} is epimorphic, L
becomes a J-full and J-faithful morphism and comorphism of sites
(C, J)→ (Top/Sh(C, J),ESh(C,J)) (where ESh(C,J) is the Grothendieck
topology whose covering sieves are those sent by the canonical
projection Top/Sh(C, J)→ Top to E-covering families), thus realizing
Sh(C, J) as a coadjoint retract of the gros topos
Sh(Top/Sh(C, J),ESh(C,J)) ' Sh(Top,E)/l(Sh(C, J)) (with respect to
suitable Grothendieck universe), where l is the canonical functor
Top→ Sh(Top,E).

This is part of a joint work-in-progress with my Ph.D. student Riccardo
Zanfa, which constructs a whole framework for studying (relative)
Grothendieck toposes from a geometric point of view, thus providing a
solution to the questions posed by Grothendieck in his lecture course
at Buffalo of 1973 and recently brought to the public attention by Colin
McLarty.
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